code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def add_to_query(self, query): self.handle = win32pdh.AddCounter(query, self.path)
Add the current path to the query Args: query (obj): The handle to the query to add the counter
juraj-google-style
def search(self, filters): records = self.__model__.search(self.__five9__, filters) return self.__class__( self.__five9__, self.__model__, records, )
Search Five9 given a filter. Args: filters (dict): A dictionary of search strings, keyed by the name of the field to search. Returns: Environment: An environment representing the recordset.
juraj-google-style
def start_apppool(name): ps_cmd = ['Start-WebAppPool', r"'{0}'".format(name)] cmd_ret = _srvmgr(ps_cmd) return cmd_ret['retcode'] == 0
Start an IIS application pool. .. versionadded:: 2017.7.0 Args: name (str): The name of the App Pool to start. Returns: bool: True if successful, otherwise False CLI Example: .. code-block:: bash salt '*' win_iis.start_apppool name='MyTestPool'
juraj-google-style
def get_pull_request_number(task, source_env_prefix): pull_request = _extract_from_env_in_payload(task, (source_env_prefix + '_PULL_REQUEST_NUMBER')) if (pull_request is not None): pull_request = int(pull_request) return pull_request
Get what Github pull request created the graph. Args: obj (ChainOfTrust or LinkOfTrust): the trust object to inspect source_env_prefix (str): The environment variable prefix that is used to get repository information. Returns: int: the pull request number. None: if not defined for this task.
codesearchnet
def info(self, **kwargs): path = self._get_id_path('info') response = self._GET(path, kwargs) self._set_attrs_to_values(response) return response
Get the basic movie information for a specific movie id. Args: language: (optional) ISO 639-1 code. append_to_response: (optional) Comma separated, any movie method. Returns: A dict representation of the JSON returned from the API.
codesearchnet
def PureMultiHeadedAttention(x, params, num_heads=8, dropout=0.0, mode='train', **kwargs): del params rng = kwargs.get('rng', None) ((q, k, v), mask) = x feature_depth = q.shape[(- 1)] assert ((feature_depth % num_heads) == 0) head_depth = (feature_depth nbatch = np.shape(q)[0] def SplitHeads(x): return np.transpose(np.reshape(x, (nbatch, (- 1), num_heads, head_depth)), (0, 2, 1, 3)) def JoinHeads(x): return np.reshape(np.transpose(x, (0, 2, 1, 3)), (nbatch, (- 1), (num_heads * head_depth))) return JoinHeads(DotProductAttention(SplitHeads(q), SplitHeads(k), SplitHeads(v), mask, dropout=dropout, mode=mode, rng=rng))
Pure transformer-style multi-headed attention. Args: x: inputs ((q, k, v), mask) params: parameters (none) num_heads: int: number of attention heads dropout: float: dropout rate mode: str: 'train' or 'eval' **kwargs: other arguments including the rng Returns: Pure Multi-headed attention layer (no Dense transforms on input).
codesearchnet
def controlled_by(self, *control_qubits: Qid) -> 'Gate': from cirq.ops import ControlledGate return ControlledGate(self, control_qubits, (len(control_qubits) if (control_qubits is not None) else 1))
Returns a controlled version of this gate. Args: control_qubits: Optional qubits to control the gate by.
codesearchnet
def to_diff_dict(self) -> Dict[str, Any]: config_dict = self.to_dict() default_config_dict = GenerationConfig().to_dict() serializable_config_dict = {} for key, value in config_dict.items(): if key not in default_config_dict or key == 'transformers_version' or value != default_config_dict[key]: serializable_config_dict[key] = value self.dict_torch_dtype_to_str(serializable_config_dict) return serializable_config_dict
Removes all attributes from config which correspond to the default config attributes for better readability and serializes to a Python dictionary. Returns: `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance,
github-repos
def fetcher(date=datetime.today(), url_pattern=URL_PATTERN): api_url = url_pattern % date.strftime('%Y-%m-%d') headers = {'Referer': 'http: raw_result = requests.get(api_url, headers=headers).json() return raw_result
Fetch json data from n.pl Args: date (date) - default today url_patter (string) - default URL_PATTERN Returns: dict - data from api
juraj-google-style
def query(self, sparql, mode="get", namespace=None, rtn_format="json", **kwargs): namespace = pick(namespace, self.namespace) if kwargs.get("log_level"): log.setLevel(kwargs['log_level']) if kwargs.get("debug"): log.setLevel(logging.DEBUG) if rtn_format not in self.qry_formats: raise KeyError("rtn_format was '%s'. Allowed values are %s" % \ (rtn_format, self.qry_results_formats)) url = self._make_url(namespace) if 'prefix' not in sparql.lower(): sparql = "%s\n%s" % (NSM.prefix(), sparql) if mode == "get": data = {"query": sparql} elif mode == "update": data = {"update": sparql} else: raise NotImplementedError("'mode' != to ['get', 'update']") headers = {'Accept': self.qry_formats[rtn_format]} start = datetime.datetime.now() try: result = requests.post(url, data=data, headers=headers) except requests.exceptions.ConnectionError: result = requests.post(self._make_url(namespace, self.local_url), data=data, headers=headers) log.debug(format_multiline(["", "url='{url}'", , "**** SPAQRL QUERY ****", "", "{sparql}", "Query Time: {q_time}"], url=url, mode=mode, namespace=namespace, rtn_format=rtn_format, sparql=sparql, q_time=(datetime.datetime.now()-start), **kwargs)) if result.status_code == 200: try: if rtn_format == "json": bindings = result.json().get('results', {}).get('bindings', []) elif rtn_format == 'xml': xml_doc = etree.XML(result.text) bindings = xml_doc.findall("results/bindings") else: bindings = result.text try: log.debug("result count: %s", len(bindings)) except TypeError: pass return bindings except json.decoder.JSONDecodeError: if mode == 'update': return BeautifulSoup(result.text, 'lxml').get_text() return result.text else: raise SyntaxError("%s\n\n%s\n\n%s" % (sparql, add_sparql_line_nums(sparql), result.text[result.text.find("java."):]))
Runs a sparql query and returns the results Args: ----- sparql: the sparql query to run namespace: the namespace to run the sparql query against mode: ['get'(default), 'update'] the type of sparql query rtn_format: ['json'(default), 'xml'] format of query results Kwargs: ------- debug(bool): If True sets logging level to debug
juraj-google-style
def _sample(self, initial_states: tf.Tensor, counts: tf.Tensor): circuits = self.circuit(initial_states) num_circuits = tf.shape(circuits)[0] tiled_values = tf.tile(tf.expand_dims(self.circuit.symbol_values, 0), [num_circuits, 1]) num_samples_mask = tf.cast((tf.ragged.range(counts) + 1).to_tensor(), tf.bool) num_samples_mask = tf.map_fn(tf.random.shuffle, num_samples_mask) samples = self._sample_layer(circuits, symbol_names=self.circuit.symbol_names, symbol_values=tiled_values, repetitions=tf.expand_dims(tf.math.reduce_max(counts), 0)) return tf.ragged.boolean_mask(samples, num_samples_mask)
Returns bitstring samples from the QNN. Args: initial_states: Shape [batch_size, num_qubits] of dtype `tf.int8`. These are the initial states of each qubit in the circuit. counts: Shape [batch_size] of dtype `tf.int32` such that `counts[i]` is the number of samples to draw from `(qnn)|initial_states[i]>`. Returns: ragged_samples: `tf.RaggedTensor` of DType `tf.int8` structured such that `ragged_samples[i]` contains `counts[i]` bitstrings drawn from `(qnn)|initial_states[i]>`.
github-repos
def __init__(self, identifier, value): super(VolumeAttribute, self).__init__() self.identifier = identifier self.value = value
Initializes the volume attribute object. Args: identifier (str): identifier of the attribute within the volume. value (object): value of the attribute.
juraj-google-style
def concatenate(samplesets, defaults=None): itertup = iter(samplesets) try: first = next(itertup) except StopIteration: raise ValueError('samplesets must contain at least one SampleSet') vartype = first.vartype variables = first.variables records = [first.record] records.extend(_iter_records(itertup, vartype, variables)) record = recfunctions.stack_arrays(records, defaults=defaults, asrecarray=True, usemask=False) return SampleSet(record, variables, {}, vartype)
Combine SampleSets. Args: samplesets (iterable[:obj:`.SampleSet`): An iterable of sample sets. defaults (dict, optional): Dictionary mapping data vector names to the corresponding default values. Returns: :obj:`.SampleSet`: A sample set with the same vartype and variable order as the first given in `samplesets`. Examples: >>> a = dimod.SampleSet.from_samples(([-1, +1], 'ab'), dimod.SPIN, energy=-1) >>> b = dimod.SampleSet.from_samples(([-1, +1], 'ba'), dimod.SPIN, energy=-1) >>> ab = dimod.concatenate((a, b)) >>> ab.record.sample array([[-1, 1], [ 1, -1]], dtype=int8)
codesearchnet
def _create_topk_unique(inputs, k): height = inputs.shape[0] width = inputs.shape[1] neg_inf_r0 = tf.constant((- np.inf), dtype=tf.float32) ones = tf.ones([height, width], dtype=tf.float32) neg_inf_r2 = (ones * neg_inf_r0) inputs = tf.where(tf.is_nan(inputs), neg_inf_r2, inputs) tmp = inputs topk_r2 = tf.zeros([height, k], dtype=tf.float32) for i in range(k): kth_order_statistic = tf.reduce_max(tmp, axis=1, keepdims=True) k_mask = tf.tile(tf.expand_dims(tf.equal(tf.range(k), tf.fill([k], i)), 0), [height, 1]) topk_r2 = tf.where(k_mask, tf.tile(kth_order_statistic, [1, k]), topk_r2) ge_r2 = tf.greater_equal(inputs, tf.tile(kth_order_statistic, [1, width])) tmp = tf.where(ge_r2, neg_inf_r2, inputs) log2_ceiling = int(math.ceil(math.log(float(int(width)), 2))) next_power_of_two = (1 << log2_ceiling) count_mask = (next_power_of_two - 1) mask_r0 = tf.constant(count_mask) mask_r2 = tf.fill([height, k], mask_r0) topk_r2_s32 = tf.bitcast(topk_r2, tf.int32) topk_indices_r2 = tf.bitwise.bitwise_and(topk_r2_s32, mask_r2) return (topk_r2, topk_indices_r2)
Creates the top k values in sorted order with indices. Args: inputs: A tensor with rank of 2. [batch_size, original_size]. k: An integer, number of top elements to select. Returns: topk_r2: A tensor, the k largest elements. [batch_size, k]. topk_indices_r2: A tensor, indices of the top k values. [batch_size, k].
codesearchnet
def place_line(self, device: 'cirq.google.XmonDevice', length: int) -> GridQubitLineTuple: seqs = AnnealSequenceSearch(device, self.seed).search(self.trace_func) return GridQubitLineTuple.best_of(seqs, length)
Runs line sequence search. Args: device: Chip description. length: Required line length. Returns: List of linear sequences on the chip found by simulated annealing method.
juraj-google-style
def relative_entropy(rho, sigma): log_rho = tf.linalg.logm(tf.cast(rho, tf.complex128)) log_sigma = tf.linalg.logm(tf.cast(sigma, tf.complex128)) return optimized_trace_matmul(rho, tf.subtract(log_rho, log_sigma))
Calculate the relative entropy between the two given density matrices. D(rho||sigma) = Tr[rho(log(rho) - log(sigma))] = tf.linalg.trace( tf.matmul(rho, tf.linalg.logm(rho) - tf.linalg.logm(sigma))) Args: rho: 2-D `tf.Tensor` of dtype `complex64` representing the left density matrix in the fidelity calculation. sigma: 2-D `tf.Tensor` of dtype `complex64` representing the right density matrix in the fidelity calculation. Returns: A tf.Tensor float64 fidelity scalar between the two given density matrices.
github-repos
def _unbatch(self) -> TypeSpec: raise NotImplementedError(f'{type(self).__name__}._unbatch')
Returns a TypeSpec representing a single element this TypeSpec. Returns: A `TypeSpec` representing a single element of objects with this TypeSpec.
github-repos
def max_variance_genes(data, nbins=5, frac=0.2): indices = [] if sparse.issparse(data): (means, var) = sparse_mean_var(data) else: means = data.mean(1) var = data.var(1) mean_indices = means.argsort() n_elements = int((data.shape[0] / nbins)) frac_elements = int((n_elements * frac)) for i in range(nbins): bin_i = mean_indices[(i * n_elements):((i + 1) * n_elements)] if (i == (nbins - 1)): bin_i = mean_indices[(i * n_elements):] var_i = var[bin_i] var_sorted = var_i.argsort() top_var_indices = var_sorted[(len(bin_i) - frac_elements):] ind = bin_i[top_var_indices] ind = [index for index in ind if (var[index] > 0)] indices.extend(ind) return indices
This function identifies the genes that have the max variance across a number of bins sorted by mean. Args: data (array): genes x cells nbins (int): number of bins to sort genes by mean expression level. Default: 10. frac (float): fraction of genes to return per bin - between 0 and 1. Default: 0.1 Returns: list of gene indices (list of ints)
codesearchnet
def eval_algorithm(closing, low, high): if ((high - low) == 0): return (100 * (closing - low)) else: return ((100 * (closing - low)) / (high - low))
Evaluates the SO algorithm Args: closing: Float of current closing price. low: Float of lowest low closing price throughout some duration. high: Float of highest high closing price throughout some duration. Returns: Float SO between 0 and 100.
codesearchnet
def assert_image_exists(self, pattern, timeout=20.0, **kwargs): pattern = self.d.pattern_open(pattern) match_kwargs = kwargs.copy() match_kwargs.pop('safe', None) match_kwargs.update({ 'timeout': timeout, 'safe': True, }) res = self.d.wait(pattern, **match_kwargs) is_success = res is not None message = 'assert image exists' if res: x, y = res.pos kwargs['position'] = {'x': x, 'y': y} message = 'image exists\npos %s\nconfidence=%.2f\nmethod=%s' % (res.pos, res.confidence, res.method) else: res = self.d.match(pattern) if res is None: message = 'Image not found' else: th = kwargs.get('threshold') or pattern.threshold or self.image_match_threshold message = 'Matched: %s\nPosition: %s\nConfidence: %.2f\nThreshold: %.2f' % ( res.matched, res.pos, res.confidence, th) kwargs['target'] = self._save_screenshot(pattern, name_prefix='target') kwargs['screenshot'] = self.last_screenshot kwargs.update({ 'action': 'assert_image_exists', 'message': message, 'success': is_success, }) self._add_assert(**kwargs)
Assert if image exists Args: - pattern: image filename # not support pattern for now - timeout (float): seconds - safe (bool): not raise assert error even throung failed.
juraj-google-style
def transform_feature(self, transformation_cache, state_manager): pass
Returns intermediate representation (usually a `Tensor`). Uses `transformation_cache` to create an intermediate representation (usually a `Tensor`) that other feature columns can use. Example usage of `transformation_cache`: Let's say a Feature column depends on raw feature ('raw') and another `FeatureColumn` (input_fc). To access corresponding `Tensor`s, transformation_cache will be used as follows: ```python raw_tensor = transformation_cache.get('raw', state_manager) fc_tensor = transformation_cache.get(input_fc, state_manager) ``` Args: transformation_cache: A `FeatureTransformationCache` object to access features. state_manager: A `StateManager` to create / access resources such as lookup tables. Returns: Transformed feature `Tensor`.
github-repos
def _parse_alt_url(html_chunk): url_list = html_chunk.find("a", fn=has_param("href")) url_list = map(lambda x: x.params["href"], url_list) url_list = filter(lambda x: not x.startswith("autori/"), url_list) if not url_list: return None return normalize_url(BASE_URL, url_list[0])
Parse URL from alternative location if not found where it should be. Args: html_chunk (obj): HTMLElement containing slice of the page with details. Returns: str: Book's URL.
juraj-google-style
def plotallanvar(data, dt, tmax=10, ax=None, **kwargs): if (ax is None): ax = plt.gca() (tk, allanvar) = allan_variance(data, dt, tmax) ax.loglog(tk, allanvar, **kwargs) ax.set_xlabel('Time [s]') ax.set_ylabel('Allan Variance') ax.legend()
Plot Allan variance. Args: data (np.ndarray): Input data. dt (float): Time between each data. tmax (float): Maximum time. ax (matplotlib.axes): Axis the figure is plotted on. kwargs (optional): Plot options passed to ax.plot().
codesearchnet
def hwvtep_attach_vlan_vid(self, **kwargs): name = kwargs.pop('name') mac = kwargs.pop('mac') vlan = kwargs.pop('vlan') name_args = dict(name=name, vid=vlan, mac=mac) method_name = 'overlay_gateway_attach_vlan_mac' method_class = self._brocade_tunnels gw_attr = getattr(method_class, method_name) config = gw_attr(**name_args) output = self._callback(config) return output
Identifies exported VLANs in VXLAN gateway configurations. Args: name (str): overlay_gateway name vlan(str): vlan_id range callback (function): A function executed upon completion of the method. Returns: Return value of `callback`. Raises: None
codesearchnet
class InputFeatures: input_ids: List[int] attention_mask: Optional[List[int]] = None token_type_ids: Optional[List[int]] = None label: Optional[Union[int, float]] = None def to_json_string(self): return json.dumps(dataclasses.asdict(self)) + '\n'
A single set of features of data. Property names are the same names as the corresponding inputs to a model. Args: input_ids: Indices of input sequence tokens in the vocabulary. attention_mask: Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: Usually `1` for tokens that are NOT MASKED, `0` for MASKED (padded) tokens. token_type_ids: (Optional) Segment token indices to indicate first and second portions of the inputs. Only some models use them. label: (Optional) Label corresponding to the input. Int for classification problems, float for regression problems.
github-repos
def close(self): self._dll.JLINKARM_Close() if self._lock is not None: del self._lock self._lock = None return None
Closes the open J-Link. Args: self (JLink): the ``JLink`` instance Returns: ``None`` Raises: JLinkException: if there is no connected JLink.
juraj-google-style
def normalize_words(self, ord=2, inplace=False): if (ord == 2): ord = None vectors = (self.vectors.T / np.linalg.norm(self.vectors, ord, axis=1)) if inplace: self.vectors = vectors.T return self return Embedding(vectors=vectors.T, vocabulary=self.vocabulary)
Normalize embeddings matrix row-wise. Args: ord: normalization order. Possible values {1, 2, 'inf', '-inf'}
codesearchnet
def make_id(): global _simple_id if settings.simple_ids(True): with _simple_id_lock: _simple_id += 1 return str(_simple_id) else: return make_globally_unique_id()
Return a new unique ID for a Bokeh object. Normally this function will return simple monotonically increasing integer IDs (as strings) for identifying Bokeh objects within a Document. However, if it is desirable to have globally unique for every object, this behavior can be overridden by setting the environment variable ``BOKEH_SIMPLE_IDS=no``. Returns: str
codesearchnet
def create_token_type_ids_from_sequences(self, token_ids_0: List[int], token_ids_1: Optional[List[int]]=None) -> List[int]: sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0] return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Funnel Transformer sequence pair mask has the following format: ``` 2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
github-repos
def _GetAuthToken(self, email, password): account_type = "GOOGLE" if self.host.endswith(".google.com") and not force_google_account: account_type = "HOSTED" req = self._CreateRequest( url="https: data=urllib.urlencode({ "Email": email, "Passwd": password, "service": "ah", "source": "rietveld-codereview-upload", "accountType": account_type, }), ) try: response = self.opener.open(req) response_body = response.read() response_dict = dict(x.split("=") for x in response_body.split("\n") if x) return response_dict["Auth"] except urllib2.HTTPError, e: if e.code == 403: body = e.read() response_dict = dict(x.split("=", 1) for x in body.split("\n") if x) raise ClientLoginError(req.get_full_url(), e.code, e.msg, e.headers, response_dict) else: raise
Uses ClientLogin to authenticate the user, returning an auth token. Args: email: The user's email address password: The user's password Raises: ClientLoginError: If there was an error authenticating with ClientLogin. HTTPError: If there was some other form of HTTP error. Returns: The authentication token returned by ClientLogin.
juraj-google-style
def get_dimension_index(self, name, value): if 'index' not in self.get('dimension', {}). \ get(name, {}).get('category', {}): return 0 ndx = self['dimension'][name]['category']['index'] if isinstance(ndx, list): return ndx.index(value) else: return ndx[value]
Converts a dimension ID string and a categody ID string into the \ numeric index of that category in that dimension Args: name(string): ID string of the dimension. value(string): ID string of the category. Returns: ndx[value](int): index of the category in the dimension.
juraj-google-style
def _get_course_content_from_ecommerce(course_id, site_code=None): api = get_ecommerce_client(site_code=site_code) try: api_response = api.courses(course_id).get() except Exception: logger.exception('An error occurred while retrieving data for course run [%s] from the Catalog API.', course_id, exc_info=True) return {} return {'title': api_response.get('name'), 'verification_deadline': api_response.get('verification_deadline')}
Get course information using the Ecommerce course api. In case of error returns empty response. Arguments: course_id (str): course key of the course site_code (str): site code Returns: course information from Ecommerce
codesearchnet
def create_bird_config_files(bird_configuration): for ip_version in bird_configuration: config_file = bird_configuration[ip_version]['config_file'] try: touch(config_file) except OSError as exc: raise ValueError('failed to create {f}:{e}'.format(f=config_file, e=exc)) if bird_configuration[ip_version]['keep_changes']: history_dir = os.path.join(os.path.dirname(config_file), 'history') try: os.mkdir(history_dir) except FileExistsError: pass except OSError as exc: raise ValueError('failed to make directory {d} for keeping a history of changes for {b}:{e}'.format(d=history_dir, b=config_file, e=exc)) else: print('{d} is created'.format(d=history_dir))
Create bird configuration files per IP version. Creates bird configuration files if they don't exist. It also creates the directories where we store the history of changes, if this functionality is enabled. Arguments: bird_configuration (dict): A dictionary with settings for bird. Returns: None Raises: ValueError if we can't create bird configuration files and the directory to store the history of changes in bird configuration file.
codesearchnet
def interleave(args): arg_iters = list(map(iter, args)) cycle_iter = it.cycle(arg_iters) for iter_ in cycle_iter: (yield six.next(iter_))
r""" zip followed by flatten Args: args (tuple): tuple of lists to interleave SeeAlso: You may actually be better off doing something like this: a, b, = args ut.flatten(ut.bzip(a, b)) ut.flatten(ut.bzip([1, 2, 3], ['-'])) [1, '-', 2, '-', 3, '-'] Example: >>> # ENABLE_DOCTEST >>> from utool.util_iter import * # NOQA >>> import utool as ut >>> args = ([1, 2, 3, 4, 5], ['A', 'B', 'C', 'D', 'E', 'F', 'G']) >>> genresult = interleave(args) >>> result = ut.repr4(list(genresult), nl=False) >>> print(result) [1, 'A', 2, 'B', 3, 'C', 4, 'D', 5, 'E']
codesearchnet
def sigmoid_accuracy_one_hot(logits, labels, weights_fn=None): with tf.variable_scope('sigmoid_accuracy_one_hot', values=[logits, labels]): del weights_fn predictions = tf.nn.sigmoid(logits) labels = tf.argmax(labels, (- 1)) predictions = tf.argmax(predictions, (- 1)) (_, accuracy) = tf.metrics.accuracy(labels=labels, predictions=predictions) return (accuracy, tf.constant(1.0))
Calculate accuracy for a set, given one-hot labels and logits. Args: logits: Tensor of size [batch-size, o=1, p=1, num-classes] labels: Tensor of size [batch-size, o=1, p=1, num-classes] weights_fn: Function that takes in labels and weighs examples (unused) Returns: accuracy (scalar), weights
codesearchnet
def call(self, input_ids: tf.Tensor | None=None, attention_mask: tf.Tensor | None=None, decoder_input_ids: tf.Tensor | None=None, decoder_attention_mask: tf.Tensor | None=None, decoder_position_ids: tf.Tensor | None=None, head_mask: tf.Tensor | None=None, decoder_head_mask: tf.Tensor | None=None, cross_attn_head_mask: tf.Tensor | None=None, encoder_outputs: Optional[TFBaseModelOutput]=None, past_key_values: List[tf.Tensor] | None=None, inputs_embeds: tf.Tensor | None=None, decoder_inputs_embeds: tf.Tensor | None=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, labels: tf.Tensor | None=None, training: Optional[bool]=False) -> Union[Tuple[tf.Tensor], TFSeq2SeqLMOutput]: if labels is not None: labels = tf.where(labels == self.config.pad_token_id, tf.cast(tf.fill(shape_list(labels), -100), labels.dtype), labels) use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) outputs = self.model(input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training) lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True) lm_logits = self.bias_layer(lm_logits) masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits) if not return_dict: output = (lm_logits,) + outputs[1:] return (masked_lm_loss,) + output if masked_lm_loss is not None else output return TFSeq2SeqLMOutput(loss=masked_lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions)
labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns:
github-repos
def remove_unused_links(self, used): unused = [] self._execute("SELECT * FROM {}".format(self.LINK_STATE_TABLE)) for row in self.cursor: relpath, inode, mtime = row inode = self._from_sqlite(inode) path = os.path.join(self.root_dir, relpath) if path in used: continue if not os.path.exists(path): continue actual_inode = get_inode(path) actual_mtime, _ = get_mtime_and_size(path) if inode == actual_inode and mtime == actual_mtime: logger.debug("Removing '{}' as unused link.".format(path)) remove(path) unused.append(relpath) for relpath in unused: cmd = 'DELETE FROM {} WHERE path = "{}"' self._execute(cmd.format(self.LINK_STATE_TABLE, relpath))
Removes all saved links except the ones that are used. Args: used (list): list of used links that should not be removed.
juraj-google-style
def data_period_start_day(self, value=None): if value is not None: try: value = str(value) except ValueError: raise ValueError( 'value {} need to be of type str ' 'for field `data_period_start_day`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `data_period_start_day`') self._data_period_start_day = value
Corresponds to IDD Field `data_period_start_day` Args: value (str): value for IDD Field `data_period_start_day` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
juraj-google-style
def get_asset_url(self, path): url = self.root_url + '/assets/' + path if path in self.asset_hash: url += '?' + self.asset_hash[path] return url
Get the URL of an asset. If asset hashes are added and one exists for the path, it will be appended as a query string. Args: path (str): Path to the file, relative to your "assets" directory.
juraj-google-style
def _container_strategy(self): container_strategy = self._container_strategy_weakref() assert container_strategy is not None return container_strategy
Get the containing `tf.distribute.Strategy`. This should not generally be needed except when creating a new `ReplicaContext` and to validate that the caller is in the correct `scope()`. Returns: The `tf.distribute.Strategy` such that `strategy.extended` is `self`.
github-repos
def get_project_name(project_id, projects): for project in projects: if project_id == project.id: return project.name
Retrieves project name for given project id Args: projects: List of projects project_id: project id Returns: Project name or None if there is no match
juraj-google-style
def files_info(self, *, id: str, **kwargs) -> SlackResponse: kwargs.update({"id": id}) return self.api_call("files.info", http_verb="GET", params=kwargs)
Gets information about a team file. Args: id (str): The file id. e.g. 'F1234467890'
juraj-google-style
def get_equivalent_qpoints(self, index): if self.qpoints[index].label is None: return [index] list_index_qpoints = [] for i in range(self.nb_qpoints): if self.qpoints[i].label == self.qpoints[index].label: list_index_qpoints.append(i) return list_index_qpoints
Returns the list of qpoint indices equivalent (meaning they are the same frac coords) to the given one. Args: index: the qpoint index Returns: a list of equivalent indices TODO: now it uses the label we might want to use coordinates instead (in case there was a mislabel)
juraj-google-style
def parse(self, text, key=None): try: data = json.loads(text) except ValueError as e: raise ValueError("%s: Value: [%s]" % (e, text)) if data and key: if key not in data: raise ValueError("Invalid response (key %s not found): %s" % (key, data)) data = data[key] return data
Parses a response. Args: text (str): Text to parse Kwargs: key (str): Key to look for, if any Returns: Parsed value Raises: ValueError
juraj-google-style
def _extract_response_xml(self, domain, response): attributes = {} alexa_keys = {'POPULARITY': 'TEXT', 'REACH': 'RANK', 'RANK': 'DELTA'} try: xml_root = ET.fromstring(response._content) for xml_child in xml_root.findall('SD if xml_child.tag in alexa_keys and \ alexa_keys[xml_child.tag] in xml_child.attrib: attributes[xml_child.tag.lower( )] = xml_child.attrib[alexa_keys[xml_child.tag]] except ParseError: pass attributes['domain'] = domain return {'attributes': attributes}
Extract XML content of an HTTP response into dictionary format. Args: response: HTML Response objects Returns: A dictionary: {alexa-ranking key : alexa-ranking value}.
juraj-google-style
def List(self, request, global_params=None): config = self.GetMethodConfig('List') return self._RunMethod(config, request, global_params=global_params)
Lists existing `BuildTrigger`s. This API is experimental. Args: request: (CloudbuildProjectsLocationsTriggersListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ListBuildTriggersResponse) The response message.
github-repos
def add_tensor_filter(self, filter_name, tensor_filter): if self._session_wrapper: self._session_wrapper.add_tensor_filter(filter_name, tensor_filter) else: self._pending_tensor_filters[filter_name] = tensor_filter
Add a tensor filter. See doc of `LocalCLIDebugWrapperSession.add_tensor_filter()` for details. Override default behavior to accommodate the possibility of this method being called prior to the initialization of the underlying `LocalCLIDebugWrapperSession` object. Args: filter_name: See doc of `LocalCLIDebugWrapperSession.add_tensor_filter()` for details. tensor_filter: See doc of `LocalCLIDebugWrapperSession.add_tensor_filter()` for details.
github-repos
def render_template(template, out_dir='.', context=None): template_directory = os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', 'templates', template ) files = [] empty_dirs = [] for (dirpath, _, filenames) in os.walk(template_directory): if len(filenames) == 0: empty_dirs.append(os.path.relpath(dirpath, template_directory)) else: files.extend([os.path.join(dirpath, filepath) for filepath in filenames]) for source_file in files: with open(source_file, 'r') as file: template = Template(file.read()) template_rendered = template.render(**(context or {})) source_relpath = os.path.relpath(source_file, template_directory) filename = os.path.join(out_dir, source_relpath) filename_rendered = Template(filename).render(**context) source_dir = os.path.dirname(filename_rendered) if not os.path.exists(source_dir): os.makedirs(source_dir) with open(filename_rendered, 'w') as target_file: target_file.write(template_rendered) for dirpath in empty_dirs: try: dirname = os.path.join(out_dir, dirpath) dirname_rendered = Template(dirname).render(**context) if not os.path.exists(dirname_rendered): os.makedirs(dirname_rendered) except OSError as exc: if exc.errno == errno.EEXIST and os.path.isdir(dirpath): pass else: raise
This function renders the template desginated by the argument to the designated directory using the given context. Args: template (string) : the source template to use (relative to ./templates) out_dir (string) : the name of the output directory context (dict) : the template rendering context
juraj-google-style
def __init__( self, session, storage_type=definitions.STORAGE_TYPE_SESSION, task=None): super(StorageWriter, self).__init__() self._first_written_event_source_index = 0 self._serializers_profiler = None self._session = session self._storage_profiler = None self._storage_type = storage_type self._task = task self._written_event_source_index = 0 self.number_of_analysis_reports = 0 self.number_of_event_sources = 0 self.number_of_event_tags = 0 self.number_of_events = 0 self.number_of_warnings = 0
Initializes a storage writer. Args: session (Session): session the storage changes are part of. storage_type (Optional[str]): storage type. task(Optional[Task]): task.
juraj-google-style
def get_string(self, significant_figures=6): ph = "{:.%df}" % significant_figures lines = [] for bound, d in zip(self.bounds, "xyz"): fillers = bound + [d] * 2 bound_format = " ".join([ph] * 2 + [" {}lo {}hi"]) lines.append(bound_format.format(*fillers)) if self.tilt: tilt_format = " ".join([ph] * 3 + [" xy xz yz"]) lines.append(tilt_format.format(*self.tilt)) return "\n".join(lines)
Returns the string representation of simulation box in LAMMPS data file format. Args: significant_figures (int): No. of significant figures to output for box settings. Default to 6. Returns: String representation
juraj-google-style
def _init_from_proto(self, context_def, import_scope=None): assert isinstance(context_def, control_flow_pb2.CondContextDef) g = ops.get_default_graph() self._name = ops.prepend_name_scope(context_def.context_name, import_scope) self._pred = g.as_graph_element(ops.prepend_name_scope(context_def.pred_name, import_scope)) self._pivot = g.as_graph_element(ops.prepend_name_scope(context_def.pivot_name, import_scope)) self._branch = context_def.branch super(CondContext, self).__init__(values_def=context_def.values_def, import_scope=import_scope)
Creates a new `CondContext` from protocol buffer. Args: context_def: `CondContextDef` protocol buffer. import_scope: Optional `string`. Name scope to add.
github-repos
def filter(self, nodes): filtered_dag = DAG() for node in nodes: filtered_dag.add_node_if_not_exists(node) for edge in self.all_downstreams(node): filtered_dag.add_node_if_not_exists(edge) for node, edges in self.graph.items(): if node in filtered_dag.graph: filtered_dag.graph[node] = edges return filtered_dag
Returns a new DAG with only the given nodes and their dependencies. Args: nodes (list): The nodes you are interested in. Returns: :class:`stacker.dag.DAG`: The filtered graph.
juraj-google-style
def get(self, ldap_dn): self.base_dn = ldap_dn self.sub_tree = BASE return self.first()
Return an LDAP entry by DN Args: ldap_dn (str): LDAP DN
juraj-google-style
def is_copy_constructor(constructor): assert isinstance(constructor, calldef_members.constructor_t) args = constructor.arguments parent = constructor.parent if len(args) != 1: return False arg = args[0] if not isinstance(arg.decl_type, cpptypes.compound_t): return False if not type_traits.is_reference(arg.decl_type): return False if not type_traits.is_const(arg.decl_type.base): return False un_aliased = type_traits.remove_alias(arg.decl_type.base) if not isinstance(un_aliased.base, cpptypes.declarated_t): return False return id(un_aliased.base.declaration) == id(parent)
Check if the declaration is a copy constructor, Args: constructor (declarations.constructor_t): the constructor to be checked. Returns: bool: True if this is a copy constructor, False instead.
juraj-google-style
def _read_mptcp_prio(self, bits, size): temp = (self._read_unpack(1) if size else None) data = dict(subtype='MP_PRIO', prio=dict(res=(b'\x00' * 3), backup=(True if int(bits[3]) else False), addrid=temp)) return data
Read Change Subflow Priority option. Positional arguments: * bits - str, 4-bit data * size - int, length of option Returns: * dict -- extracted Change Subflow Priority (MP_PRIO) option Structure of MP_PRIO [RFC 6824]: 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +---------------+---------------+-------+-----+-+--------------+ | Kind | Length |Subtype| |B| AddrID (opt) | +---------------+---------------+-------+-----+-+--------------+ Octets Bits Name Description 0 0 tcp.opt.kind Kind (30) 1 8 tcp.opt.length Length (3/4) 2 16 tcp.opt.mp.subtype Subtype (5) 2 23 tcp.opt.mp.prio.backup Backup Path (B) 3 24 tcp.opt.mp.prio.addrid Address ID (optional)
codesearchnet
def fermi_fourier_trans_inverse_4(qubits): yield fswap(qubits[1], qubits[2]), yield fermi_fourier_trans_2(qubits[0], qubits[1]) yield fermi_fourier_trans_2(qubits[2], qubits[3]) yield fswap(qubits[1], qubits[2]) yield fermi_fourier_trans_2(qubits[0], qubits[1]) yield cirq.S(qubits[2]) yield fermi_fourier_trans_2(qubits[2], qubits[3]) yield fswap(qubits[1], qubits[2])
The reverse fermionic Fourier transformation implemented on 4 qubits on a line, which maps the momentum picture to the position picture. Using the fast Fourier transformation algorithm, the circuit can be decomposed into 2-mode fermionic Fourier transformation, the fermionic SWAP gates, and single-qubit rotations. Args: qubits: list of four qubits
juraj-google-style
def load_variables_from_checkpoint(sess, start_checkpoint): saver = tf.compat.v1.train.Saver(tf.compat.v1.global_variables()) saver.restore(sess, start_checkpoint)
Utility function to centralize checkpoint restoration. Args: sess: TensorFlow session. start_checkpoint: Path to saved checkpoint on disk.
github-repos
def do_get(self, uri): self.validate_resource_uri(uri) return self._connection.get(uri)
Helps to make get requests Args: uri: URI of the resource Returns: Returns: Returns the resource data
codesearchnet
def nmf_ensemble(data, k, n_runs=10, W_list=[], **nmf_params): nmf = NMF(k) if (len(W_list) == 0): W_list = [] for i in range(n_runs): W = nmf.fit_transform(data) W_list.append(W) W_stacked = np.hstack(W_list) nmf_w = nmf.fit_transform(W_stacked) nmf_h = nmf.components_ H_new = data.T.dot(nmf_w).T nmf2 = NMF(k, init='custom') nmf_w = nmf2.fit_transform(data, W=nmf_w, H=H_new) H_new = nmf2.components_ return (nmf_w, H_new)
Runs an ensemble method on the list of NMF W matrices... Args: data: genes x cells array (should be log + cell-normalized) k: number of classes n_runs (optional): number of random initializations of state estimation M_list (optional): list of M arrays from state estimation se_params (optional): optional poisson_estimate_state params Returns: W_new H_new
codesearchnet
def _create_query(node, context): visited_nodes = [node] output_columns = _get_output_columns(visited_nodes, context) filters = _get_filters(visited_nodes, context) selectable = sql_context_helpers.get_node_selectable(node, context) query = select(output_columns).select_from(selectable).where(and_(*filters)) return query
Create a query from a SqlNode. Args: node: SqlNode, the current node. context: CompilationContext, global compilation state and metadata. Returns: Selectable, selectable of the generated query.
juraj-google-style
def __init__(self, run_object): run_obj_type = self.get_run_object_type(run_object) if run_obj_type == 'module': self.init_module(run_object) elif run_obj_type == 'package': self.init_package(run_object) else: self.init_function(run_object)
Initializes profiler. Args: run_object: object to be profiled.
juraj-google-style
def get_topics_strings(topics_words, alpha, vocabulary, topics_to_print=10, words_per_topic=10): alpha = np.squeeze(alpha, axis=0) highest_weight_topics = np.argsort((- alpha), kind='mergesort') top_words = np.argsort((- topics_words), axis=1) res = [] for topic_idx in highest_weight_topics[:topics_to_print]: l = ['index={} alpha={:.2f}'.format(topic_idx, alpha[topic_idx])] l += [vocabulary[word] for word in top_words[(topic_idx, :words_per_topic)]] res.append(' '.join(l)) return np.array(res)
Returns the summary of the learned topics. Arguments: topics_words: KxV tensor with topics as rows and words as columns. alpha: 1xK tensor of prior Dirichlet concentrations for the topics. vocabulary: A mapping of word's integer index to the corresponding string. topics_to_print: The number of topics with highest prior weight to summarize. words_per_topic: Number of wodrs per topic to return. Returns: summary: A np.array with strings.
codesearchnet
def successful_request(self, now): self._successful_requests.add(now, 1)
Notifies the throttler of a successful request. Must be called once for each request (for which throttle_request was previously called) that succeeded. Args: now: int, time in ms since the epoch
github-repos
def update(cls, session, record): cls._check_implements('update') data = record.to_api() del data['id'] data['reload'] = True return cls( '/%s/%s.json' % (cls.__endpoint__, record.id), data=data, request_type=RequestPaginator.PUT, singleton=True, session=session, )
Update a record. Args: session (requests.sessions.Session): Authenticated session. record (helpscout.BaseModel): The record to be updated. Returns: helpscout.BaseModel: Freshly updated record.
juraj-google-style
def encipher_vigenere(plaintext, plain_vocab, key): ciphertext = [] layers = [ShiftEncryptionLayer(plain_vocab, i) for i in range(len(plain_vocab))] for (i, sentence) in enumerate(plaintext): cipher_sentence = [] for (j, character) in enumerate(sentence): key_idx = key[(j % len(key))] encrypted_char = layers[key_idx].encrypt_character(character) cipher_sentence.append(encrypted_char) ciphertext.append(cipher_sentence) return ciphertext
Encrypt plain text with given key. Args: plaintext (list of list of Strings): a list of plain text to encrypt. plain_vocab (list of Integer): unique vocabularies being used. key (list of Integer): key to encrypt cipher using Vigenere table. Returns: ciphertext (list of Strings): encrypted plain text.
codesearchnet
def __init__( self, datetime_value, date_time_description, data_type=None, time_zone=None): year, month, day_of_month, hours, minutes, seconds, _, _, _ = ( datetime_value.utctimetuple()) time_elements_tuple = ( year, month, day_of_month, hours, minutes, seconds, datetime_value.microsecond) date_time = dfdatetime_time_elements.TimeElementsInMicroseconds( time_elements_tuple=time_elements_tuple) super(PythonDatetimeEvent, self).__init__( date_time, date_time_description, data_type=data_type, time_zone=time_zone)
Initializes an event. Args: datetime_value (datetime.datetime): date and time values. date_time_description (str): description of the meaning of the date and time values. data_type (Optional[str]): event data type. If the data type is not set it is derived from the DATA_TYPE class attribute. time_zone (Optional[datetime.tzinfo]): time zone.
juraj-google-style
def serialize_to_normalized_compact_json(py_obj): return json.dumps(py_obj, sort_keys=True, separators=(',', ':'), cls=ToJsonCompatibleTypes)
Serialize a native object to normalized, compact JSON. The JSON string is normalized by sorting any dictionary keys. It will be on a single line without whitespace between elements. Args: py_obj: object Any object that can be represented in JSON. Some types, such as datetimes are automatically converted to strings. Returns: str: normalized, compact JSON string.
codesearchnet
def assert_integer_form(x, data=None, summarize=None, message=None, int_dtype=None, name='assert_integer_form'): with ops.name_scope(name, values=[x, data]): x = ops.convert_to_tensor(x, name='x') if x.dtype.is_integer: return control_flow_ops.no_op() message = message or '{} has non-integer components'.format(x) if int_dtype is None: try: int_dtype = {dtypes.float16: dtypes.int16, dtypes.float32: dtypes.int32, dtypes.float64: dtypes.int64}[x.dtype.base_dtype] except KeyError: raise TypeError('Unrecognized type {}'.format(x.dtype.name)) return check_ops.assert_equal(x, math_ops.cast(math_ops.cast(x, int_dtype), x.dtype), data=data, summarize=summarize, message=message, name=name)
Assert that x has integer components (or floats equal to integers). Args: x: Floating-point `Tensor` data: The tensors to print out if the condition is `False`. Defaults to error message and first few entries of `x` and `y`. summarize: Print this many entries of each tensor. message: A string to prefix to the default message. int_dtype: A `tf.dtype` used to cast the float to. The default (`None`) implies the smallest possible signed int will be used for casting. name: A name for this operation (optional). Returns: Op raising `InvalidArgumentError` if `cast(x, int_dtype) != x`.
github-repos
def get_input_shape_and_dtype(layer): def _is_graph_model(layer): return hasattr(layer, '_is_graph_network') and layer._is_graph_network or layer.__class__.__name__ == 'Sequential' while _is_graph_model(layer): if not layer.layers: raise ValueError('An empty Model cannot be used as a Layer.') layer = layer.layers[0] if getattr(layer, '_batch_input_shape', None): return (layer._batch_input_shape, layer.dtype) return (None, None)
Retrieves input shape and input dtype of layer if applicable. Args: layer: Layer (or model) instance. Returns: Tuple (input_shape, input_dtype). Both could be None if the layer does not have a defined input shape. Raises: ValueError: in case an empty Sequential or Functional model is passed.
github-repos
def post(self, path, params=None, timeout=None, event_timeout=None): future = self.post_async(path, params) self.wait_all_futures( future, timeout=timeout, event_timeout=event_timeout) return future.result()
Synchronously calls a method Args: path (list): The path to post to params (dict): parameters for the call timeout (float): time in seconds to wait for responses, wait forever if None event_timeout: maximum time in seconds to wait between each response event, wait forever if None Returns: the result from 'method'
juraj-google-style
def override_binary_operator_helper(func, op_name, clazz_object=tensor_lib.Tensor): @traceback_utils.filter_traceback def binary_op_wrapper(x, y): with ops.name_scope(None, op_name, [x, y]) as name: try: x, y = maybe_promote_tensors(x, y) return func(x, y, name=name) except (TypeError, ValueError) as e: if hasattr(type(y), '__r%s__' % op_name): try: r_op = getattr(y, '__r%s__' % op_name) out = r_op(x) if out is NotImplemented: raise return out except (TypeError, ValueError): raise e else: raise @traceback_utils.filter_traceback def binary_op_wrapper_sparse(sp_x, y): with ops.name_scope(None, op_name, [sp_x, y]) as name: y = ops.convert_to_tensor(y, dtype=sp_x.dtype.base_dtype, name='y') return clazz_object(sp_x.indices, func(sp_x.indices, sp_x.values, sp_x.dense_shape, y, name=name), sp_x.dense_shape) @traceback_utils.filter_traceback def r_binary_op_wrapper(y, x): with ops.name_scope(None, op_name, [x, y]) as name: y, x = maybe_promote_tensors(y, x, force_same_dtype=True) return func(x, y, name=name) try: doc = func.__doc__ except AttributeError: doc = None binary_op_wrapper.__doc__ = doc r_binary_op_wrapper.__doc__ = doc binary_op_wrapper_sparse.__doc__ = doc if clazz_object is tensor_lib.Tensor: clazz_object._override_operator('__%s__' % op_name, binary_op_wrapper) del binary_op_wrapper clazz_object._override_operator('__r%s__' % op_name, r_binary_op_wrapper) del r_binary_op_wrapper else: clazz_object._override_operator('__%s__' % op_name, binary_op_wrapper_sparse) del binary_op_wrapper_sparse
Register operators with different tensor and scalar versions. If `clazz_object` is `SparseTensor`, assumes `func` takes `(sp_indices, sp_values, sp_shape, dense)` and outputs `(new_sp_values)`. Args: func: the operator op_name: name of the operator being overridden clazz_object: class to override for. Either `Tensor` or `SparseTensor`.
github-repos
def _EnforceProcessMemoryLimit(self, memory_limit): if resource: if memory_limit is None: memory_limit = 4 * 1024 * 1024 * 1024 elif memory_limit == 0: memory_limit = resource.RLIM_INFINITY resource.setrlimit(resource.RLIMIT_DATA, (memory_limit, memory_limit))
Enforces a process memory limit. Args: memory_limit (int): maximum number of bytes the process is allowed to allocate, where 0 represents no limit and None a default of 4 GiB.
juraj-google-style
def ws010(self, value=None): if value is not None: try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float ' 'for field `ws010`'.format(value)) self._ws010 = value
Corresponds to IDD Field `ws010` Wind speed corresponding to 1.0% annual cumulative frequency of occurrence Args: value (float): value for IDD Field `ws010` Unit: m/s if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
juraj-google-style
def _create_rand_mask_from_inputs(from_blocked_mask, to_blocked_mask, rand_attn, num_attention_heads, num_rand_blocks, batch_size, from_seq_length, from_block_size): num_windows = from_seq_length rand_mask = torch.stack([p1[i1.flatten()] for p1, i1 in zip(to_blocked_mask, rand_attn)]) rand_mask = rand_mask.view(batch_size, num_attention_heads, num_windows, num_rand_blocks * from_block_size) rand_mask = torch.einsum('blq,bhlk->bhlqk', from_blocked_mask[:, 1:-1], rand_mask) return rand_mask
Create 3D attention mask from a 2D tensor mask. Args: from_blocked_mask: 2D Tensor of shape [batch_size, from_seq_length//from_block_size, from_block_size]. to_blocked_mask: int32 Tensor of shape [batch_size, to_seq_length//to_block_size, to_block_size]. rand_attn: [batch_size, num_attention_heads, from_seq_length//from_block_size-2, num_rand_blocks] num_attention_heads: int. Number of attention heads. num_rand_blocks: int. Number of random chunks per row. batch_size: int. Batch size for computation. from_seq_length: int. length of from sequence. from_block_size: int. size of block in from sequence. Returns: float Tensor of shape [batch_size, num_attention_heads, from_seq_length//from_block_size-2, from_block_size, num_rand_blocks*to_block_size].
github-repos
def insert_data(self, remove_data=False, db_type='sqlite'): if self.update_source: import msp2db self.c.execute( "INSERT INTO library_spectra_source (id, name, parsing_software) VALUES" " ({a}, '{b}', 'msp2db-v{c}')".format(a=self.current_id_origin, b=self.source, c=msp2db.__version__)) self.conn.commit() if self.compound_info_all: self.compound_info_all = _make_sql_compatible(self.compound_info_all) cn = ', '.join(self.compound_info.keys()) + ',created_at,updated_at' insert_query_m(self.compound_info_all, columns=cn, conn=self.conn, table='metab_compound', db_type=db_type) self.meta_info_all = _make_sql_compatible(self.meta_info_all) cn = 'id,' + ', '.join(self.meta_info.keys()) + ',library_spectra_source_id, inchikey_id' insert_query_m(self.meta_info_all, columns=cn, conn=self.conn, table='library_spectra_meta', db_type=db_type) cn = "id, mz, i, other, library_spectra_meta_id" insert_query_m(self.spectra_all, columns=cn, conn=self.conn, table='library_spectra', db_type=db_type) if self.spectra_annotation_all: cn = "id, mz, tentative_formula, mass_error, library_spectra_meta_id" insert_query_m(self.spectra_annotation_all, columns=cn, conn=self.conn, table='library_spectra_annotation', db_type=db_type) if remove_data: self.meta_info_all = [] self.spectra_all = [] self.spectra_annotation_all = [] self.compound_info_all = [] self._get_current_ids(source=False)
Insert data stored in the current chunk of parsing into the selected database Args: remove_data (boolean): Remove the data stored within the LibraryData object for the current chunk of processing db_type (str): The type of database to submit to either 'sqlite', 'mysql' or 'django_mysql' [default sqlite]
juraj-google-style
def write_config_file(self, parsed_namespace, output_file_paths, exit_after=False): for output_file_path in output_file_paths: try: with open(output_file_path, 'w') as output_file: pass except IOError as e: raise ValueError(("Couldn't open %s for writing: %s" % (output_file_path, e))) if output_file_paths: config_items = self.get_items_for_config_file_output(self._source_to_settings, parsed_namespace) file_contents = self._config_file_parser.serialize(config_items) for output_file_path in output_file_paths: with open(output_file_path, 'w') as output_file: output_file.write(file_contents) message = ('Wrote config file to ' + ', '.join(output_file_paths)) if exit_after: self.exit(0, message) else: print(message)
Write the given settings to output files. Args: parsed_namespace: namespace object created within parse_known_args() output_file_paths: any number of file paths to write the config to exit_after: whether to exit the program after writing the config files
codesearchnet
def from_epsg_code(code): code = str(code) proj4 = utils.crscode_to_string('epsg', code, 'proj4') crs = from_proj4(proj4) return crs
Load crs object from epsg code, via spatialreference.org. Parses based on the proj4 representation. Arguments: - *code*: The EPSG code as an integer. Returns: - A CS instance of the indicated type.
codesearchnet
def delete_variants(self, case_id, variant_type, category=None): category = (category or '') LOG.info('Deleting old {0} {1} variants for case {2}'.format(variant_type, category, case_id)) query = {'case_id': case_id, 'variant_type': variant_type} if category: query['category'] = category result = self.variant_collection.delete_many(query) LOG.info('{0} variants deleted'.format(result.deleted_count))
Delete variants of one type for a case This is used when a case is reanalyzed Args: case_id(str): The case id variant_type(str): 'research' or 'clinical' category(str): 'snv', 'sv' or 'cancer'
codesearchnet
def GetForwardedIps(self, interface, interface_ip=None): args = ['ls', 'table', 'local', 'type', 'local'] options = self._CreateRouteOptions(dev=interface) result = self._RunIpRoute(args=args, options=options) result = re.sub(r'local\s', r'', result) return self.ParseForwardedIps(result.split())
Retrieve the list of configured forwarded IP addresses. Args: interface: string, the output device to query. interface_ip: string, current interface ip address. Returns: list, the IP address strings.
juraj-google-style
def get_fractional_coords(self, cart_coords: Vector3Like) -> np.ndarray: return dot(cart_coords, self.inv_matrix)
Returns the fractional coordinates given cartesian coordinates. Args: cart_coords (3x1 array): Cartesian coords. Returns: Fractional coordinates.
codesearchnet
def image_summary(seqs, name, num=None): seqs = tf.clip_by_value(seqs, 0.0, 1.0) seqs = tf.unstack(seqs[:num]) joined_seqs = [tf.concat(tf.unstack(seq), 1) for seq in seqs] joined_seqs = tf.expand_dims(tf.concat(joined_seqs, 0), 0) tf.compat.v2.summary.image(name, joined_seqs, max_outputs=1, step=tf.compat.v1.train.get_or_create_global_step())
Visualizes sequences as TensorBoard summaries. Args: seqs: A tensor of shape [n, t, h, w, c]. name: String name of this summary. num: Integer for the number of examples to visualize. Defaults to all examples.
codesearchnet
def bqm_index_labelled_input(var_labels_arg_name, samples_arg_names): def index_label_decorator(f): @wraps(f) def _index_label(sampler, bqm, **kwargs): if (not hasattr(bqm, 'linear')): raise TypeError('expected input to be a BinaryQuadraticModel') linear = bqm.linear var_labels = kwargs.get(var_labels_arg_name, None) has_samples_input = any(((kwargs.get(arg_name, None) is not None) for arg_name in samples_arg_names)) if (var_labels is None): if all(((v in linear) for v in range(len(bqm)))): return f(sampler, bqm, **kwargs) if has_samples_input: err_str = 'Argument `{}` must be provided if any of the samples arguments {} are provided and the bqm is not already index-labelled'.format(var_labels_arg_name, samples_arg_names) raise ValueError(err_str) try: inverse_mapping = dict(enumerate(sorted(linear))) except TypeError: inverse_mapping = dict(enumerate(linear)) var_labels = {v: i for (i, v) in iteritems(inverse_mapping)} else: inverse_mapping = {i: v for (v, i) in iteritems(var_labels)} response = f(sampler, bqm.relabel_variables(var_labels, inplace=False), **kwargs) return response.relabel_variables(inverse_mapping, inplace=True) return _index_label return index_label_decorator
Returns a decorator which ensures bqm variable labeling and all other specified sample-like inputs are index labeled and consistent. Args: var_labels_arg_name (str): The name of the argument that the user should use to pass in an index labeling for the bqm. samples_arg_names (list[str]): The names of the expected sample-like inputs which should be indexed according to the labels passed to the argument `var_labels_arg_name`. Returns: Function decorator.
codesearchnet
def has_no_narrow_neurite_section(neuron, neurite_filter, radius_threshold=0.05, considered_section_min_length=50): considered_sections = (sec for sec in iter_sections(neuron, neurite_filter=neurite_filter) if (sec.length > considered_section_min_length)) def narrow_section(section): 'Select narrow sections' return (section.points[(:, COLS.R)].mean() < radius_threshold) bad_ids = [(section.id, section.points[1]) for section in considered_sections if narrow_section(section)] return CheckResult((len(bad_ids) == 0), bad_ids)
Check if the neuron has dendrites with narrow sections Arguments: neuron(Neuron): The neuron object to test neurite_filter(callable): filter the neurites by this callable radius_threshold(float): radii below this are considered narro considered_section_min_length(float): sections with length below this are not taken into account Returns: CheckResult with result. result.info contains the narrow section ids and their first point
codesearchnet
def assertNear(self, f1, f2, err, msg=None): self.assertTrue(f1 == f2 or math.fabs(f1 - f2) <= err, '%f != %f +/- %f%s' % (f1, f2, err, ' (%s)' % msg if msg is not None else ''))
Asserts that two floats are near each other. Checks that |f1 - f2| < err and asserts a test failure if not. Args: f1: A float value. f2: A float value. err: A float value. msg: An optional string message to append to the failure message.
github-repos
def split(state, num): state = tf_np.asarray(state, dtype=_RNG_KEY_DTYPE) state = _key2seed(state) try: states = stateless_random_ops.stateless_split(state, num) except AttributeError as e: states = stateless_split(state, num) states = array_ops_stack.unstack(states, num) states = nest.map_structure(_seed2key, states) return states
Creates new independent RNG states from an existing state. Args: state: the existing state. num: the number of the new states. Returns: A tuple of new states.
github-repos
def from_cif_file(cif_file, source='', comment=''): r = CifParser(cif_file) structure = r.get_structures()[0] return Header(structure, source, comment)
Static method to create Header object from cif_file Args: cif_file: cif_file path and name source: User supplied identifier, i.e. for Materials Project this would be the material ID number comment: User comment that goes in header Returns: Header Object
codesearchnet
def get_bin_edges_from_axis(axis) -> np.ndarray: bins = range(1, axis.GetNbins() + 1) bin_edges = np.empty(len(bins) + 1) bin_edges[:-1] = [axis.GetBinLowEdge(i) for i in bins] bin_edges[-1] = axis.GetBinUpEdge(axis.GetNbins()) return bin_edges
Get bin edges from a ROOT hist axis. Note: Doesn't include over- or underflow bins! Args: axis (ROOT.TAxis): Axis from which the bin edges should be extracted. Returns: Array containing the bin edges.
juraj-google-style
def resolution(self, indicator=None): self._request_entity = 'dnsResolution' self._request_uri = '{}/dnsResolutions'.format(self._request_uri) if (indicator is not None): self._request_uri = '{}/{}/dnsResolutions'.format(self._api_uri, indicator)
Update the URI to retrieve host resolutions for the provided indicator. Args: indicator (string): The indicator to retrieve resolutions.
codesearchnet
def download_url(self, url, **kwargs): if (self.baseurl and (': url = join(self.baseurl, url) return self.resolver.download_to_directory(self.directory, url, **kwargs)
Download a URL to the workspace. Args: url (string): URL to download to directory **kwargs : See :py:mod:`ocrd.resolver.Resolver` Returns: The local filename of the downloaded file
codesearchnet
def decode(data): decoded = None try: decoded = yaml.load(data) except Exception, e: e = e.message if e.message else str(e) raise MetaParsingException("Can't parse your YAML data: %s" % e) decoded = validator.check_structure(decoded) return decoded
Handles decoding of the YAML `data`. Args: data (str): Data which will be decoded. Returns: dict: Dictionary with decoded data.
juraj-google-style
def getListOfBases(): downer = Downloader() data = downer.download((ALEPH_URL + '/F/?func=file&file_name=base-list')) dom = dhtmlparser.parseString(data.lower()) base_links = filter((lambda x: (('href' in x.params) and ('local_base' in x.params['href']))), dom.find('a')) base_links = map((lambda x: x.params['href'].replace('?', '&', 1).split('&')), base_links) bases = map((lambda link: filter((lambda base: ('local_base=' in base)), link)[0]), base_links) bases = map((lambda x: x.split('=')[1].strip()), bases) return list(set(bases))
This function is here mainly for purposes of unittest Returns: list of str: Valid bases as they are used as URL parameters in links at Aleph main page.
codesearchnet
def get_padding_bias(x): with tf.name_scope('attention_bias'): padding = get_padding(x) attention_bias = (padding * _NEG_INF) attention_bias = tf.expand_dims(tf.expand_dims(attention_bias, axis=1), axis=1) return attention_bias
Calculate bias tensor from padding values in tensor. Bias tensor that is added to the pre-softmax multi-headed attention logits, which has shape [batch_size, num_heads, length, length]. The tensor is zero at non-padding locations, and -1e9 (negative infinity) at padding locations. Args: x: int tensor with shape [batch_size, length] Returns: Attention bias tensor of shape [batch_size, 1, 1, length].
codesearchnet
def report_filter(config, auth, body, filters): new_body = body.copy() for f, d in filters.items(): for v in get_rows(config, auth, d): if f == 'accountId': new_body['accountId'] = v elif f == 'activity': new_body['reachCriteria']['activities'].setdefault('filters', []).append({'kind': 'dfareporting else: new_body.setdefault('criteria', {}).setdefault('dimensionFilters', []).append({'kind': 'dfareporting return new_body
Adds filters to a report body Filters cannot be easily added to the reports without templateing, this allows filters to be passed as lists. Values are specified using get_rows(...) helper, see starthinker/util/data/__init__.py. To specify a filter, use the official filter name and a list of values. For exmaple: ``` filters = { "accountId": { "values": 789 }, "advertiser": { "values":[1234, 5678, 91011] } } ``` Args: * auth: (string) Either user or service. * body: (json) the report body ( with or without filters ) * filters: (json) a dictionary of filters to apply ( see above examples ) Returns: * body: ( json ) modified report body
github-repos
def _FindFileContainingSymbolInDb(self, symbol): try: file_proto = self._internal_db.FindFileContainingSymbol(symbol) except KeyError as error: if self._descriptor_db: file_proto = self._descriptor_db.FindFileContainingSymbol(symbol) else: raise error if (not file_proto): raise KeyError(('Cannot find a file containing %s' % symbol)) return self._ConvertFileProtoToFileDescriptor(file_proto)
Finds the file in descriptor DB containing the specified symbol. Args: symbol: The name of the symbol to search for. Returns: A FileDescriptor that contains the specified symbol. Raises: KeyError: if the file cannot be found in the descriptor database.
codesearchnet
def _PrintSessionsDetails(self, storage_reader): for session_number, session in enumerate(storage_reader.GetSessions()): session_identifier = uuid.UUID(hex=session.identifier) session_identifier = '{0!s}'.format(session_identifier) start_time = 'N/A' if session.start_time is not None: start_time = timelib.Timestamp.CopyToIsoFormat(session.start_time) completion_time = 'N/A' if session.completion_time is not None: completion_time = timelib.Timestamp.CopyToIsoFormat( session.completion_time) enabled_parser_names = 'N/A' if session.enabled_parser_names: enabled_parser_names = ', '.join(sorted(session.enabled_parser_names)) command_line_arguments = session.command_line_arguments or 'N/A' parser_filter_expression = session.parser_filter_expression or 'N/A' preferred_encoding = session.preferred_encoding or 'N/A' if isinstance(preferred_encoding, py2to3.BYTES_TYPE): preferred_encoding = preferred_encoding.decode('utf-8') if session.artifact_filters: artifact_filters_string = ', '.join(session.artifact_filters) else: artifact_filters_string = 'N/A' filter_file = session.filter_file or 'N/A' title = 'Session: {0:s}'.format(session_identifier) table_view = views.ViewsFactory.GetTableView( self._views_format_type, title=title) table_view.AddRow(['Start time', start_time]) table_view.AddRow(['Completion time', completion_time]) table_view.AddRow(['Product name', session.product_name]) table_view.AddRow(['Product version', session.product_version]) table_view.AddRow(['Command line arguments', command_line_arguments]) table_view.AddRow(['Parser filter expression', parser_filter_expression]) table_view.AddRow(['Enabled parser and plugins', enabled_parser_names]) table_view.AddRow(['Preferred encoding', preferred_encoding]) table_view.AddRow(['Debug mode', session.debug_mode]) table_view.AddRow(['Artifact filters', artifact_filters_string]) table_view.AddRow(['Filter file', filter_file]) table_view.Write(self._output_writer) if self._verbose: self._PrintPreprocessingInformation(storage_reader, session_number + 1) self._PrintParsersCounter( session.parsers_counter, session_identifier=session_identifier) self._PrintAnalysisReportCounter( session.analysis_reports_counter, session_identifier=session_identifier) self._PrintEventLabelsCounter( session.event_labels_counter, session_identifier=session_identifier)
Prints the details of the sessions. Args: storage_reader (BaseStore): storage.
juraj-google-style
def eigh(x): if any_symbolic_tensors((x,)): return Eigh().symbolic_call(x) return _eigh(x)
Computes the eigenvalues and eigenvectors of a complex Hermitian. Args: x: Input tensor of shape `(..., M, M)`. Returns: A tuple of two tensors: a tensor of shape `(..., M)` containing eigenvalues and a tensor of shape `(..., M, M)` containing eigenvectors.
github-repos
def restore(self, fade=False): if self.is_coordinator: transport_info = self.device.get_current_transport_info() if transport_info is not None: if transport_info['current_transport_state'] == 'PLAYING': self.device.pause() self._restore_queue() if self.is_playing_queue and self.playlist_position > 0: if self.playlist_position is not None: self.playlist_position -= 1 self.device.play_from_queue(self.playlist_position, False) if self.track_position is not None: if self.track_position != "": self.device.seek(self.track_position) self.device.play_mode = self.play_mode self.device.cross_fade = self.cross_fade elif self.is_playing_cloud_queue: pass else: if self.media_uri != "": self.device.play_uri( self.media_uri, self.media_metadata, start=False) self.device.mute = self.mute self.device.bass = self.bass self.device.treble = self.treble self.device.loudness = self.loudness if self.volume == 100: fixed_vol = self.device.renderingControl.GetOutputFixed( [('InstanceID', 0)])['CurrentFixed'] else: fixed_vol = False if not fixed_vol: if fade: self.device.volume = 0 self.device.ramp_to_volume(self.volume) else: self.device.volume = self.volume if self.is_coordinator: if self.transport_state == 'PLAYING': self.device.play() elif self.transport_state == 'STOPPED': self.device.stop()
Restore the state of a device to that which was previously saved. For coordinator devices restore everything. For slave devices only restore volume etc., not transport info (transport info comes from the slave's coordinator). Args: fade (bool): Whether volume should be faded up on restore.
juraj-google-style
def _ConvertScalarFieldValue(value, field, require_str=False): if field.cpp_type in _INT_TYPES: return _ConvertInteger(value) elif field.cpp_type in _FLOAT_TYPES: return _ConvertFloat(value) elif field.cpp_type == descriptor.FieldDescriptor.CPPTYPE_BOOL: return _ConvertBool(value, require_str) elif field.cpp_type == descriptor.FieldDescriptor.CPPTYPE_STRING: if field.type == descriptor.FieldDescriptor.TYPE_BYTES: return base64.b64decode(value) else: if _UNPAIRED_SURROGATE_PATTERN.search(value): raise ParseError('Unpaired surrogate') return value elif field.cpp_type == descriptor.FieldDescriptor.CPPTYPE_ENUM: enum_value = field.enum_type.values_by_name.get(value, None) if enum_value is None: try: number = int(value) enum_value = field.enum_type.values_by_number.get(number, None) except ValueError: raise ParseError('Invalid enum value {0} for enum type {1}.'.format( value, field.enum_type.full_name)) if enum_value is None: raise ParseError('Invalid enum value {0} for enum type {1}.'.format( value, field.enum_type.full_name)) return enum_value.number
Convert a single scalar field value. Args: value: A scalar value to convert the scalar field value. field: The descriptor of the field to convert. require_str: If True, the field value must be a str. Returns: The converted scalar field value Raises: ParseError: In case of convert problems.
juraj-google-style
def record_markdown(text, cellid): from acorn.logging.database import record from time import time ekey = "nb-{}".format(cellid) global _cellid_map if cellid not in _cellid_map: from acorn.logging.database import active_db from difflib import SequenceMatcher from acorn.logging.diff import cascade taskdb = active_db() if ekey not in taskdb.entities: possible = [k for k in taskdb.entities if k[0:3] == "nb-"] maxkey, maxvalue = None, 0. for pkey in possible: sequence = [e["c"] for e in taskdb.entities[pkey]] state = ''.join(cascade(sequence)) matcher = SequenceMatcher(a=state, b=text) ratio = matcher.quick_ratio() if ratio > maxvalue and ratio > 0.5: maxkey, maxvalue = pkey, ratio if maxkey is not None: ekey = pkey _cellid_map[cellid] = ekey ekey = _cellid_map[cellid] entry = { "m": "md", "a": None, "s": time(), "r": None, "c": text, } record(ekey, entry, diff=True)
Records the specified markdown text to the acorn database. Args: text (str): the *raw* markdown text entered into the cell in the ipython notebook.
juraj-google-style
def _parse_plugin_data_as(content, data_oneof_field): plugin_data = plugin_data_pb2.HParamsPluginData.FromString(content) if plugin_data.version != PLUGIN_DATA_VERSION: raise error.HParamsError( 'Only supports plugin_data version: %s; found: %s in: %s' % (PLUGIN_DATA_VERSION, plugin_data.version, plugin_data)) if not plugin_data.HasField(data_oneof_field): raise error.HParamsError( 'Expected plugin_data.%s to be set. Got: %s' % (data_oneof_field, plugin_data)) return getattr(plugin_data, data_oneof_field)
Returns a data oneof's field from plugin_data.content. Raises HParamsError if the content doesn't have 'data_oneof_field' set or this file is incompatible with the version of the metadata stored. Args: content: The SummaryMetadata.plugin_data.content to use. data_oneof_field: string. The name of the data oneof field to return.
juraj-google-style