code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def set_peer_address(self, value=None, default=False, disable=False): return self._configure_mlag('peer-address', value, default, disable)
Configures the mlag peer-address value Args: value (str): The value to configure the peer-address default (bool): Configures the peer-address using the default keyword disable (bool): Negates the peer-address using the no keyword Returns: bool: Returns True if the commands complete successfully
codesearchnet
def export_analytics_data_to_excel(data, output_file_name, result_info_key, identifier_keys): workbook = create_excel_workbook(data, result_info_key, identifier_keys) workbook.save(output_file_name) print('Saved Excel file to {}'.format(output_file_name))
Creates an Excel file containing data returned by the Analytics API Args: data: Analytics API data as a list of dicts output_file_name: File name for output Excel file (use .xlsx extension).
juraj-google-style
def register_custom_opdefs(custom_opdefs_list): return wrap_converter.wrapped_register_custom_opdefs(custom_opdefs_list)
Register the given custom opdefs to the TensorFlow global op registry. Args: custom_opdefs_list: String representing the custom ops OpDefs that are included in the GraphDef. Returns: True if the registration is successfully completed.
github-repos
def _ParseLeak( self, parser_mediator, cache_directories, msiecf_item, recovered=False): date_time = dfdatetime_semantic_time.SemanticTime('Not set') event_data = MSIECFLeakEventData() event_data.cached_filename = msiecf_item.filename event_data.cached_file_size = msiecf_item.cached_file_size event_data.cache_directory_index = msiecf_item.cache_directory_index event_data.offset = msiecf_item.offset event_data.recovered = recovered if (event_data.cache_directory_index >= 0 and event_data.cache_directory_index < len(cache_directories)): event_data.cache_directory_name = ( cache_directories[event_data.cache_directory_index]) event = time_events.DateTimeValuesEvent( date_time, definitions.TIME_DESCRIPTION_NOT_A_TIME) parser_mediator.ProduceEventWithEventData(event, event_data)
Extract data from a MSIE Cache Files (MSIECF) leak item. Every item is stored as an event object, one for each timestamp. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. cache_directories (list[str]): cache directory names. msiecf_item (pymsiecf.leak): MSIECF leak item. recovered (Optional[bool]): True if the item was recovered.
juraj-google-style
def from_config(cls, config_dict: dict, schema_path: str = None): if schema_path is None: schema_path = join(dirname(__file__), 'schema', 'configure_sbi.json') with open(schema_path, 'r') as file: schema = json.loads(file.read()) validate(config_dict, schema) config_dict['status'] = 'created' if 'subarray_id' not in config_dict: config_dict['subarray_id'] = 'None' timestamp = datetime.datetime.utcnow().isoformat() config_dict['created'] = timestamp config_dict['updated'] = timestamp pb_list = copy.deepcopy(config_dict['processing_blocks']) config_dict.pop('processing_blocks', None) config_dict['processing_block_ids'] = [] for pb in pb_list: config_dict['processing_block_ids'].append(pb['id']) key = SchedulingObject.get_key(SBI_KEY, config_dict['id']) DB.save_dict(key, config_dict, hierarchical=False) key = '{}:active'.format(SBI_KEY) DB.append_to_list(key, config_dict['id']) sbi = SchedulingObject(SBI_KEY, config_dict['id']) sbi.set_status('created') for pb in pb_list: pb['sbi_id'] = config_dict['id'] cls._add_pb(pb) return cls(config_dict['id'])
Create an SBI object from the specified configuration dict. NOTE(BM) This should really be done as a single atomic db transaction. Args: config_dict(dict): SBI configuration dictionary schema_path(str, optional): Path to the SBI config schema.
juraj-google-style
def _expand_terms(self, terms): ret = {'keywords': list(), 'doc': list()} if (not isinstance(terms, dict)): stp = SearchTermParser() terms = stp.parse(terms, term_join=self.backend._and_join) if ('about' in terms): ret['doc'].append(terms['about']) if ('source' in terms): ret['keywords'].append(terms['source']) return ret
Expands terms of the dataset to the appropriate fields. It will parse the search phrase and return only the search term components that are applicable to a Dataset query. Args: terms (dict or str): Returns: dict: keys are field names, values are query strings
codesearchnet
def _ParseLogLine(self, parser_mediator, structure, key): time_elements_tuple = self._GetTimeElementsTuple(structure) try: date_time = dfdatetime_time_elements.TimeElements( time_elements_tuple=time_elements_tuple) except ValueError: parser_mediator.ProduceExtractionWarning( 'invalid date time value: {0!s}'.format(structure.date_time)) return self._last_month = time_elements_tuple[1] if key == 'logline': self._previous_structure = structure message = structure.message else: message = 'Repeated {0:d} times: {1:s}'.format( structure.times, self._previous_structure.message) structure = self._previous_structure event_data = MacOSSecuritydLogEventData() event_data.caller = structure.caller.strip() or 'unknown' event_data.facility = structure.facility event_data.level = structure.level event_data.message = message event_data.security_api = structure.security_api or 'unknown' event_data.sender_pid = structure.sender_pid event_data.sender = structure.sender.strip() event = time_events.DateTimeValuesEvent( date_time, definitions.TIME_DESCRIPTION_ADDED) parser_mediator.ProduceEventWithEventData(event, event_data)
Parse a single log line and produce an event object. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. structure (pyparsing.ParseResults): structure of tokens derived from a line of a text file. key (str): name of the parsed structure.
juraj-google-style
def write(self, *pb2_obj): base = len(self._write_buff) for idx, obj in enumerate(pb2_obj): if self._buffer_size > 0 and \ (idx + base) != 0 and \ (idx + base) % self._buffer_size == 0: self.flush() self._write_buff.append(obj) if self._buffer_size == 0: self.flush()
Write a group of one or more protobuf objects to the file. Multiple object groups can be written by calling this method several times before closing stream or exiting the runtime context. The input protobuf objects get buffered and will be written down when the number of buffered objects exceed the `self._buffer_size`. Args: pb2_obj (*protobuf.message.Message): list of protobuf messages.
juraj-google-style
def file(path, format='csv', csv_delimiter=',', csv_header=True, compress=False, use_cache=True): output = QueryOutput() output._output_type = 'file' output._file_path = path output._file_format = format output._csv_delimiter = csv_delimiter output._csv_header = csv_header output._compress_file = compress return output
Construct a query output object where the result is either a local file or a GCS path Note that there are two jobs that may need to be run sequentially, one to run the query, and the second to extract the resulting table. These are wrapped by a single outer Job. If the query has already been executed and you would prefer to get a Job just for the extract, you can can call extract[_async] on the QueryResultsTable returned by the query Args: path: the destination path. Can either be a local or GCS URI (starting with gs://) format: the format to use for the exported data; one of 'csv', 'json', or 'avro' (default 'csv'). csv_delimiter: for CSV exports, the field delimiter to use (default ','). csv_header: for CSV exports, whether to include an initial header line (default True). compress: whether to compress the data on export. Compression is not supported for AVRO format (default False). Applies only to GCS URIs. use_cache: whether to use cached results or not (default True).
codesearchnet
def post_process_travis_macos(journal_filename): travis_build_dir = os.environ.get("TRAVIS_BUILD_DIR", "") with open(journal_filename, "r") as file_obj: content = file_obj.read() processed = content.replace(travis_build_dir, "${TRAVIS_BUILD_DIR}") with open(journal_filename, "w") as file_obj: file_obj.write(processed)
Post-process a generated journal file on Travis macOS. Args: journal_filename (str): The name of the journal file.
juraj-google-style
def ldu(load_v, name): try: return load_v() except (KeyError, AttributeError, NameError): return Undefined(name)
Load variable operator that returns Undefined when failing to evaluate. Note: the name ("load or return undefined") is abbreviated to minimize the amount of clutter in generated code. This variant of `ld` is useful when loading symbols that may be undefined at runtime, such as composite symbols, and whether they are defined or not cannot be determined statically. For example `d['a']` is undefined when `d` is an empty dict. Args: load_v: Lambda that executes the actual read. name: Human-readable name of the symbol being read. Returns: Either the value of the symbol, or Undefined, if the symbol is not fully defined.
github-repos
def _get_mtime(): return ((os.path.exists(RPM_PATH) and int(os.path.getmtime(RPM_PATH))) or 0)
Get the modified time of the RPM Database. Returns: Unix ticks
codesearchnet
def evaluate_model_predictions(y_true, y_pred, weights=None): if isinstance(y_pred[0], np.ndarray): y_pred = np.concatenate(y_pred) if isinstance(y_true[0], np.ndarray): y_true = np.concatenate(y_true) if (weights is not None) and (isinstance(weights[0], np.ndarray)): weights = np.concatenate(weights) accuracy = accuracy_score( y_true, y_pred, normalize=True, sample_weight=weights) precision = precision_score( y_true, y_pred, average='binary', pos_label=1, sample_weight=weights) recall = recall_score( y_true, y_pred, average='binary', pos_label=1, sample_weight=weights) f1 = f1_score( y_true, y_pred, average='binary', pos_label=1, sample_weight=weights) return {'accuracy': accuracy, 'precision': precision, 'recall': recall, 'f1': f1}
Evaluate the performance of an extractor model's binary classification predictions, typically at the block level, of whether a block is content or not. Args: y_true (``np.ndarray``) y_pred (``np.ndarray``) weights (``np.ndarray``) Returns: Dict[str, float]
juraj-google-style
def atan(cls, x: 'TensorFluent') -> 'TensorFluent': return cls._unary_op(x, tf.atan2, tf.float32)
Returns a TensorFluent for the arctan function. Args: x: The input fluent. Returns: A TensorFluent wrapping the arctan function.
codesearchnet
def get_available_references(self, datas): names = [] for k, v in datas.items(): if k.startswith(RULE_REFERENCE): names.append(k[len(RULE_REFERENCE)+1:]) return names
Get available manifest reference names. Every rules starting with prefix from ``nomenclature.RULE_REFERENCE`` are available references. Only name validation is performed on these references. Arguments: datas (dict): Data where to search for reference declarations. Returns: list: List of every available reference names. This is the real name unprefixed.
juraj-google-style
def flush_all(self, delay=0, noreply=None): if noreply is None: noreply = self.default_noreply cmd = b'flush_all ' + six.text_type(delay).encode('ascii') if noreply: cmd += b' noreply' cmd += b'\r\n' results = self._misc_cmd([cmd], b'flush_all', noreply) if noreply: return True return results[0] == b'OK'
The memcached "flush_all" command. Args: delay: optional int, the number of seconds to wait before flushing, or zero to flush immediately (the default). noreply: optional bool, True to not wait for the reply (defaults to self.default_noreply). Returns: True.
juraj-google-style
def delete_user(self, user): self.project_service.set_auth(self._token_project) self.project_service.delete_user(user)
Delete the given user. Args: user (string): User name. Raises: requests.HTTPError on failure.
juraj-google-style
def validate(self, table: pd.DataFrame, failed_only=False) -> pd.DataFrame: raise NotImplementedError("This method must be defined for each subclass.")
Return a dataframe of validation results for the appropriate series vs the vector of validators. Args: table (pd.DataFrame): A dataframe on which to apply validation logic. failed_only (bool): If ``True``: return only the indexes that failed to validate.
juraj-google-style
def Parse(self, value): value_line = value.split(' ') if len(value_line) < 3: raise TextFSMTemplateError('Expect at least 3 tokens on line.') if not value_line[2].startswith('('): options = value_line[1] for option in options.split(','): self._AddOption(option) _ = [option.OnCreateOptions() for option in self.options] self.name = value_line[2] self.regex = ' '.join(value_line[3:]) else: self.name = value_line[1] self.regex = ' '.join(value_line[2:]) if len(self.name) > self.max_name_len: raise TextFSMTemplateError( "Invalid Value name '%s' or name too long." % self.name) if (not re.match(r'^\(.*\)$', self.regex) or self.regex.count('(') != self.regex.count(')')): raise TextFSMTemplateError( "Value '%s' must be contained within a '()' pair." % self.regex) self.template = re.sub(r'^\(', '(?P<%s>' % self.name, self.regex) if any(map(lambda x: isinstance(x, TextFSMOptions.List), self.options)): try: self.compiled_regex = re.compile(self.regex) except re.error as e: raise TextFSMTemplateError(str(e))
Parse a 'Value' declaration. Args: value: String line from a template file, must begin with 'Value '. Raises: TextFSMTemplateError: Value declaration contains an error.
juraj-google-style
def execute(self, method, **kwargs): payload = {'id': 1, 'jsonrpc': '2.0', 'method': method, 'params': kwargs} credentials = base64.b64encode('{}:{}'.format(self._username, self._password).encode()) auth_header_prefix = ('Basic ' if (self._auth_header == DEFAULT_AUTH_HEADER) else '') headers = {self._auth_header: (auth_header_prefix + credentials.decode()), 'Content-Type': 'application/json'} return self._do_request(headers, payload)
Call remote API procedure Args: method: Procedure name kwargs: Procedure named arguments Returns: Procedure result Raises: urllib2.HTTPError: Any HTTP error (Python 2) urllib.error.HTTPError: Any HTTP error (Python 3)
codesearchnet
def process_extra_vars(extra_vars_list, force_json=True): extra_vars = {} extra_vars_yaml = '' for extra_vars_opt in extra_vars_list: if extra_vars_opt.startswith('@'): with open(extra_vars_opt[1:], 'r') as f: extra_vars_opt = f.read() opt_dict = string_to_dict(extra_vars_opt, allow_kv=False) else: opt_dict = string_to_dict(extra_vars_opt, allow_kv=True) if any((line.startswith(' extra_vars_yaml += (extra_vars_opt + '\n') elif (extra_vars_opt != ''): extra_vars_yaml += (yaml.dump(opt_dict, default_flow_style=False) + '\n') extra_vars.update(opt_dict) if (not force_json): try: try_dict = yaml.load(extra_vars_yaml, Loader=yaml.SafeLoader) assert (type(try_dict) is dict) debug.log('Using unprocessed YAML', header='decision', nl=2) return extra_vars_yaml.rstrip() except Exception: debug.log('Failed YAML parsing, defaulting to JSON', header='decison', nl=2) if (extra_vars == {}): return '' return json.dumps(extra_vars, ensure_ascii=False)
Returns a string that is valid JSON or YAML and contains all the variables in every extra_vars_opt inside of extra_vars_list. Args: parse_kv (bool): whether to allow key=value syntax. force_json (bool): if True, always output json.
codesearchnet
def reminders_complete(self, *, reminder: str, **kwargs) -> SlackResponse: self._validate_xoxp_token() kwargs.update({"reminder": reminder}) return self.api_call("reminders.complete", json=kwargs)
Marks a reminder as complete. Args: reminder (str): The ID of the reminder to be marked as complete. e.g. 'Rm12345678'
juraj-google-style
def parse_blob_info(field_storage): if field_storage is None: return None field_name = field_storage.name def get_value(dct, name): value = dct.get(name, None) if value is None: raise BlobInfoParseError( 'Field %s has no %s.' % (field_name, name)) return value filename = get_value(field_storage.disposition_options, 'filename') blob_key_str = get_value(field_storage.type_options, 'blob-key') blob_key = BlobKey(blob_key_str) upload_content = email.message_from_file(field_storage.file) content_type = get_value(upload_content, 'content-type') size = get_value(upload_content, 'content-length') creation_string = get_value(upload_content, UPLOAD_INFO_CREATION_HEADER) md5_hash_encoded = get_value(upload_content, 'content-md5') md5_hash = base64.urlsafe_b64decode(md5_hash_encoded) try: size = int(size) except (TypeError, ValueError): raise BlobInfoParseError( '%s is not a valid value for %s size.' % (size, field_name)) try: creation = blobstore._parse_creation(creation_string, field_name) except blobstore._CreationFormatError, err: raise BlobInfoParseError(str(err)) return BlobInfo(id=blob_key_str, content_type=content_type, creation=creation, filename=filename, size=size, md5_hash=md5_hash, )
Parse a BlobInfo record from file upload field_storage. Args: field_storage: cgi.FieldStorage that represents uploaded blob. Returns: BlobInfo record as parsed from the field-storage instance. None if there was no field_storage. Raises: BlobInfoParseError when provided field_storage does not contain enough information to construct a BlobInfo object.
juraj-google-style
def save_config(self, lookup_key, config): with self._config_lock: self._configs[lookup_key] = config
Save a configuration to the cache of configs. Args: lookup_key: A string containing the cache lookup key. config: The dict containing the configuration to save to the cache.
juraj-google-style
def unique_row_id(self): self._unique_row_id += 1 return '%s_%d' % (self._row_id_prefix, self._unique_row_id)
Returns a unique row ID (str) used to avoid multiple insertions. If the row ID is provided, BigQuery will make a best effort to not insert the same row multiple times for fail and retry scenarios in which the insert request may be issued several times. This comes into play for sinks executed in a local runner. Returns: a unique row ID string
github-repos
def load(self) -> RepresentativeDatasetMapping: raise NotImplementedError('Method "load" is not implemented.')
Loads the representative datasets. Returns: representative dataset mapping: A loaded signature def key -> representative mapping.
github-repos
def generate_combinations_with_testcase_name(**kwargs) -> list[OrderedDict[str, Any]]: combinations = _combine_named_parameters(**kwargs) named_combinations: list[OrderedDict[str, Any]] = [] for combination in combinations: assert isinstance(combination, OrderedDict) name = ''.join(['_{}_{}'.format(''.join(filter(str.isalnum, key)), ''.join(filter(str.isalnum, str(value)))) for key, value in combination.items()]) named_combinations.append(OrderedDict(list(combination.items()) + [('testcase_name', '_test{}'.format(name))])) return named_combinations
Generate combinations based on its keyword arguments using combine(). This function calls combine() and appends a testcase name to the list of dictionaries returned. The 'testcase_name' key is a required for named parameterized tests. Args: **kwargs: keyword arguments of form `option=[possibilities, ...]` or `option=the_only_possibility`. Returns: a list of dictionaries for each combination. Keys in the dictionaries are the keyword argument names. Each key has one value - one of the corresponding keyword argument values.
github-repos
def iterator_chain(variables: VarType, parent: str=None) -> Iterable[VarMatrix]: logger.debug('Yielding from append iterator') if (not isinstance(variables, list)): raise ValueError(f'Append keyword only takes a list of arguments, got {variables} of type {type(variables)}') (yield list(chain.from_iterable((variable_matrix(item, parent, 'product') for item in variables))))
This successively appends each element of an array to a single list of values. This takes a list of values and puts all the values generated for each element in the list into a single list of values. It uses the :func:`itertools.chain` function to achieve this. This function is particularly useful for specifying multiple types of simulations with different parameters. Args: variables: The variables object parent: Unused
codesearchnet
def allreduce_grads(all_grads, average): if get_tf_version_tuple() <= (1, 12): from tensorflow.contrib import nccl else: from tensorflow.python.ops import nccl_ops as nccl nr_tower = len(all_grads) if nr_tower == 1: return all_grads new_all_grads = [] for grads in zip(*all_grads): summed = nccl.all_sum(grads) grads_for_devices = [] for g in summed: with tf.device(g.device): if average: g = tf.multiply(g, 1.0 / nr_tower) grads_for_devices.append(g) new_all_grads.append(grads_for_devices) ret = list(zip(*new_all_grads)) return ret
All-reduce average the gradients among K devices. Results are broadcasted to all devices. Args: all_grads (K x N): List of list of gradients. N is the number of variables. average (bool): average gradients or not. Returns: K x N: same as input, but each grad is replaced by the average over K devices.
juraj-google-style
def get_license(name): filenames = os.listdir((cwd + licenses_loc)) licenses = dict(zip(filenames, ([(- 1)] * len(filenames)))) for l in licenses: licenses[l] = compute_distance(name, l) return min(licenses, key=(lambda k: licenses[k]))
Returns the closest match to the requested license. Arguments: - name (str) License to use Returns: - (str) License that most closely matches the 'name' parameter
codesearchnet
def joint(node): (node, _, _) = _fix(node) body = (node.body[0].body[:(- 1)] + node.body[1].body) func = gast.Module(body=[gast.FunctionDef(name=node.body[0].name, args=node.body[1].args, body=body, decorator_list=[], returns=None)]) anno.clearanno(func) return func
Merge the bodies of primal and adjoint into a single function. Args: node: A module with the primal and adjoint function definitions as returned by `reverse_ad`. Returns: func: A `Module` node with a single function definition containing the combined primal and adjoint.
codesearchnet
def _find_initialized_value_for_variable(variable_op): try: var_names = [variable_op.node_def.name, variable_op.node_def.name + ':0'] for collection_name in (ops.GraphKeys.GLOBAL_VARIABLES, ops.GraphKeys.LOCAL_VARIABLES): for var in variable_op.graph.get_collection(collection_name): if var.name in var_names: return var.initialized_value() except AttributeError: return None return None
Find the initialized value for a variable op. To do so, lookup the variable op in the variables collection. Args: variable_op: A variable `Operation`. Returns: A `Tensor` representing the initialized value for the variable or `None` if the initialized value could not be found.
github-repos
def lineitem_get_v1(config, auth, advertiser_id, lineitem_id): return API_DV360(config, auth).advertisers().lineItems().get(advertiserId=advertiser_id, lineItemId=lineitem_id).execute()
Gets a DV360 Line Item Args: auth: StarThinker authentication scheme advertiser_id: ID of the advertiser of the line item lineitem_id: ID of the line item Returns: Line Item from the DV360 API
github-repos
def en010(self, value=None): if (value is not None): try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float for field `en010`'.format(value)) self._en010 = value
Corresponds to IDD Field `en010` mean coincident dry-bulb temperature to Enthalpy corresponding to 1.0% annual cumulative frequency of occurrence Args: value (float): value for IDD Field `en010` Unit: kJ/kg if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
codesearchnet
def get_subscriber_queue(self, event_types=None): try: self.started_queue.get(timeout=1) raise RuntimeError('Cannot create a new subscriber queue while Exchange is running.') except Empty: pass if (event_types is None): event_types = EventTypes.ALL queue = Queue() self.queues[event_types].append(queue) return queue
Create a new queue for a specific combination of event types and return it. Returns: a :class:`multiprocessing.Queue`. Raises: RuntimeError if called after `run`
codesearchnet
def __parameter_default(self, field): if field.default: if isinstance(field, messages.EnumField): return field.default.name else: return field.default
Returns default value of field if it has one. Args: field: A simple field. Returns: The default value of the field, if any exists, with the exception of an enum field, which will have its value cast to a string.
juraj-google-style
def set_probe_file_name(self, checked): if checked: file_name = os.path.join(self.gui_settings['probes_log_folder'], '{:s}_probes.csv'.format(datetime.datetime.now().strftime('%y%m%d-%H_%M_%S'))) if os.path.isfile(file_name) == False: self.probe_file = open(file_name, 'a') new_values = self.read_probes.probes_values header = ','.join(list(np.array([['{:s} ({:s})'.format(p, instr) for p in list(p_dict.keys())] for instr, p_dict in new_values.items()]).flatten())) self.probe_file.write('{:s}\n'.format(header)) else: self.probe_file.close()
sets the filename to which the probe logging function will write Args: checked: boolean (True: opens file) (False: closes file)
juraj-google-style
def create_module_graph(module_spec): (height, width) = hub.get_expected_image_size(module_spec) with tf.Graph().as_default() as graph: resized_input_tensor = tf.placeholder(tf.float32, [None, height, width, 3]) m = hub.Module(module_spec) bottleneck_tensor = m(resized_input_tensor) wants_quantization = any(((node.op in FAKE_QUANT_OPS) for node in graph.as_graph_def().node)) return (graph, bottleneck_tensor, resized_input_tensor, wants_quantization)
Creates a graph and loads Hub Module into it. Args: module_spec: the hub.ModuleSpec for the image module being used. Returns: graph: the tf.Graph that was created. bottleneck_tensor: the bottleneck values output by the module. resized_input_tensor: the input images, resized as expected by the module. wants_quantization: a boolean, whether the module has been instrumented with fake quantization ops.
codesearchnet
def mark_experimental(fn): @wraps(fn) def wrapper(*args, **kw): from peltak.core import shell if shell.is_tty: warnings.warn("This command is has experimental status. The " "interface is not yet stable and might change " "without notice within with a patch version update. " "Use at your own risk") return fn(*args, **kw) return wrapper
Mark function as experimental. Args: fn (FunctionType): The command function to decorate.
juraj-google-style
def are_genes_in_api(my_clue_api_client, gene_symbols): if (len(gene_symbols) > 0): query_gene_symbols = (gene_symbols if (type(gene_symbols) is list) else list(gene_symbols)) query_result = my_clue_api_client.run_filter_query(resource_name, {'where': {'gene_symbol': {'inq': query_gene_symbols}}, 'fields': {'gene_symbol': True}}) logger.debug('query_result: {}'.format(query_result)) r = set([x['gene_symbol'] for x in query_result]) return r else: logger.warning('provided gene_symbols was empty, cannot run query') return set()
determine if genes are present in the API Args: my_clue_api_client: gene_symbols: collection of gene symbols to query the API with Returns: set of the found gene symbols
codesearchnet
def get_local_variable_from_name(self, variable_name): return next((v for v in self.variables if v.name == variable_name), None)
Return a local variable from a name Args: varible_name (str): name of the variable Returns: LocalVariable
juraj-google-style
def StartFlowAndWorker(client_id, flow_name, **kwargs): queue = rdfvalue.RDFURN("DEBUG-%s-" % getpass.getuser()) if "token" in kwargs: token = kwargs.pop("token") else: token = access_control.ACLToken(username="GRRConsole") session_id = flow.StartAFF4Flow( client_id=client_id, flow_name=flow_name, queue=queue, token=token, **kwargs) worker_thrd = worker_lib.GRRWorker( queues=[queue], token=token, threadpool_size=1) while True: try: worker_thrd.RunOnce() except KeyboardInterrupt: print("exiting") worker_thrd.thread_pool.Join() break time.sleep(2) with aff4.FACTORY.Open(session_id, token=token) as flow_obj: if not flow_obj.GetRunner().IsRunning(): break worker_thrd.thread_pool.Join() return session_id
Launches the flow and worker and waits for it to finish. Args: client_id: The client common name we issue the request. flow_name: The name of the flow to launch. **kwargs: passthrough to flow. Returns: A flow session id. Note: you need raw access to run this flow as it requires running a worker.
juraj-google-style
def unique_parameter_values(self) -> 'list[Collection[cfg.Binding]]': def _get_values(parameter): return {b.data.get_type_key(): b for b in parameter.bindings}.values() return [_get_values(parameter) for parameter in self._unique_parameters()]
Get unique parameter subtypes as bindings. Like _unique_parameters, but returns bindings instead of variables. Returns: A list of list of bindings.
github-repos
def install(self, connection, partition, table_name = None, index_columns=None, materialize=False, logger = None): virtual_table = partition.vid table = partition.vid if not table_name else table_name if self._relation_exists(connection, table): if logger: logger.debug("Skipping '{}'; already installed".format(table)) return else: if logger: logger.info("Installing '{}'".format(table)) partition.localize() virtual_table = partition.vid + '_vt' self._add_partition(connection, partition) if materialize: if self._relation_exists(connection, table): debug_logger.debug( 'Materialized table of the partition already exists.\n partition: {}, table: {}' .format(partition.name, table)) else: cursor = connection.cursor() create_query = self.__class__._get_create_query(partition, table) debug_logger.debug( 'Creating new materialized view for partition mpr.' '\n partition: {}, view: {}, query: {}' .format(partition.name, table, create_query)) cursor.execute(create_query) copy_query = .format(table, virtual_table) debug_logger.debug( 'Populating sqlite table with rows from partition mpr.' '\n partition: {}, view: {}, query: {}' .format(partition.name, table, copy_query)) cursor.execute(copy_query) cursor.close() else: cursor = connection.cursor() view_q = "CREATE VIEW IF NOT EXISTS {} AS SELECT * FROM {} ".format(partition.vid, virtual_table) cursor.execute(view_q) cursor.close() if index_columns is not None: self.index(connection,table, index_columns) return table
Creates virtual table or read-only table for gion. Args: ref (str): id, vid, name or versioned name of the partition. materialize (boolean): if True, create read-only table. If False create virtual table. Returns: str: name of the created table.
juraj-google-style
def as_dict(self, verbosity=0): species_list = [] for (spec, occu) in self._species.items(): d = spec.as_dict() del d['@module'] del d['@class'] d['occu'] = occu species_list.append(d) d = {'species': species_list, 'abc': [float(c) for c in self._frac_coords], 'lattice': self._lattice.as_dict(verbosity=verbosity), '@module': self.__class__.__module__, '@class': self.__class__.__name__} if (verbosity > 0): d['xyz'] = [float(c) for c in self.coords] d['label'] = self.species_string d['properties'] = self.properties return d
Json-serializable dict representation of PeriodicSite. Args: verbosity (int): Verbosity level. Default of 0 only includes the matrix representation. Set to 1 for more details such as cartesian coordinates, etc.
codesearchnet
def require_params(self, req): params = {} for (name, param) in self.params.items(): if ((name not in req.params) and param.required): missing = (set((p for p in self.params if self.params[p].required)) - set(req.params.keys())) raise errors.HTTPMissingParam(', '.join(missing)) elif ((name in req.params) or param.default): try: if param.many: values = (req.get_param_as_list(name, param.validated_value) or [(param.default and param.validated_value(param.default))]) params[name] = param.container(values) else: params[name] = param.validated_value(req.get_param(name, default=param.default)) except ValidationError as err: raise err.as_invalid_param(name) except ValueError as err: raise errors.HTTPInvalidParam(str(err), name) return params
Require all defined parameters from request query string. Raises ``falcon.errors.HTTPMissingParam`` exception if any of required parameters is missing and ``falcon.errors.HTTPInvalidParam`` if any of parameters could not be understood (wrong format). Args: req (falcon.Request): request object
codesearchnet
def tokens(cls, tokens): return cls(Lnk.TOKENS, tuple(map(int, tokens)))
Create a Lnk object for a token range. Args: tokens: a list of token identifiers
codesearchnet
def __init__(self, p_range, ns_range, query_spec): self._property_range = p_range self._ns_range = ns_range self._query_spec = query_spec self._cursor = None self._query = None
Init. Args: p_range: a property_range.PropertyRange object that defines the conditions entities should safisfy. ns_range: a namesrange.NamespaceRange object that defines the namespaces to examine. query_spec: a model.QuerySpec object that defines how to retrieve entities from datastore.
juraj-google-style
def rank(input: ragged_tensor.Ragged, name=None): with ops.name_scope(name, 'RaggedRank', [input]) as name: if not ragged_tensor.is_ragged(input): return array_ops.rank(input, name) return input.ragged_rank + array_ops.rank(input.flat_values)
Returns the rank of a RaggedTensor. Returns a 0-D `int32` `Tensor` representing the rank of `input`. #### Example: >>> # shape of tensor 't' is [2, None, None] >>> t = tf.ragged.constant([[[1], [2, 2]], [[3, 3, 3], [4, 4, 4, 4]]]) >>> tf.rank(t).numpy().item() 3 Args: input: A `RaggedTensor` name: A name for the operation (optional). Returns: A `Tensor` of type `int32`.
github-repos
def get_dialect(mixed: Union[(SQLCompiler, Engine, Dialect)]) -> Dialect: if isinstance(mixed, Dialect): return mixed elif isinstance(mixed, Engine): return mixed.dialect elif isinstance(mixed, SQLCompiler): return mixed.dialect else: raise ValueError("get_dialect: 'mixed' parameter of wrong type")
Finds the SQLAlchemy dialect in use. Args: mixed: an SQLAlchemy :class:`SQLCompiler`, :class:`Engine`, or :class:`Dialect` object Returns: the SQLAlchemy :class:`Dialect` being used
codesearchnet
def get_campaign_name_list(self): campaigns = self.find('campaigns', {}) campaign_names = [] for campaign in campaigns: if ('name' in campaign): campaign_names.append(campaign['name']) return campaign_names
Returns a list of all valid campaign names Returns: List of strings containing all valid campaign names
codesearchnet
def cos(times: np.ndarray, amp: complex, freq: float, phase: float = 0) -> np.ndarray: return amp*np.cos(2*np.pi*freq*times+phase).astype(np.complex_)
Continuous cosine wave. Args: times: Times to output wave for. amp: Pulse amplitude. freq: Pulse frequency, units of 1/dt. phase: Pulse phase.
juraj-google-style
def extract_wavs(utterances: List[Utterance], tgt_dir: Path, lazy: bool) -> None: tgt_dir.mkdir(parents=True, exist_ok=True) for utter in utterances: wav_fn = "{}.{}".format(utter.prefix, "wav") out_wav_path = tgt_dir / wav_fn if lazy and out_wav_path.is_file(): logger.info("File {} already exists and lazy == {}; not " \ "writing.".format(out_wav_path, lazy)) continue logger.info("File {} does not exist and lazy == {}; creating " \ "it.".format(out_wav_path, lazy)) trim_wav_ms(utter.org_media_path, out_wav_path, utter.start_time, utter.end_time)
Extracts WAVs from the media files associated with a list of Utterance objects and stores it in a target directory. Args: utterances: A list of Utterance objects, which include information about the source media file, and the offset of the utterance in the media_file. tgt_dir: The directory in which to write the output WAVs. lazy: If True, then existing WAVs will not be overwritten if they have the same name
juraj-google-style
def _flatten_multiplicand_list(kernels): flattened = [] for k in kernels: if isinstance(k, _ProductKernel): flattened += k.kernels else: flattened.append(k) return flattened
Flatten a list of kernels which may contain _ProductKernel instances. Args: kernels: Python list of `PositiveSemidefiniteKernel` instances Returns: Python list containing the elements of kernels, with any _ProductKernel instances replaced by their `kernels` property contents.
codesearchnet
def to_raw_op(f: types.FunctionType) -> Callable[..., Any]: f = types.FunctionType(f.__code__, f.__globals__, f.__name__, f.__defaults__, f.__closure__) return kwarg_only(f)
Make a given op wrapper function `f` raw. Raw op wrappers can only be called with keyword arguments. Args: f: An op wrapper function to make raw. Returns: Raw `f`.
github-repos
def _map_args(call_node, function): args = call_node.args kwds = {kwd.arg: kwd.value for kwd in call_node.keywords} call_args = tf_inspect.getcallargs(function, *args, **kwds) unexpected_defaults = [] for k in call_args: if k not in kwds and call_args[k] not in args and (call_args[k] is not directives.UNSPECIFIED): unexpected_defaults.append(k) if unexpected_defaults: raise ValueError('Unexpected keyword argument values, %s, for function %s' % (zip(unexpected_defaults, [call_args[k] for k in unexpected_defaults]), function)) return {k: v for k, v in call_args.items() if v is not directives.UNSPECIFIED}
Maps AST call nodes to the actual function's arguments. Args: call_node: ast.Call function: Callable[..., Any], the actual function matching call_node Returns: Dict[Text, ast.AST], mapping each of the function's argument names to the respective AST node. Raises: ValueError: if the default arguments are not correctly set
github-repos
def touch(self, key, expire=0, noreply=None): if (noreply is None): noreply = self.default_noreply key = self.check_key(key) cmd = (((b'touch ' + key) + b' ') + six.text_type(expire).encode('ascii')) if noreply: cmd += b' noreply' cmd += b'\r\n' results = self._misc_cmd([cmd], b'touch', noreply) if noreply: return True return (results[0] == b'TOUCHED')
The memcached "touch" command. Args: key: str, see class docs for details. expire: optional int, number of seconds until the item is expired from the cache, or zero for no expiry (the default). noreply: optional bool, True to not wait for the reply (defaults to self.default_noreply). Returns: True if the expiration time was updated, False if the key wasn't found.
codesearchnet
def transform(self, program: moderngl.Program, buffer: moderngl.Buffer, mode=None, vertices=-1, first=0, instances=1): vao = self.instance(program) if mode is None: mode = self.mode vao.transform(buffer, mode=mode, vertices=vertices, first=first, instances=instances)
Transform vertices. Stores the output in a single buffer. Args: program: The ``moderngl.Program`` buffer: The ``moderngl.buffer`` to store the output Keyword Args: mode: Draw mode (for example ``moderngl.POINTS``) vertices (int): The number of vertices to transform first (int): The index of the first vertex to start with instances (int): The number of instances
juraj-google-style
def _init_index(root_dir, schema, index_name): index_dir = os.path.join(root_dir, index_name) try: if not os.path.exists(index_dir): os.makedirs(index_dir) return create_in(index_dir, schema), index_dir else: return open_dir(index_dir), index_dir except Exception as e: logger.error("Init error: failed to open search index at: '{}': {} ".format(index_dir, e)) raise
Creates new index or opens existing. Args: root_dir (str): root dir where to find or create index. schema (whoosh.fields.Schema): schema of the index to create or open. index_name (str): name of the index. Returns: tuple ((whoosh.index.FileIndex, str)): first element is index, second is index directory.
juraj-google-style
def build_request_body(type, id, attributes=None, relationships=None): result = {'data': {'type': type}} data = result['data'] if (attributes is not None): data['attributes'] = attributes if (relationships is not None): data['relationships'] = relationships if (id is not None): data['id'] = id return result
Build a request body object. A body JSON object is used for any of the ``update`` or ``create`` methods on :class:`Resource` subclasses. In normal library use you should not have to use this function directly. Args: type(string): The resource type for the attribute id(uuid): The id of the object to update. This may be ``None`` Keyword Args: attributes(dict): A JSON dictionary of the attributes to set relationships(dict) A JSON dictionary of relationships to set Returns: A valid attribute dictionary. Often used in the ``update`` or ``create`` :class:`Resource`` methods.
codesearchnet
def add(self, pattern, function, method=None, type_cast=None): if (not type_cast): type_cast = {} with self._lock: self._data_store.append({'pattern': pattern, 'function': function, 'method': method, 'type_cast': type_cast})
Function for registering a path pattern. Args: pattern (str): Regex pattern to match a certain path. function (function): Function to associate with this path. method (str, optional): Usually used to define one of GET, POST, PUT, DELETE. You may use whatever fits your situation though. Defaults to None. type_cast (dict, optional): Mapping between the param name and one of `int`, `float` or `bool`. The value reflected by the provided param name will than be casted to the given type. Defaults to None.
codesearchnet
def tf_initialize(self, x_init, b): if x_init is None: x_init = [tf.zeros(shape=util.shape(t)) for t in b] initial_args = super(ConjugateGradient, self).tf_initialize(x_init) conjugate = residual = [t - fx for t, fx in zip(b, self.fn_x(x_init))] squared_residual = tf.add_n(inputs=[tf.reduce_sum(input_tensor=(res * res)) for res in residual]) return initial_args + (conjugate, residual, squared_residual)
Initialization step preparing the arguments for the first iteration of the loop body: $x_0, 0, p_0, r_0, r_0^2$. Args: x_init: Initial solution guess $x_0$, zero vector if None. b: The right-hand side $b$ of the system of linear equations. Returns: Initial arguments for tf_step.
juraj-google-style
def error_messages(self, driver_id=None): if driver_id is not None: assert isinstance(driver_id, ray.DriverID) return self._error_messages(driver_id) error_table_keys = self.redis_client.keys( ray.gcs_utils.TablePrefix_ERROR_INFO_string + "*") driver_ids = [ key[len(ray.gcs_utils.TablePrefix_ERROR_INFO_string):] for key in error_table_keys ] return { binary_to_hex(driver_id): self._error_messages( ray.DriverID(driver_id)) for driver_id in driver_ids }
Get the error messages for all drivers or a specific driver. Args: driver_id: The specific driver to get the errors for. If this is None, then this method retrieves the errors for all drivers. Returns: A dictionary mapping driver ID to a list of the error messages for that driver.
juraj-google-style
def compute_metrics_cv(self, X, y, **kwargs): results = self.cv_score_mean(X, y) return results
Compute cross-validated metrics. Trains this model on data X with labels y. Returns a list of dict with keys name, scoring_name, value. Args: X (Union[np.array, pd.DataFrame]): data y (Union[np.array, pd.DataFrame, pd.Series]): labels
codesearchnet
def get_pipeline_id(app='', name=''): return_id = None pipelines = get_all_pipelines(app=app) for pipeline in pipelines: LOG.debug('ID of %(name)s: %(id)s', pipeline) if pipeline['name'] == name: return_id = pipeline['id'] LOG.info('Pipeline %s found, ID: %s', name, return_id) break return return_id
Get the ID for Pipeline _name_. Args: app (str): Name of Spinnaker Application to search. name (str): Name of Pipeline to get ID for. Returns: str: ID of specified Pipeline. None: Pipeline or Spinnaker Appliation not found.
juraj-google-style
def __init__(self, executable_path: _PATH = 'default', port: Union[int, str] = 5037, env: Dict = None, service_args: Union[list, tuple] = None) -> None: self._service_args = service_args or [] super(Service, self).__init__(executable_path, port=port, env=env)
Creates a new instance of the Service. Args: executable_path: Path to the AndroidDriver. port: Port the service is running on. env: Environment variables. service_args: List of args to pass to the androiddriver service.
juraj-google-style
def get_original(self): pk_value = self._get_pk_value() if (isinstance(pk_value, int) and (not self._original)): self._original = self.select().where((self.__class__.id == pk_value)).get() return self._original
Get the original instance of this instance before it's updated. Returns: fleaker.peewee.EventMixin: The original instance of the model.
codesearchnet
def __init__(self, table_id=None, active_count=None, lookup_count=None, matched_count=None): super().__init__() self.table_id = table_id self.active_count = active_count self.lookup_count = lookup_count self.matched_count = matched_count
Create a TableStats with the optional parameters below. Args: table_id (int): Identifier of table. Lower numbered tables are consulted first. active_count (int): Number of active entries. lookup_count (int): Number of packets looked up in table. matched_count (int): Number of packets that hit table.
juraj-google-style
def press(keys, presses=1, interval=0.0, pause=None, _pause=True): if (type(keys) == str): keys = [keys] else: lowerKeys = [] for s in keys: if (len(s) > 1): lowerKeys.append(s.lower()) else: lowerKeys.append(s) interval = float(interval) for i in range(presses): for k in keys: _failSafeCheck() platformModule._keyDown(k) platformModule._keyUp(k) time.sleep(interval) _autoPause(pause, _pause)
Performs a keyboard key press down, followed by a release. Args: key (str, list): The key to be pressed. The valid names are listed in KEYBOARD_KEYS. Can also be a list of such strings. presses (integer, optiional): the number of press repetition 1 by default, for just one press interval (float, optional): How many seconds between each press. 0.0 by default, for no pause between presses. pause (float, optional): How many seconds in the end of function process. None by default, for no pause in the end of function process. Returns: None
codesearchnet
def _force_disconnect_action(self, action): conn_key = action.data['id'] if self._get_connection_state(conn_key) == self.Disconnected: return data = self._get_connection(conn_key) if data['state'] == self.Connecting: callback = data['action'].data['callback'] callback(data['connection_id'], self.id, False, 'Unexpected disconnection') elif data['state'] == self.Disconnecting: callback = data['action'].data['callback'] callback(data['connection_id'], self.id, True, None) elif data['state'] == self.InProgress: callback = data['action'].data['callback'] if data['microstate'] == 'rpc': callback(False, 'Unexpected disconnection', 0xFF, None) elif data['microstate'] == 'open_interface': callback(False, 'Unexpected disconnection') elif data['microstate'] == 'close_interface': callback(False, 'Unexpected disconnection') connection_id = data['connection_id'] internal_id = data['internal_id'] del self._connections[connection_id] del self._int_connections[internal_id]
Forcibly disconnect a device. Args: action (ConnectionAction): the action object describing what we are forcibly disconnecting
juraj-google-style
def update(self, *args, **kwargs): for next_dict in chain(args, (kwargs, )): for k, v in next_dict.items(): self[k] = v
Equivalent to the python dict update method. Update the dictionary with the key/value pairs from other, overwriting existing keys. Args: other (dict): The source of key value pairs to add to headers Keyword Args: All keyword arguments are stored in header directly Returns: None
juraj-google-style
def Exponential(cls, mean: 'TensorFluent', batch_size: Optional[int]=None) -> Tuple[(Distribution, 'TensorFluent')]: rate = (1 / mean.tensor) dist = tf.distributions.Exponential(rate) batch = mean.batch if ((not batch) and (batch_size is not None)): t = dist.sample(batch_size) batch = True else: t = dist.sample() scope = mean.scope.as_list() return (dist, TensorFluent(t, scope, batch=batch))
Returns a TensorFluent for the Exponential sampling op with given mean parameter. Args: mean: The mean parameter of the Exponential distribution. batch_size: The size of the batch (optional). Returns: The Exponential distribution and a TensorFluent sample drawn from the distribution.
codesearchnet
def _read_range(self, start, end=0): try: with _handle_client_exception(): return self._client.get_object(*self._client_args, headers=dict( Range=self._http_range(start, end)))[1] except _ClientException as exception: if exception.http_status == 416: return b'' raise
Read a range of bytes in stream. Args: start (int): Start stream position. end (int): End stream position. 0 To not specify end. Returns: bytes: number of bytes read
juraj-google-style
def copy(self, source, dest): if not self.copyable: raise IOError('Driver does not support raster copying') if not isinstance(source, Raster): source = Raster(source) should_close = True else: should_close = False if source.name == dest: raise ValueError( 'Input and output are the same location: %s' % source.name) settings = driverdict_tolist(self.settings) ds = self.CreateCopy(dest, source.ds, self.strictmode, options=settings) if should_close: source.close() return Raster(ds)
Returns a copied Raster instance. Arguments: source -- the source Raster instance or filepath as str dest -- destination filepath as str
juraj-google-style
def __init__(self, item_type=None, min_length=None, max_length=None, empty=True): super(ListTypeChecker, self).__init__( iter_type=list, item_type=item_type, min_length=min_length, max_length=max_length, empty=empty )
Initialization method. Args: item_type (type): the type of the items inside the list. min_length (int): minimum length of the list (included). max_length (int): maximum length of the list (included). empty (bool): whether empty list is allowed.
juraj-google-style
def get_unconditional_inputs(self, num_samples=1): input_ids = torch.ones((num_samples, 1), device=self.device, dtype=torch.int64) * self.config.vocab_size user_audio_codes = torch.ones((num_samples, self.num_codebooks, 1), device=self.device, dtype=torch.int64) * self.config.audio_vocab_size moshi_audio_codes = torch.ones((num_samples, self.num_codebooks, 1), device=self.device, dtype=torch.int64) * self.config.audio_vocab_size attention_mask = torch.ones((num_samples, 1), device=self.device, dtype=torch.long) return MoshiUnconditionalInput(input_ids=input_ids, user_audio_codes=user_audio_codes, moshi_audio_codes=moshi_audio_codes, attention_mask=attention_mask)
Helper function to get null inputs for unconditional generation, enabling the model to be used without the feature extractor or tokenizer. Args: num_samples (int, *optional*): Number of audio samples to unconditionally generate. max_new_tokens (int, *optional*): Number of tokens to generate for each sample. More tokens means longer audio samples, at the expense of longer inference (since more audio tokens need to be generated per sample). Example: ```python >>> from transformers import MoshiForConditionalGeneration >>> model = MoshiForConditionalGeneration.from_pretrained("kmhf/hf-moshiko-pytorch-bf16") >>> # get the unconditional (or 'null') inputs for the model >>> unconditional_inputs = model.get_unconditional_inputs(num_samples=1) >>> audio_samples = model.generate(**unconditional_inputs, max_new_tokens=256) ```
github-repos
def call_api(self, method, url, headers=None, params=None, data=None, files=None, timeout=None): method = method.upper() headers = (deepcopy(headers) or {}) headers['Accept'] = self.accept_type params = (deepcopy(params) or {}) data = (data or {}) files = (files or {}) if (self.username and self.api_key): params.update(self.get_credentials()) url = urljoin(self.base_url, url) r = requests.request(method, url, headers=headers, params=params, files=files, data=data, timeout=timeout) return (r, r.status_code)
Call API. This returns object containing data, with error details if applicable. Args: method (str): The HTTP method to use. url (str): Resource location relative to the base URL. headers (dict or None): Extra request headers to set. params (dict or None): Query-string parameters. data (dict or None): Request body contents for POST or PUT requests. files (dict or None: Files to be passed to the request. timeout (int): Maximum time before timing out. Returns: ResultParser or ErrorParser.
codesearchnet
def zero_fraction(value, name=None): with ops.name_scope(name, 'zero_fraction', [value]): value = ops.convert_to_tensor(value, name='value') size = array_ops.size(value, out_type=dtypes.int64) num_nonzero = tf_cond.cond(size <= dtypes.int32.max, true_fn=lambda: math_ops.cast(_count_nonzero(value, dtype=dtypes.int32), dtype=dtypes.int64), false_fn=lambda: _count_nonzero(value, dtype=dtypes.int64)) with ops.name_scope('counts_to_fraction'): num_zero = size - num_nonzero num_zero_float32 = math_ops.cast(num_zero, dtype=dtypes.float32) size_float32 = math_ops.cast(size, dtype=dtypes.float32) zero_fraction_float32 = num_zero_float32 / size_float32 return array_ops.identity(zero_fraction_float32, 'fraction')
Returns the fraction of zeros in `value`. If `value` is empty, the result is `nan`. This is useful in summaries to measure and report sparsity. For example, ```python z = tf.nn.relu(...) summ = tf.compat.v1.summary.scalar('sparsity', tf.nn.zero_fraction(z)) ``` Args: value: A tensor of numeric type. name: A name for the operation (optional). Returns: The fraction of zeros in `value`, with type `float32`.
github-repos
def extract_resources_from_bundle(bundle: message.Message, *, resource_type: Type[_T]) -> List[_T]: if not fhir_types.is_type_or_profile_of('http: raise TypeError(f'{bundle.DESCRIPTOR.name} is not a type or profile of Bundle.') contained_resource_field = path_utils.camel_case_to_snake_case(resource_type.DESCRIPTOR.name) return [getattr(entry.resource, contained_resource_field) for entry in cast(Any, bundle).entry if entry.resource.HasField(contained_resource_field)]
Returns a list of resources of type `resource_type` from `bundle`. Args: bundle: The FHIR Bundle to examine. resource_type: The message type of the resource to return. Returns: A list of resources of type `resource_type` belonging to the bundle. Raises: TypeError: In the event that `bundle` is not of type "Bundle". ValueError: In the event that a field corresponding to the "snake_case" name of `resource_type` does not exist on `Bundle.Entry`.
github-repos
def __init__(self, statistics: calib_stats_pb2.CalibrationStatistics, calib_opts: stablehlo_quant_config_pb2.CalibrationOptions): super().__init__(statistics, calib_opts) hist_stats = statistics.histogram_statistics self._bin_width = hist_stats.bin_width self._lower_bound = hist_stats.lower_bound self._hist_freq = np.array(hist_stats.hist_freq) self._num_bins = len(self._hist_freq) self._num_bits = 8 first_mid = self._lower_bound + self._bin_width / 2 last_mid = first_mid + (self._num_bins - 1) * self._bin_width self._hist_mids = np.linspace(first_mid, last_mid, self._num_bins)
Builds histogram using statistics.histogram_statistics. lower_bound hist_mid v v |=========|=========|=========|=========|=========| bin width Args: statistics: Collected calibration statistics. calib_opts: Calibration options used for calculating min and max.
github-repos
def fixup_for_packaged(): if exists(join(ROOT, 'PKG-INFO')): if (('--build-js' in sys.argv) or ('--install-js' in sys.argv)): print(SDIST_BUILD_WARNING) if ('--build-js' in sys.argv): sys.argv.remove('--build-js') if ('--install-js' in sys.argv): sys.argv.remove('--install-js') if ('--existing-js' not in sys.argv): sys.argv.append('--existing-js')
If we are installing FROM an sdist, then a pre-built BokehJS is already installed in the python source tree. The command line options ``--build-js`` or ``--install-js`` are removed from ``sys.argv``, with a warning. Also adds ``--existing-js`` to ``sys.argv`` to signal that BokehJS is already packaged. Returns: None
codesearchnet
def get_parent_of_type(typ, obj): if type(typ) is not text: typ = typ.__name__ while hasattr(obj, 'parent'): obj = obj.parent if obj.__class__.__name__ == typ: return obj
Finds first object up the parent chain of the given type. If no parent of the given type exists None is returned. Args: typ(str or python class): The type of the model object we are looking for. obj (model object): Python model object which is the start of the search process.
juraj-google-style
def _common_args(self): return {'metadata': self._metadata.SerializeToString(), 'output_shapes': self._flat_shapes, 'output_types': self._flat_types}
Helper for generating arguments that are common across most dataset ops. Most dataset op constructors expect `output_shapes` and `output_types` arguments that represent the flattened structure of an element, as well as a `metadata` argument for additional metadata such as user-defined dataset name. This helper function generates common attributes as a keyword argument dictionary, allowing `Dataset._variant_tensor` implementations to pass `**self._common_args` to the op constructor. Returns: A dictionary of keyword arguments that can be passed to a dataset op constructor.
github-repos
def config_from_url(u, **kwargs): path = u.path.lstrip("/").split("/") if len(path) > 2 or not path: raise AssertionError("zmq url format: zmq: typ = path[0].upper() try: topic = path[1] except IndexError as _: topic = '' param = dict(urllib.parse.parse_qsl(u.query)) transport = param.get("transport", "tcp") _id = "%s-%s-%s-%s" % (typ, topic, transport, u.netloc) if kwargs.get("prefix") is not None: _id = "%s-%s" % (kwargs.get("prefix"), _id) return { "id" : _id, "typ_str" : typ, "typ" : getattr(zmq, typ), "topic" : topic, "transport" : transport, "url" : "%s: }
Returns dict containing zmq configuration arguments parsed from xbahn url Arguments: - u (urlparse.urlparse result) Returns: dict: - id (str): connection index key - typ_str (str): string representation of zmq socket type - typ (int): zmq socket type (PUB, SUB, REQ, REP, PUSH, PULL) - topic (str): subscription topic - url (str): url to use with zmq's bind function
juraj-google-style
def broadcast_to(input: ragged_tensor.RaggedOrDense, shape: dynamic_ragged_shape.DynamicRaggedShape) -> Union[ragged_tensor.RaggedTensor, tensor_lib.Tensor]: return dynamic_ragged_shape.broadcast_to(input, shape)
Broadcasts a potentially ragged tensor to a ragged shape. Tiles `input` as necessary to match the given shape. Behavior is undefined if `input` is not broadcast-compatible with `shape`. Args: input: The potentially ragged tensor to broadcast. shape: A `DynamicRaggedShape` Returns: A potentially ragged tensor whose values are taken from `input`, and whose shape matches `shape`.
github-repos
def convert_inference_tf_type_to_tflite_type(tf_type: dtypes.DType, usage: str='') -> _types_pb2.IODataType: mapping = {dtypes.float32: _types_pb2.FLOAT, dtypes.uint8: _types_pb2.QUANTIZED_UINT8, dtypes.int8: _types_pb2.QUANTIZED_INT8, dtypes.int16: _types_pb2.QUANTIZED_INT16} tflite_type = mapping.get(tf_type) if tflite_type is None: raise ValueError('Unsupported TensorFlow type `{0}` provided for the {1}'.format(tf_type, usage)) return tflite_type
Convert inference type from tf type to tflite type. Args: tf_type: TensorFlow type. usage: Text describing the reason for invoking this function. Raises: ValueError: If `tf_type` is unsupported. Returns: tflite_type: TFLite type. Refer to compiler/mlir/lite/types.proto.
github-repos
def set_global(cls, user_agent=None, user_agent_config_yaml=None, user_agent_lookup=None, **kwargs): cls.user_agent = cls._create(user_agent, user_agent_config_yaml, user_agent_lookup, **kwargs)
Set global user agent string Args: user_agent (Optional[str]): User agent string. HDXPythonLibrary/X.X.X- is prefixed. user_agent_config_yaml (Optional[str]): Path to YAML user agent configuration. Ignored if user_agent supplied. Defaults to ~/.useragent.yml. user_agent_lookup (Optional[str]): Lookup key for YAML. Ignored if user_agent supplied. Returns: None
codesearchnet
def list_knowledge_bases(project_id): import dialogflow_v2beta1 as dialogflow client = dialogflow.KnowledgeBasesClient() project_path = client.project_path(project_id) print('Knowledge Bases for: {}'.format(project_id)) for knowledge_base in client.list_knowledge_bases(project_path): print(' - Display Name: {}'.format(knowledge_base.display_name)) print(' - Knowledge ID: {}\n'.format(knowledge_base.name))
Lists the Knowledge bases belonging to a project. Args: project_id: The GCP project linked with the agent.
codesearchnet
def db_en020(self, value=None): if value is not None: try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float ' 'for field `db_en020`'.format(value)) self._db_en020 = value
Corresponds to IDD Field `db_en020` mean coincident dry-bulb temperature to Enthalpy corresponding to 2.0% annual cumulative frequency of occurrence Args: value (float): value for IDD Field `db_en020` Unit: C if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
juraj-google-style
def apply_regression(input_, regression_fn, target, regression_args=(), regression_kwargs=None, name=PROVIDED, loss_weight=None, per_example_weights=None): if (regression_kwargs is None): regression_kwargs = {} if ((name is not None) and ('name' not in regression_kwargs)): regression_kwargs['name'] = name elif (name is None): name = input_.tensor.op.name tensor = input_.tensor loss = regression_fn(tensor, target, *regression_args, **regression_kwargs) if (loss_weight is not None): loss *= loss_weight if (per_example_weights is not None): per_example_weights = _convert_and_assert_per_example_weights_compatible(input_, per_example_weights, dtype=loss.dtype) loss *= per_example_weights if (name is None): name = loss.op.name if (tensor.get_shape()[0].value is not None): avg_loss = (tf.reduce_sum(loss) / tensor.get_shape()[0].value) else: avg_loss = tf.reduce_mean(loss) return input_.add_loss(avg_loss, name=name)
Applies the given regression and adds the loss to the bookkeeper. This does not change tensor. Args: input_: A Tensor or a Pretty Tensor holding the input. regression_fn: A function that takes (in order) tensor, labels. target: The targe of the regression. regression_args: Other arguments for the regression. regression_kwargs: Keyword args for the regression. name: The name, also added to regression_kwargs. loss_weight: A scalar multiplier for the loss. per_example_weights: A Tensor with a weight per example. Returns: The loss tensor's name. Raises: ValueError: If the target is not a compatible shape with input_.
codesearchnet
def _GetParsersFromPresetCategory(cls, category): preset_definition = cls._presets.GetPresetByName(category) if (preset_definition is None): return [] preset_names = cls._presets.GetNames() parser_names = set() for element_name in preset_definition.parsers: if (element_name in preset_names): category_parser_names = cls._GetParsersFromPresetCategory(element_name) parser_names.update(category_parser_names) else: parser_names.add(element_name) return sorted(parser_names)
Retrieves the parser names of specific preset category. Args: category (str): parser preset categories. Returns: list[str]: parser names in alphabetical order.
codesearchnet
def flat_values(self): rt_values = self.values while isinstance(rt_values, RaggedTensor): rt_values = rt_values.values return rt_values
The innermost `values` tensor for this ragged tensor. Concretely, if `rt.values` is a `Tensor`, then `rt.flat_values` is `rt.values`; otherwise, `rt.flat_values` is `rt.values.flat_values`. Conceptually, `flat_values` is the tensor formed by flattening the outermost dimension and all of the ragged dimensions into a single dimension. `rt.flat_values.shape = [nvals] + rt.shape[rt.ragged_rank + 1:]` (where `nvals` is the number of items in the flattened dimensions). Returns: A `Tensor`. #### Example: >>> rt = tf.ragged.constant([[[3, 1, 4, 1], [], [5, 9, 2]], [], [[6], []]]) >>> print(rt.flat_values) tf.Tensor([3 1 4 1 5 9 2 6], shape=(8,), dtype=int32)
github-repos
def __register_notifiers(self): notifiers = {} for entry_point in CINQ_PLUGINS['cloud_inquisitor.plugins.notifiers']['plugins']: cls = entry_point.load() notifiers[cls.notifier_type] = cls.validation return notifiers
Lists all notifiers to be able to provide metadata for the frontend Returns: `list` of `dict`
codesearchnet
def __init__(self, connections, picker_class=RoundRobinPicker): self.connections = connections self.picker = picker_class()
Initializes a :class:`~bigchaindb_driver.pool.Pool` instance. Args: connections (list): List of :class:`~bigchaindb_driver.connection.Connection` instances.
juraj-google-style
def connection_delay(self, node_id): conn = self._conns.get(node_id) if conn is None: return 0 return conn.connection_delay()
Return the number of milliseconds to wait, based on the connection state, before attempting to send data. When disconnected, this respects the reconnect backoff time. When connecting, returns 0 to allow non-blocking connect to finish. When connected, returns a very large number to handle slow/stalled connections. Arguments: node_id (int): The id of the node to check Returns: int: The number of milliseconds to wait.
juraj-google-style
def get(self, profile_id): if profile_id not in self._profiles: try: self._profiles[profile_id] = self._get_profile(profile_id) except (ValueError, IOError) as e: six.raise_from(RegistryError(e), e) return self._profiles[profile_id]
Returns the profile with the received ID as a dict If a local copy of the profile exists, it'll be returned. If not, it'll be downloaded from the web. The results are cached, so any subsequent calls won't hit the filesystem or the web. Args: profile_id (str): The ID of the profile you want. Raises: RegistryError: If there was some problem opening the profile file or its format was incorrect.
juraj-google-style
def run(self, group_x=1, group_y=1, group_z=1) -> None: return self.mglo.run(group_x, group_y, group_z)
Run the compute shader. Args: group_x (int): The number of work groups to be launched in the X dimension. group_y (int): The number of work groups to be launched in the Y dimension. group_z (int): The number of work groups to be launched in the Z dimension.
juraj-google-style
def _colourise(text: str, colour: str) -> str: if COLOUR: text = style(text, fg=colour, bold=True) return text
Colour text, if possible. Args: text: Text to colourise colour: Colour to display text in Returns: Colourised text, if possible
juraj-google-style
def connect(self, component): if not isinstance(component, ThreadPool): raise TypeError('"component" must be a ThreadPool object') component.in_queue = self.out_queue return component
Connect two ThreadPools. The ``in_queue`` of the second pool will be set as the ``out_queue`` of the current pool, thus all the output will be input to the second pool. Args: component (ThreadPool): the ThreadPool to be connected. Returns: ThreadPool: the modified second ThreadPool.
juraj-google-style
def add_logger(self, name, address, conn_type, log_dir_path=None, **kwargs): capture_handler_conf = kwargs if (not log_dir_path): log_dir_path = self._mngr_conf['root_log_directory'] log_dir_path = os.path.normpath(os.path.expanduser(log_dir_path)) capture_handler_conf['log_dir'] = log_dir_path capture_handler_conf['name'] = name if ('rotate_log' not in capture_handler_conf): capture_handler_conf['rotate_log'] = True transforms = [] if ('pre_write_transforms' in capture_handler_conf): for transform in capture_handler_conf['pre_write_transforms']: if isinstance(transform, str): if globals().has_key(transform): transforms.append(globals().get(transform)) else: msg = 'Unable to load data transformation "{}" for handler "{}"'.format(transform, capture_handler_conf['name']) log.warn(msg) elif hasattr(transform, '__call__'): transforms.append(transform) else: msg = 'Unable to determine how to load data transform "{}"'.format(transform) log.warn(msg) capture_handler_conf['pre_write_transforms'] = transforms address_key = str(address) if (address_key in self._stream_capturers): capturer = self._stream_capturers[address_key][0] capturer.add_handler(capture_handler_conf) return socket_logger = SocketStreamCapturer(capture_handler_conf, address, conn_type) greenlet = gevent.spawn(socket_logger.socket_monitor_loop) self._stream_capturers[address_key] = (socket_logger, greenlet) self._pool.add(greenlet)
Add a new stream capturer to the manager. Add a new stream capturer to the manager with the provided configuration details. If an existing capturer is monitoring the same address the new handler will be added to it. Args: name: A string defining the new capturer's name. address: A tuple containing address data for the capturer. Check the :class:`SocketStreamCapturer` documentation for what is required. conn_type: A string defining the connection type. Check the :class:`SocketStreamCapturer` documentation for a list of valid options. log_dir_path: An optional path defining the directory where the capturer should write its files. If this isn't provided the root log directory from the manager configuration is used.
codesearchnet