File size: 58,437 Bytes
2d54c9a
 
b5a1a53
4f33339
b5a1a53
55f5c3c
 
b8d4ff0
2d54c9a
 
585ce61
2d54c9a
7167581
2d54c9a
1384952
b5a1a53
2d54c9a
7167581
2d54c9a
b5a1a53
2d54c9a
7167581
 
2d54c9a
650f36a
7167581
9ee06e8
b8d4ff0
3e6e275
 
 
 
dcec7ff
3e6e275
 
 
 
 
 
 
 
 
 
c0d9056
 
 
 
 
dcec7ff
7167581
2d54c9a
 
5bef9cc
98ae49c
 
 
7167581
2d54c9a
 
 
7167581
 
2d54c9a
 
7167581
 
 
2d54c9a
 
 
7167581
2d54c9a
 
b5a1a53
 
1384952
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26a5b10
 
b5a1a53
1384952
b5a1a53
 
26a5b10
b5a1a53
 
 
 
 
 
 
1384952
 
 
 
 
 
 
26a5b10
b5a1a53
2d54c9a
7167581
2d54c9a
04a5269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
851786a
2d54c9a
04a5269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d54c9a
 
7167581
2d54c9a
04a5269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7167581
 
f219e66
 
 
 
 
 
 
 
 
 
 
 
 
7167581
f219e66
 
 
 
 
 
 
 
 
 
 
 
 
827162f
dc22efe
f219e66
 
 
 
 
 
 
 
7167581
 
f219e66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c17bdb3
f219e66
2d54c9a
f219e66
 
 
 
 
 
 
 
 
 
 
 
 
7167581
 
f219e66
 
 
 
 
 
 
 
 
 
 
 
 
2d54c9a
 
7167581
2d54c9a
f219e66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcb8b66
f219e66
 
2d54c9a
f219e66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcb8b66
f219e66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcb8b66
f219e66
 
 
 
 
 
 
bcb8b66
f219e66
 
 
 
 
 
 
 
 
2d54c9a
 
7167581
2d54c9a
f219e66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d54c9a
 
f219e66
 
 
 
 
 
 
 
 
 
 
 
 
7167581
 
f219e66
 
 
 
 
 
 
 
 
 
 
 
 
7167581
 
f219e66
 
 
 
 
 
 
 
 
84997b5
f219e66
 
 
 
 
 
 
 
2d54c9a
 
7167581
2d54c9a
f219e66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d54c9a
 
f219e66
 
 
 
 
 
 
 
 
 
 
 
 
7167581
f219e66
 
 
 
 
 
 
 
 
 
 
 
7167581
f219e66
 
 
 
 
 
 
 
eefa195
f219e66
7167581
2d54c9a
b5a1a53
 
 
 
7167581
 
b5a1a53
 
7167581
 
b5a1a53
 
2d54c9a
5bef9cc
2d54c9a
1b7ef96
b5a1a53
1384952
b5a1a53
1384952
 
 
 
 
 
 
 
 
 
 
 
 
b5a1a53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7167581
 
 
2d54c9a
7167581
2d54c9a
7167581
 
 
 
 
2d54c9a
7167581
 
 
 
 
2d54c9a
7167581
 
 
 
 
 
 
 
 
 
 
2d54c9a
7167581
 
 
 
 
2d54c9a
7167581
 
 
 
 
2d54c9a
7167581
 
 
 
 
2d54c9a
7167581
 
 
 
 
2d54c9a
7167581
2d54c9a
7167581
2d54c9a
7167581
 
2d54c9a
 
 
7167581
2d54c9a
 
 
 
 
 
 
 
7167581
2d54c9a
b5a1a53
 
 
 
7167581
b5a1a53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7167581
b5a1a53
2d54c9a
7167581
dc8478e
 
2d54c9a
 
7167581
 
 
2d54c9a
 
7167581
b5a1a53
dc8478e
b5a1a53
 
 
 
 
 
 
 
 
 
dc8478e
 
 
 
 
 
 
 
 
b5a1a53
dc8478e
 
 
 
 
7167581
b5a1a53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0d9056
 
 
 
 
 
b5a1a53
 
c0d9056
b5a1a53
 
c0d9056
 
b5a1a53
 
c0d9056
 
 
b5a1a53
 
c0d9056
 
 
 
585ce61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7167581
2d54c9a
7167581
2d54c9a
c0d9056
2d54c9a
7167581
c0d9056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d54c9a
 
585ce61
 
 
 
7167581
2d54c9a
7167581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d54c9a
7167581
 
 
2d54c9a
 
7167581
2d54c9a
 
 
 
 
585ce61
2d54c9a
585ce61
 
 
 
7167581
2d54c9a
585ce61
 
2d54c9a
 
585ce61
 
 
 
 
7167581
585ce61
 
7167581
585ce61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7167581
585ce61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7167581
 
2d54c9a
7167581
 
 
2d54c9a
 
7167581
 
 
 
 
 
 
 
 
 
 
c0d9056
7167581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d54c9a
7167581
2d54c9a
 
 
7167581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d54c9a
7167581
b8d4ff0
7167581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d54c9a
 
 
7167581
 
2d54c9a
dcec7ff
2d54c9a
 
 
7167581
 
 
 
 
 
 
1d3d953
 
 
 
 
 
 
 
 
 
98ae49c
1d3d953
 
 
 
 
 
 
 
98ae49c
7167581
 
 
 
 
5bef9cc
7167581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
585ce61
7167581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98ae49c
7167581
 
98ae49c
7167581
 
 
 
 
 
 
 
 
 
 
 
 
dcec7ff
7167581
 
 
 
 
98ae49c
7167581
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
#!/usr/bin/env python3
"""
Enhanced LLM Compatibility Advisor - Complete with Quantization & Advanced Features
Author: Assistant
Description: Comprehensive device-based LLM recommendations with quantization, comparison, and download assistance
Requirements: streamlit, pandas, plotly, openpyxl
"""

import streamlit as st
import pandas as pd
import numpy as np
import re
import plotly.express as px
import plotly.graph_objects as go
from typing import Optional, Tuple, List, Dict
import json

# โœ… MUST be the first Streamlit command
st.set_page_config(
    page_title="Enhanced LLM Compatibility Advisor", 
    layout="wide",
    page_icon="๐Ÿง ",
    initial_sidebar_state="expanded"
)

# Enhanced data loading with error handling
@st.cache_data
def load_data():
    paths = [
        "src/BITS_INTERNS.xlsx",
        "src/Summer of AI - ICFAI  (Responses) (3).xlsx"
    ]

    combined_df = pd.DataFrame()
    for path in paths:
        try:
            df = pd.read_excel(path, sheet_name="Form Responses 1")
            df.columns = df.columns.str.strip()
            combined_df = pd.concat([combined_df, df], ignore_index=True)
        except FileNotFoundError:
            return None, f"Excel file '{path}' not found. Please upload the file."
        except Exception as e:
            return None, f"Error loading '{path}': {str(e)}"
    
    if combined_df.empty:
        return None, "No data found in Excel files."
    else:
        return combined_df, None

# Enhanced RAM extraction with better parsing
def extract_numeric_ram(ram) -> Optional[int]:
    if pd.isna(ram):
        return None
    
    ram_str = str(ram).lower().replace(" ", "")
    
    # Handle various formats: "8GB", "8 GB", "8gb", "8192MB", etc.
    gb_match = re.search(r"(\d+(?:\.\d+)?)(?:gb|g)", ram_str)
    if gb_match:
        return int(float(gb_match.group(1)))
    
    # Handle MB format
    mb_match = re.search(r"(\d+)(?:mb|m)", ram_str)
    if mb_match:
        return max(1, int(int(mb_match.group(1)) / 1024))  # Convert MB to GB
    
    # Handle plain numbers (assume GB)
    plain_match = re.search(r"(\d+)", ram_str)
    if plain_match:
        return int(plain_match.group(1))
    
    return None

# Quantization options and size calculations
QUANTIZATION_FORMATS = {
    "FP16": {
        "multiplier": 1.0, 
        "description": "Full precision, best quality", 
        "icon": "๐Ÿ”ฅ",
        "quality": "Excellent",
        "speed": "Moderate",
        "memory_efficiency": "Low"
    },
    "8-bit": {
        "multiplier": 0.5, 
        "description": "50% smaller, good quality", 
        "icon": "โšก",
        "quality": "Very Good",
        "speed": "Good",
        "memory_efficiency": "Good"
    },
    "4-bit": {
        "multiplier": 0.25, 
        "description": "75% smaller, acceptable quality", 
        "icon": "๐Ÿ’Ž",
        "quality": "Good",
        "speed": "Very Good",
        "memory_efficiency": "Excellent"
    },
    "2-bit": {
        "multiplier": 0.125, 
        "description": "87.5% smaller, experimental", 
        "icon": "๐Ÿงช",
        "quality": "Fair",
        "speed": "Excellent",
        "memory_efficiency": "Outstanding"
    }
}

def calculate_quantized_size(base_size_str, quant_format):
    """Calculate quantized model size with better formatting"""
    size_match = re.search(r'(\d+\.?\d*)', base_size_str)
    if not size_match:
        return base_size_str
    
    base_size = float(size_match.group(1))
    unit = base_size_str.replace(size_match.group(1), "").strip()
    
    multiplier = QUANTIZATION_FORMATS[quant_format]["multiplier"]
    new_size = base_size * multiplier
    
    # Smart unit conversion
    if unit.upper() == "GB" and new_size < 1:
        return f"{new_size * 1024:.0f}MB"
    elif unit.upper() == "MB" and new_size > 1024:
        return f"{new_size / 1024:.1f}GB"
    else:
        return f"{new_size:.1f}{unit}"

# Enhanced LLM database with more models and metadata
LLM_DATABASE = {
    "ultra_low": {  # โ‰ค2GB
        "general": [
  { "name": "TinyLlama-1.1B-Chat", "size": "2.2GB", "description": "Ultra-compact conversational model" },
  { "name": "DistilBERT-base", "size": "0.3GB", "description": "Efficient BERT variant for NLP tasks" },
  { "name": "all-MiniLM-L6-v2", "size": "0.1GB", "description": "Sentence embeddings specialist" },
  { "name": "OPT-125M", "size": "0.5GB", "description": "Meta's lightweight language model" },
  { "name": "GPT-Neo-125M", "size": "0.5GB", "description": "EleutherAI's compact model" },
  { "name": "DistilGPT-2", "size": "0.3GB", "description": "Distilled version of GPT-2" },
  { "name": "MobileBERT", "size": "0.2GB", "description": "Google's mobile-optimized BERT" },
  { "name": "ALBERT-base", "size": "0.4GB", "description": "A Lite BERT for self-supervised learning" },
  { "name": "RoBERTa-base", "size": "0.5GB", "description": "Robustly optimized BERT pretraining" },
  { "name": "ELECTRA-small", "size": "0.2GB", "description": "Efficiently learning encoder representations" },
  { "name": "MobileLLaMA-1B", "size": "1.0GB", "description": "Mobile-optimized Llama variant" },
  { "name": "GPT-2-small", "size": "0.5GB", "description": "OpenAI's original small model" },
  { "name": "T5-small", "size": "0.2GB", "description": "Text-to-Text Transfer Transformer" },
  { "name": "FLAN-T5-small", "size": "0.3GB", "description": "Instruction-tuned T5" },
  { "name": "UL2-small", "size": "0.8GB", "description": "Unified Language Learner" },
  { "name": "DeBERTa-v3-small", "size": "0.4GB", "description": "Microsoft's enhanced BERT" },
  { "name": "CANINE-s", "size": "0.5GB", "description": "Character-level model" },
  { "name": "Longformer-base", "size": "0.6GB", "description": "Long document understanding" },
  { "name": "BigBird-small", "size": "0.7GB", "description": "Sparse attention model" },
  { "name": "Reformer-small", "size": "0.3GB", "description": "Memory-efficient transformer" },
  { "name": "FNet-small", "size": "0.4GB", "description": "Fourier transform model" },
  { "name": "Synthesizer-small", "size": "0.3GB", "description": "Synthetic attention patterns" },
  { "name": "GPT-Neo-1.3B", "size": "1.3GB", "description": "EleutherAI's 1.3B model" },
  { "name": "OPT-350M", "size": "0.7GB", "description": "Meta's 350M parameter model" },
  { "name": "BLOOM-560M", "size": "1.1GB", "description": "BigScience's small multilingual" }


    ],
        "code": [
      
  { "name": "CodeT5-small", "size": "0.3GB", "description": "Compact code generation model" },
  { "name": "Replit-code-v1-3B", "size": "1.2GB", "description": "Code completion specialist" },
  { "name": "UnixCoder-base", "size": "0.5GB", "description": "Microsoft's code understanding model" },
  { "name": "CodeBERT-base", "size": "0.5GB", "description": "Bimodal pre-trained model for programming" },
  { "name": "GraphCodeBERT-base", "size": "0.5GB", "description": "Pre-trained model with data flow" },
  { "name": "CodeT5-base", "size": "0.9GB", "description": "Identifier-aware unified pre-trained encoder-decoder" },
  { "name": "PyCodeGPT-110M", "size": "0.4GB", "description": "Python code generation specialist" },
  { "name": "CodeParrot-110M", "size": "0.4GB", "description": "GPT-2 model trained on Python code" },
  { "name": "CodeSearchNet-small", "size": "0.6GB", "description": "Code search and understanding" },
  { "name": "CuBERT-small", "size": "0.4GB", "description": "Google's code understanding" },
  { "name": "CodeGPT-small", "size": "0.5GB", "description": "Microsoft's code GPT" },
  { "name": "PLBART-small", "size": "0.7GB", "description": "Programming language BART" },
  { "name": "TreeBERT-small", "size": "0.6GB", "description": "Tree-based code representation" },
  { "name": "CoTexT-small", "size": "0.5GB", "description": "Code and text pre-training" },
  { "name": "SynCoBERT-small", "size": "0.6GB", "description": "Syntax-guided code BERT" }


        ]
    },
    "low": {  # 3-4GB
        "general": [
     
  { "name": "Phi-1.5", "size": "2.8GB", "description": "Microsoft's efficient reasoning model" },
  { "name": "Gemma-2B", "size": "1.4GB", "description": "Google's compact foundation model" },
  { "name": "OpenLLaMA-3B", "size": "2.1GB", "description": "Open source LLaMA reproduction" },
  { "name": "RedPajama-3B", "size": "2.0GB", "description": "Together AI's open model" },
  { "name": "StableLM-3B", "size": "2.3GB", "description": "Stability AI's language model" },
  { "name": "Pythia-2.8B", "size": "2.8GB", "description": "EleutherAI's training suite model" },
  { "name": "GPT-Neo-2.7B", "size": "2.7GB", "description": "EleutherAI's open GPT model" },
  { "name": "OPT-2.7B", "size": "2.7GB", "description": "Meta's open pre-trained transformer" },
  { "name": "BLOOM-3B", "size": "3.0GB", "description": "BigScience's multilingual model" },
  { "name": "GPT-J-6B", "size": "3.5GB", "description": "EleutherAI's 6B parameter model" },
  { "name": "Cerebras-GPT-2.7B", "size": "2.7GB", "description": "Cerebras Systems' open model" },
  { "name": "PaLM-2B", "size": "2.0GB", "description": "Google's Pathways Language Model" },
  { "name": "LaMDA-2B", "size": "2.2GB", "description": "Google's Language Model for Dialogue" },
  { "name": "FairSeq-2.7B", "size": "2.7GB", "description": "Facebook's sequence-to-sequence toolkit" },
  { "name": "Megatron-2.5B", "size": "2.5GB", "description": "NVIDIA's transformer model" },
  { "name": "GLM-2B", "size": "2.0GB", "description": "General Language Model pretraining" },
  { "name": "CPM-2", "size": "2.6GB", "description": "Chinese"},

        ],
        "code": [
            
  { "name": "CodeGen-2B", "size": "1.8GB", "description": "Salesforce's code generation model" },
  { "name": "StarCoder-1B", "size": "1.1GB", "description": "BigCode's programming assistant" },
  { "name": "InCoder-1B", "size": "1.0GB", "description": "Facebook's code infilling model" },
  { "name": "PolyCoder-2.7B", "size": "2.7GB", "description": "Carnegie Mellon's code model" },
  { "name": "CodeParrot-small", "size": "1.5GB", "description": "HuggingFace's Python code model" },
  { "name": "SantaCoder-1.1B", "size": "1.1GB", "description": "BigCode's multilingual code model" },
  { "name": "GPT-Code-2B", "size": "2.0GB", "description": "Code-specialized GPT variant" },
  { "name": "AlphaCode-2B", "size": "2.2GB", "description": "DeepMind's programming model" },
  { "name": "Codex-2B", "size": "2.0GB", "description": "OpenAI's code generation model" },
  { "name": "TabNine-2B", "size": "2.1GB", "description": "AI code completion assistant" }

     ],
        "chat": [
           
  { "name": "Alpaca-3B", "size": "2.0GB", "description": "Stanford's instruction-following model" },
  { "name": "Vicuna-3B", "size": "2.1GB", "description": "UC Berkeley's chat model" },
  { "name": "Dolly-3B", "size": "2.2GB", "description": "Databricks' instruction-tuned model" },
  { "name": "OpenAssistant-3B", "size": "2.3GB", "description": "LAION's assistant model" },
  { "name": "StableVicuna-3B", "size": "2.1GB", "description": "Stable version of Vicuna" },
  { "name": "MPT-3B-Chat", "size": "2.0GB", "description": "MosaicML's chat variant" },
  { "name": "RedPajama-Chat-3B", "size": "2.1GB", "description": "Together AI's chat model" },
  { "name": "OpenChatKit-3B", "size": "2.2GB", "description": "Together AI's open chat model" },
  { "name": "Koala-3B", "size": "2.0GB", "description": "UC Berkeley's dialogue model" },
  { "name": "Guanaco-3B", "size": "2.1GB", "description": "QLoRA fine-tuned model" }


        ],
    
    "reasoning": [
  { "name": "WizardMath-7B", "size": "4.0GB", "description": "Mathematical reasoning specialist" },
  { "name": "MAmmoTH-7B", "size": "4.1GB", "description": "Mathematical reasoning model" },
  { "name": "MetaMath-7B", "size": "3.9GB", "description": "Mathematical problem solver" },
  { "name": "Abel-7B", "size": "4.0GB", "description": "Advanced reasoning capabilities" },
  { "name": "Orca-2-7B", "size": "4.1GB", "description": "Microsoft's reasoning specialist" }
]
},
    "moderate_low": {  # 5-6GB
        "general": [
            
  { "name": "Phi-2", "size": "5.2GB", "description": "Microsoft's advanced 2.7B parameter model" },
  { "name": "Gemma-7B", "size": "4.2GB", "description": "Google's efficient 7B model" },
  { "name": "Mistral-7B-v0.1", "size": "4.1GB", "description": "Mistral AI's foundation model" },
  { "name": "OpenLLaMA-7B", "size": "4.0GB", "description": "Open source 7B language model" },
  { "name": "MPT-7B", "size": "4.3GB", "description": "MosaicML's transformer model" },
  { "name": "Falcon-7B", "size": "4.1GB", "description": "TII's instruction model" },
  { "name": "Pythia-6.9B", "size": "6.9GB", "description": "EleutherAI's large training model" },
  { "name": "BLOOM-7B", "size": "7.0GB", "description": "BigScience's multilingual foundation model" },
  { "name": "OLMo-7B", "size": "4.2GB", "description": "Allen AI's open language model" },
  { "name": "Llama-7B", "size": "4.0GB", "description": "Meta's foundation model" },
  { "name": "StableLM-7B", "size": "4.1GB", "description": "Stability AI's larger model" },
  { "name": "RedPajama-7B", "size": "4.0GB", "description": "Together AI's 7B model" },
  { "name": "OpenLLaMA-7B-v2", "size": "4.1GB", "description": "Improved OpenLLaMA version" },
  { "name": "Vicuna-7B", "size": "3.9GB", "description": "UC Berkeley's 7B chat model" },
  { "name": "Alpaca-7B", "size": "3.8GB", "description": "Stanford's instruction model" },
  { "name": "GPT-NeoX-6B", "size": "6.0GB", "description": "EleutherAI's improved model" },
  { "name": "OPT-6.7B", "size": "6.7GB", "description": "Meta's 6.7B parameter model" },
  { "name": "T5-large", "size": "3.0GB", "description": "Large Text-to-Text Transfer" },
  { "name": "FLAN-T5-large", "size": "3.2GB", "description": "Instruction-tuned T5 large" },
  { "name": "UL2-base", "size": "4.0GB", "description": "Unified Language Learner base" }
],

        "code": [
           
  { "name": "CodeLlama-7B", "size": "3.8GB", "description": "Meta's specialized code model" },
  { "name": "StarCoder-7B", "size": "4.0GB", "description": "Advanced code generation model" },
  { "name": "SantaCoder-1.1B", "size": "1.2GB", "description": "Multilingual code model" },
  { "name": "CodeGen-6B", "size": "6.0GB", "description": "Salesforce's larger code model" },
  { "name": "CodeT5p-6B", "size": "6.2GB", "description": "Salesforce's code understanding model" },
  { "name": "InCoder-6B", "size": "6.0GB", "description": "Facebook's large infilling model" },
  { "name": "PolyCoder-6B", "size": "6.1GB", "description": "Carnegie Mellon's large code model" },
  { "name": "AlphaCode-7B", "size": "4.0GB", "description": "DeepMind's competitive programming" },
  { "name": "Codex-7B", "size": "4.1GB", "description": "OpenAI's advanced code model" },
  { "name": "WizardCoder-7B", "size": "4.0GB", "description": "Microsoft's coding wizard" }


        ],
        "chat": [
       
  { "name": "Zephyr-7B-beta", "size": "4.2GB", "description": "HuggingFace's chat specialist" },
  { "name": "Neural-Chat-7B", "size": "4.1GB", "description": "Intel's optimized chat model" },
  { "name": "OpenChat-7B", "size": "4.0GB", "description": "High-quality conversation model" },
  { "name": "Nous-Hermes-7B", "size": "4.1GB", "description": "NousResearch's assistant model" },
  { "name": "StableBeluga-7B", "size": "4.2GB", "description": "Stability AI's chat model" },
  { "name": "Llama-2-7B-Chat", "size": "3.9GB", "description": "Meta's chat-optimized model" },
  { "name": "Vicuna-7B-v1.3", "size": "3.9GB", "description": "Improved Vicuna chat model" },
  { "name": "WizardLM-7B", "size": "4.0GB", "description": "Microsoft's instruction model" },
  { "name": "Orca-Mini-7B", "size": "4.1GB", "description": "Microsoft's reasoning model" },
  { "name": "Samantha-7B", "size": "4.0GB", "description": "Eric Hartford's assistant model" }


        ]
    },
    "moderate": {  # 7-8GB
        "general": [
            
  { "name": "Llama-2-7B-Chat", "size": "3.5GB", "description": "Meta's popular chat model (4-bit)" },
  { "name": "Mistral-7B-Instruct-v0.2", "size": "4.1GB", "description": "Latest Mistral instruction model" },
  { "name": "Qwen-7B-Chat", "size": "4.0GB", "description": "Alibaba's multilingual model" },
  { "name": "Baichuan2-7B-Chat", "size": "4.1GB", "description": "Chinese LLM with strong capabilities" },
  { "name": "Yi-6B-Chat", "size": "3.8GB", "description": "01.AI's bilingual chat model" },
  { "name": "InternLM-7B-Chat", "size": "4.0GB", "description": "Shanghai AI Lab's model" },
  { "name": "ChatGLM3-6B", "size": "3.7GB", "description": "Tsinghua's latest chat model" },
  { "name": "Aquila-7B", "size": "4.1GB", "description": "BAAI's Chinese-English model" },
  { "name": "Skywork-13B", "size": "7.2GB", "description": "Kunlun's bilingual model" },
  { "name": "Llama-2-7B", "size": "3.8GB", "description": "Meta's base foundation model" },
  { "name": "Mistral-7B-v0.1", "size": "4.0GB", "description": "Original Mistral foundation" },
  { "name": "Solar-10.7B", "size": "5.4GB", "description": "Upstage's efficient model" },
  { "name": "Nous-Hermes-2-7B", "size": "4.0GB", "description": "NousResearch's improved model" },
  { "name": "OpenHermes-2.5-7B", "size": "4.1GB", "description": "Teknium's assistant model" },
  { "name": "Starling-LM-7B", "size": "4.0GB", "description": "Berkeley's RLAIF model" },
  { "name": "Openchat-3.5-7B", "size": "4.0GB", "description": "OpenChat's latest version" },
  { "name": "Dolphin-2.2.1-7B", "size": "4.1GB", "description": "Eric Hartford's uncensored model" },
  { "name": "PlatYi-7B", "size": "4.0GB", "description": "01.AI's chat-optimized model" },
  { "name": "TinyLlama-1.1B-Chat", "size": "1.1GB", "description": "Compact conversational model" },
  { "name": "DeepSeek-LLM-7B", "size": "4.2GB", "description": "DeepSeek's language model" }
        ],


        "code": [
            
  { "name": "CodeLlama-7B-Instruct", "size": "3.8GB", "description": "Instruction-tuned code specialist" },
  { "name": "WizardCoder-7B", "size": "4.0GB", "description": "Enhanced coding capabilities" },
  { "name": "Phind-CodeLlama-7B-v2", "size": "3.9GB", "description": "Code search optimized model" },
  { "name": "Magicoder-7B", "size": "4.0GB", "description": "OSS-Instruct trained code model" },
  { "name": "DeepSeek-Coder-7B", "size": "3.9GB", "description": "DeepSeek's coding specialist" },
  { "name": "WizardCoder-Python-7B", "size": "4.0GB", "description": "Python-specialized coding model" },
  { "name": "StarCoder-7B", "size": "4.0GB", "description": "BigCode's 7B programming model" },
  { "name": "CodeT5p-7B", "size": "4.1GB", "description": "Salesforce's code understanding" },
  { "name": "InstructCodeT5p-7B", "size": "4.2GB", "description": "Instruction-tuned CodeT5p" },
  { "name": "CodeGen2-7B", "size": "4.0GB", "description": "Salesforce's improved code model" },
  { "name": "SantaCoder-7B", "size": "4.1GB", "description": "BigCode's multilingual coder" },
  { "name": "Replit-Code-7B", "size": "4.0GB", "description": "Replit's code completion model" },
  { "name": "Code-Alpaca-7B", "size": "3.9GB", "description": "Stanford's code instruction model" },
  { "name": "UnixCoder-7B", "size": "4.0GB", "description": "Microsoft's large code model" }
],
  "chat": [
       
  { "name": "Vicuna-7B-v1.5", "size": "3.9GB", "description": "Enhanced conversational model" },
  { "name": "ChatGLM2-6B", "size": "3.7GB", "description": "Tsinghua's bilingual chat model" },
  { "name": "Baize-7B", "size": "4.0GB", "description": "Self-chat trained model" },
  { "name": "OpenBuddy-7B", "size": "4.0GB", "description": "Cross-lingual AI assistant" },
  { "name": "Koala-7B", "size": "3.9GB", "description": "UC Berkeley's dialogue model" },
  { "name": "GPT4All-7B", "size": "4.0GB", "description": "Nomic AI's local chat model" },
  { "name": "Wizard-Vicuna-7B", "size": "4.1GB", "description": "Combined instruction model" },
  { "name": "Manticore-7B", "size": "4.0GB", "description": "Multi-domain chat model" },
  { "name": "Airoboros-7B", "size": "4.1GB", "description": "Context-aware chat model" },
  { "name": "Samantha-1.2-7B", "size": "4.0GB", "description": "Empathetic AI assistant" }

     
 
],
 "reasoning": [
  { "name": "MetaMath-7B", "size": "3.9GB", "description": "Mathematical problem solving" },
  { "name": "Abel-7B", "size": "4.0GB", "description": "Advanced reasoning capabilities" },
  { "name": "WizardMath-7B-V1.1", "size": "4.0GB", "description": "Enhanced math reasoning" },
  { "name": "MAmmoTH-7B", "size": "4.1GB", "description": "Mathematical reasoning model" },
  { "name": "Orca-2-7B", "size": "4.2GB", "description": "Microsoft's reasoning model" },
  { "name": "OpenOrca-7B", "size": "4.0GB", "description": "Open-source Orca variant" }
        ],
 "multilingual": [

  { "name": "Qwen-7B", "size": "4.0GB", "description": "Alibaba's multilingual foundation" },
  { "name": "Baichuan2-7B", "size": "4.1GB", "description": "Chinese-English bilingual" },
  { "name": "InternLM-7B", "size": "4.0GB", "description": "Shanghai AI Lab multilingual" },
  { "name": "Chinese-LLaMA-2-7B", "size": "4.0GB", "description": "Chinese-optimized Llama" },
  { "name": "Vigogne-7B", "size": "4.1GB", "description": "French instruction model" }


        ]
    },
    "good": {  # 9-16GB
        "general": [
            
  { "name": "Llama-2-13B-Chat", "size": "7.3GB", "description": "Larger Llama variant (4-bit)" },
  { "name": "Vicuna-13B-v1.5", "size": "7.2GB", "description": "Enhanced large chat model" },
  { "name": "OpenChat-3.5-13B", "size": "7.1GB", "description": "High-quality large chat model" },
  { "name": "Qwen-14B-Chat", "size": "7.8GB", "description": "Alibaba's advanced model" },
  { "name": "Baichuan2-13B-Chat", "size": "7.5GB", "description": "Large Chinese language model" },
  { "name": "Yi-34B-Chat (8-bit)", "size": "19.5GB", "description": "01.AI's flagship model" },
  { "name": "Nous-Hermes-13B", "size": "7.3GB", "description": "NousResearch's large assistant" },
  { "name": "WizardLM-13B", "size": "7.2GB", "description": "Microsoft's instruction model" },
  { "name": "Alpaca-13B", "size": "7.0GB", "description": "Stanford's large instruction model" },
  { "name": "Llama-2-13B", "size": "7.0GB", "description": "Meta's 13B foundation model" },
  { "name": "MPT-30B", "size": "15.0GB", "description": "MosaicML's large transformer" },
  { "name": "Falcon-40B (8-bit)", "size": "20.0GB", "description": "TII's large instruction model" },
  { "name": "Guanaco-13B", "size": "7.1GB", "description": "QLoRA fine-tuned model" },
  { "name": "Orca-13B", "size": "7.4GB", "description": "Microsoft's reasoning model" },
  { "name": "Platypus-13B", "size": "7.2GB", "description": "Fine-tuned Llama variant" },
  { "name": "WizardLM-13B-V1.2", "size": "7.3GB", "description": "Improved WizardLM" },
  { "name": "Nous-Hermes-2-13B", "size": "7.4GB", "description": "Enhanced Hermes model" },
  { "name": "OpenOrca-13B", "size": "7.2GB", "description": "Open-source Orca recreation" },
  { "name": "Airoboros-13B", "size": "7.3GB", "description": "Context-aware large model" },
  { "name": "MythoMax-13B", "size": "7.2GB", "description": "Roleplay-optimized model" }


        ],
        "code": [
            
  { "name": "CodeLlama-13B-Instruct", "size": "7.3GB", "description": "Large code generation model" },
  { "name": "WizardCoder-15B", "size": "8.2GB", "description": "Advanced coding assistant" },
  { "name": "StarCoder-15B", "size": "8.5GB", "description": "Large programming model" },
  { "name": "CodeT5p-16B", "size": "8.8GB", "description": "Salesforce's large code model" },
  { "name": "Phind-CodeLlama-34B (8-bit)", "size": "19.0GB", "description": "Large code search model" },
  { "name": "DeepSeek-Coder-33B (8-bit)", "size": "18.5GB", "description": "Large coding specialist" },
  { "name": "CodeLlama-13B-Python", "size": "7.4GB", "description": "Python-specialized CodeLlama" },
  { "name": "WizardCoder-Python-13B", "size": "7.3GB", "description": "Python coding wizard" },
  { "name": "InstructCodeT5p-16B", "size": "8.9GB", "description": "Large instruction code model" },
  { "name": "CodeGen2-16B", "size": "8.7GB", "description": "Salesforce's large code model" }


        ],
        "multimodal": [
           
  { "name": "LLaVA-13B", "size": "7.5GB", "description": "Large vision-language model" },
  { "name": "MiniGPT-4-13B", "size": "7.2GB", "description": "Multimodal conversational AI" },
  { "name": "InstructBLIP-13B", "size": "7.8GB", "description": "Vision-language instruction model" },
  { "name": "BLIP-2-FlanT5-XL", "size": "4.8GB", "description": "Salesforce's vision-language model" },
  { "name": "Flamingo-9B", "size": "9.0GB", "description": "DeepMind's few-shot learning model" },
  { "name": "LLaVA-1.5-13B", "size": "7.6GB", "description": "Improved LLaVA model" },
  { "name": "Otter-13B", "size": "7.4GB", "description": "Multi-modal instruction tuned" },
  { "name": "mPLUG-Owl-14B", "size": "8.0GB", "description": "Alibaba's multimodal model" },
  { "name": "InternLM-XComposer-7B", "size": "7.0GB", "description": "Vision-language composition" },
  { "name": "Qwen-VL-7B", "size": "7.2GB", "description": "Qwen vision-language model" }

 
        ],
        "reasoning": [
            
  { "name": "WizardMath-13B", "size": "7.3GB", "description": "Advanced mathematical reasoning" },
  { "name": "Orca-2-13B", "size": "7.4GB", "description": "Microsoft's reasoning specialist" },
  { "name": "MetaMath-13B", "size": "7.2GB", "description": "Mathematical problem solver" },
  { "name": "MAmmoTH-13B", "size": "7.3GB", "description": "Large mathematical reasoning model" },
  { "name": "Abel-13B", "size": "7.4GB", "description": "Advanced reasoning capabilities" },
  { "name": "Goat-13B", "size": "7.2GB", "description": "Arithmetic reasoning specialist" },
  { "name": "OpenOrca-Platypus-13B", "size": "7.3GB", "description": "Combined reasoning model" }

        ],
         "multilingual": [
      { name: "Qwen-14B", size: "7.8GB", description: "Alibaba's large multilingual" },
      { name: "Baichuan2-13B", size: "7.5GB", description: "Large Chinese-English model" },
      { name: "InternLM-20B", size: "11.0GB", description: "Shanghai AI Lab's large model" },
      { name: "Chinese-Alpaca-Plus-13B", size: "7.4GB", description: "Enhanced Chinese model" },
      { name: "Polyglot-Ko-13B", size: "7.3GB", description: "Large Korean model" }


        ]
    },
    "high": {  # 17-32GB
        "general": [
            
  { "name": "Mixtral-8x7B-Instruct-v0.1", "size": "26.9GB", "description": "Mixture of experts model (4-bit)" },
  { "name": "Llama-2-70B-Chat (8-bit)", "size": "38.0GB", "description": "Large language model" },
  { "name": "Yi-34B-Chat", "size": "19.5GB", "description": "01.AI's flagship model" },
  { "name": "Qwen-72B (4-bit)", "size": "36.0GB", "description": "Alibaba's largest model" },
  { "name": "DeepSeek-67B", "size": "35.0GB", "description": "Advanced reasoning model" },
  { "name": "Nous-Hermes-2-Mixtral-8x7B", "size": "26.9GB", "description": "NousResearch's MoE model" },
  { "name": "Solar-10.7B", "size": "10.7GB", "description": "Upstage's efficient model" },
  { "name": "Dolphin-2.5-Mixtral-8x7B", "size": "26.9GB", "description": "Uncensored Mixtral variant" },
  { "name": "Llama-2-70B", "size": "35.0GB", "description": "Meta's flagship model (8-bit)" },
  { "name": "Falcon-40B", "size": "20.0GB", "description": "TII's large model" },
  { "name": "MPT-30B", "size": "15.0GB", "description": "MosaicML's 30B model" },
  { "name": "Nous-Hermes-2-Yi-34B", "size": "19.6GB", "description": "Enhanced Yi model" },
  { "name": "OpenHermes-2.5-Mistral-7B", "size": "4.1GB", "description": "Teknium's Mistral variant" },
  { "name": "Starling-LM-7B-alpha", "size": "4.2GB", "description": "Berkeley's RLAIF model" },
  { "name": "NeuralBeagle-14B", "size": "8.0GB", "description": "MLP KAT merged model" },
  { "name": "Goliath-120B (4-bit)", "size": "60.0GB", "description": "Large merged model" },
  { "name": "Xwin-LM-70B (8-bit)", "size": "38.5GB", "description": "Xwin team's large model" },
  { "name": "Airoboros-L2-70B (8-bit)", "size": "38.0GB", "description": "Large context model" }


        ],
        "code": [
            
  { "name": "CodeLlama-34B-Instruct", "size": "19.0GB", "description": "Large specialized coder" },
  { "name": "DeepSeek-Coder-33B", "size": "18.5GB", "description": "Advanced code generation" },
  { "name": "WizardCoder-34B", "size": "19.2GB", "description": "Enterprise-grade coding" },
  { "name": "StarCoder2-15B", "size": "8.5GB", "description": "Next-gen programming model" },
  { "name": "Phind-CodeLlama-34B", "size": "19.0GB", "description": "Code search specialized model" },
  { "name": "Magicoder-34B", "size": "19.1GB", "description": "Large OSS-Instruct model" },
  { "name": "CodeLlama-34B-Python", "size": "19.1GB", "description": "Python-specialized large model" },
  { "name": "WizardCoder-Python-34B", "size": "19.2GB", "description": "Large Python specialist" },
  { "name": "StarCoder-15.5B", "size": "8.8GB", "description": "Enhanced StarCoder" },
  { "name": "Code-Alpaca-34B", "size": "18.9GB", "description": "Large code instruction model" }


        ],
         "chat": [
            
   
  { "name": "Vicuna-33B", "size": "18.5GB", "description": "Large conversational model" },
  { "name": "Guanaco-65B (4-bit)", "size": "33.0GB", "description": "Large instruction-tuned model" },
  { "name": "Alpaca-30B", "size": "18.0GB", "description": "Large Stanford model" },
  { "name": "OpenBuddy-34B", "size": "19.0GB", "description": "Large cross-lingual assistant" },
  { "name": "WizardLM-30B", "size": "17.0GB", "description": "Large instruction model" },
  { "name": "Nous-Hermes-Llama2-70B (8-bit)", "size": "38.2GB", "description": "Large Hermes variant" },
  { "name": "Airoboros-65B (4-bit)", "size": "33.5GB", "description": "Large context chat model" },
  { "name": "MythoMax-L2-13B", "size": "7.4GB", "description": "Roleplay optimized" }
],
        "reasoning": [
             
    { "name": "WizardMath-70B (8-bit)", "size": "38.5GB", "description": "Premier math reasoning" },
    { "name": "MetaMath-70B (8-bit)", "size": "38.0GB", "description": "Advanced mathematical AI" },
    { "name": "Goat-70B (8-bit)", "size": "35.0GB", "description": "Arithmetic reasoning specialist" },
    { "name": "MAmmoTH-70B (8-bit)", "size": "38.2GB", "description": "Large mathematical model" },
    { "name": "Orca-2-13B", "size": "7.4GB", "description": "Microsoft's reasoning model" },
    { "name": "Abel-70B (8-bit)", "size": "38.1GB", "description": "Large reasoning model" }
  ]

            },
    "ultra_high": {  # >32GB
        "general": [
            {"name": "Llama-2-70B", "size": "130GB", "description": "Full precision", "parameters": "70B", "context": "4K"},
            {"name": "Mixtral-8x22B", "size": "176GB", "description": "Latest mixture model", "parameters": "141B", "context": "64K"},
            {"name": "Qwen-72B", "size": "145GB", "description": "Alibaba's flagship", "parameters": "72B", "context": "32K"},
            {"name": "Llama-3-70B", "size": "140GB", "description": "Meta's latest", "parameters": "70B", "context": "8K"}
        ],
        "code": [
            {"name": "CodeLlama-34B", "size": "68GB", "description": "Full precision code", "parameters": "34B", "context": "16K"},
            {"name": "DeepSeek-Coder-33B", "size": "66GB", "description": "Full precision coding", "parameters": "33B", "context": "16K"}
        ],
        "reasoning": [
            {"name": "WizardMath-70B", "size": "130GB", "description": "Full precision math", "parameters": "70B", "context": "2K"},
            {"name": "Goat-70B", "size": "132GB", "description": "Arithmetic reasoning", "parameters": "70B", "context": "2K"}
        ]
    }
}

# GPU compatibility database
# Enhanced GPU compatibility database with more details
GPU_DATABASE = {
    "RTX 3060": {"vram": 8, "performance": "mid", "architecture": "Ampere", "tensor_cores": "2nd gen", "memory_bandwidth": "360 GB/s"},
    "RTX 3070": {"vram": 8, "performance": "high", "architecture": "Ampere", "tensor_cores": "2nd gen", "memory_bandwidth": "448 GB/s"},
    "RTX 3080": {"vram": 10, "performance": "high", "architecture": "Ampere", "tensor_cores": "2nd gen", "memory_bandwidth": "760 GB/s"},
    "RTX 3090": {"vram": 24, "performance": "ultra", "architecture": "Ampere", "tensor_cores": "2nd gen", "memory_bandwidth": "936 GB/s"},
    "RTX 4060": {"vram": 8, "performance": "mid", "architecture": "Ada Lovelace", "tensor_cores": "4th gen", "memory_bandwidth": "272 GB/s"},
    "RTX 4070": {"vram": 12, "performance": "high", "architecture": "Ada Lovelace", "tensor_cores": "4th gen", "memory_bandwidth": "504 GB/s"},
    "RTX 4080": {"vram": 16, "performance": "ultra", "architecture": "Ada Lovelace", "tensor_cores": "4th gen", "memory_bandwidth": "716 GB/s"},
    "RTX 4090": {"vram": 24, "performance": "ultra", "architecture": "Ada Lovelace", "tensor_cores": "4th gen", "memory_bandwidth": "1008 GB/s"},
    "Apple M1": {"vram": 8, "performance": "mid", "architecture": "Apple Silicon", "tensor_cores": "None", "memory_bandwidth": "68.25 GB/s"},
    "Apple M2": {"vram": 16, "performance": "high", "architecture": "Apple Silicon", "tensor_cores": "None", "memory_bandwidth": "100 GB/s"},
    "Apple M3": {"vram": 24, "performance": "ultra", "architecture": "Apple Silicon", "tensor_cores": "None", "memory_bandwidth": "150 GB/s"},
    "RX 6700 XT": {"vram": 12, "performance": "mid", "architecture": "RDNA 2", "tensor_cores": "None", "memory_bandwidth": "384 GB/s"},
    "RX 7900 XTX": {"vram": 24, "performance": "ultra", "architecture": "RDNA 3", "tensor_cores": "None", "memory_bandwidth": "960 GB/s"},
}

def get_gpu_recommendations(gpu_name, ram_gb):
    """Get GPU-specific model recommendations"""
    if gpu_name == "No GPU":
        return "CPU-only models recommended", "Use 4-bit quantization for better performance"
    
    gpu_info = GPU_DATABASE.get(gpu_name.split(" (")[0], {"vram": 0, "performance": "low"})
    vram = gpu_info["vram"]
    
    if vram <= 8:
        return f"7B models with 4-bit quantization", f"Estimated VRAM usage: ~{vram-1}GB"
    elif vram <= 12:
        return f"13B models with 8-bit quantization", f"Estimated VRAM usage: ~{vram-1}GB"
    elif vram <= 16:
        return f"13B models at FP16 or 30B with 4-bit", f"Estimated VRAM usage: ~{vram-1}GB"
    else:
        return f"70B models with 4-bit quantization", f"Estimated VRAM usage: ~{vram-2}GB"

def predict_inference_speed(model_size_gb, ram_gb, has_gpu=False, gpu_name=""):
    """Predict approximate inference speed"""
    if model_size_gb > ram_gb:
        return "โŒ Insufficient RAM", "Consider smaller model or quantization"
    
    if has_gpu and gpu_name != "No GPU":
        gpu_info = GPU_DATABASE.get(gpu_name.split(" (")[0], {"performance": "low"})
        perf = gpu_info["performance"]
        
        if perf == "ultra":
            if model_size_gb <= 4:
                return "โšก Blazing Fast", "~50-100 tokens/sec"
            elif model_size_gb <= 8:
                return "๐Ÿš€ Very Fast", "~30-60 tokens/sec"
            elif model_size_gb <= 16:
                return "๐Ÿƒ Fast", "~15-30 tokens/sec"
            else:
                return "๐ŸŒ Moderate", "~5-15 tokens/sec"
        elif perf == "high":
            if model_size_gb <= 4:
                return "โšก Very Fast", "~30-50 tokens/sec"
            elif model_size_gb <= 8:
                return "๐Ÿš€ Fast", "~15-30 tokens/sec"
            else:
                return "๐ŸŒ Moderate", "~5-15 tokens/sec"
        else:  # mid performance
            if model_size_gb <= 4:
                return "โšก Fast", "~15-30 tokens/sec"
            else:
                return "๐ŸŒ Slow", "~3-10 tokens/sec"
    else:
        # CPU inference
        if model_size_gb <= 2:
            return "โšก Acceptable", "~5-15 tokens/sec"
        elif model_size_gb <= 4:
            return "๐ŸŒ Slow", "~1-5 tokens/sec"
        else:
            return "๐ŸŒ Very Slow", "~0.5-2 tokens/sec"

# Enhanced LLM recommendation with performance tiers
def recommend_llm(ram_str) -> Tuple[str, str, str, Dict[str, List[Dict]]]:
    """Returns (recommendation, performance_tier, additional_info, detailed_models)"""
    ram = extract_numeric_ram(ram_str)
    
    if ram is None:
        return ("โšช Check exact specs or test with quantized models.", 
                "Unknown", 
                "Verify RAM specifications",
                {})
    
    if ram <= 2:
        models = LLM_DATABASE["ultra_low"]
        return ("๐Ÿ”ธ Ultra-lightweight models - basic NLP tasks", 
                "Ultra Low", 
                "Mobile-optimized, simple tasks, limited context",
                models)
    elif ram <= 4:
        models = LLM_DATABASE["low"]
        return ("๐Ÿ”ธ Small language models - decent capabilities", 
                "Low", 
                "Basic chat, simple reasoning, text classification",
                models)
    elif ram <= 6:
        models = LLM_DATABASE["moderate_low"]
        return ("๐ŸŸ  Mid-range models - good general performance", 
                "Moderate-Low", 
                "Solid reasoning, coding help, longer conversations",
                models)
    elif ram <= 8:
        models = LLM_DATABASE["moderate"]
        return ("๐ŸŸ  Strong 7B models - excellent capabilities", 
                "Moderate", 
                "Professional use, coding assistance, complex reasoning",
                models)
    elif ram <= 16:
        models = LLM_DATABASE["good"]
        return ("๐ŸŸข High-quality models - premium performance", 
                "Good", 
                "Advanced tasks, multimodal support, research use",
                models)
    elif ram <= 32:
        models = LLM_DATABASE["high"]
        return ("๐Ÿ”ต Premium models - professional grade", 
                "High", 
                "Enterprise ready, complex reasoning, specialized tasks",
                models)
    else:
        models = LLM_DATABASE["ultra_high"]
        return ("๐Ÿ”ต Top-tier models - enterprise capabilities", 
                "Ultra High", 
                "Research grade, maximum performance, domain expertise",
                models)

# Enhanced OS detection with better icons
def get_os_info(os_name) -> Tuple[str, str]:
    """Returns (icon, clean_name)"""
    if pd.isna(os_name):
        return "๐Ÿ’ป", "Not specified"
    
    os = str(os_name).lower()
    if "windows" in os:
        return "๐ŸชŸ", os_name
    elif "mac" in os or "darwin" in os:
        return "๐ŸŽ", os_name
    elif "linux" in os or "ubuntu" in os:
        return "๐Ÿง", os_name
    elif "android" in os:
        return "๐Ÿค–", os_name
    elif "ios" in os:
        return "๐Ÿ“ฑ", os_name
    else:
        return "๐Ÿ’ป", os_name

# Model comparison function
def create_model_comparison_table(selected_models, quantization_type="FP16"):
    """Create a comparison table for selected models"""
    comparison_data = []
    
    for model_info in selected_models:
        quant_size = calculate_quantized_size(model_info['size'], quantization_type)
        
        # Extract numeric size for VRAM calculation
        size_match = re.search(r'(\d+\.?\d*)', quant_size)
        if size_match:
            size_num = float(size_match.group(1))
            estimated_vram = f"{size_num * 1.2:.1f}GB"
        else:
            estimated_vram = "Unknown"
        
        comparison_data.append({
            'Model': model_info['name'],
            'Parameters': model_info.get('parameters', 'Unknown'),
            'Context': model_info.get('context', 'Unknown'),
            'Original Size': model_info['size'],
            f'{quantization_type} Size': quant_size,
            'Est. VRAM': estimated_vram,
            'Description': model_info['description']
        })
    
    return pd.DataFrame(comparison_data)

# Enhanced model details display function
def display_model_categories(models_dict: Dict[str, List[Dict]], ram_gb: int, show_quantization=True):
    """Display models with quantization options"""
    if not models_dict:
        return
    
    st.markdown(f"### ๐ŸŽฏ Recommended Models for {ram_gb}GB RAM:")
    
    for category, model_list in models_dict.items():
        if model_list:
            with st.expander(f"๐Ÿ“‚ {category.replace('_', ' ').title()} Models"):
                for model in model_list[:6]:  # Show top 6 models per category
                    st.markdown(f"**{model['name']}**")
                    
                    # Model details
                    detail_col1, detail_col2, detail_col3 = st.columns(3)
                    with detail_col1:
                        st.caption(f"๐Ÿ“Š {model.get('parameters', 'Unknown')} params")
                    with detail_col2:
                        st.caption(f"๐Ÿ” {model.get('context', 'Unknown')} context")
                    with detail_col3:
                        st.caption(f"๐Ÿ’พ {model['size']} original")
                    
                    st.markdown(f"*{model['description']}*")
                    
                    if show_quantization:
                        # Create quantization size table
                        quant_cols = st.columns(4)
                        for i, (quant_type, quant_info) in enumerate(QUANTIZATION_FORMATS.items()):
                            with quant_cols[i]:
                                quant_size = calculate_quantized_size(model['size'], quant_type)
                                st.metric(
                                    label=f"{quant_info['icon']} {quant_type}",
                                    value=quant_size,
                                    help=quant_info['description']
                                )
                    
                    st.markdown("---")

# Performance visualization
def create_performance_chart(df):
    """Create a performance distribution chart"""
    laptop_rams = df["Laptop RAM"].apply(extract_numeric_ram).dropna()
    mobile_rams = df["Mobile RAM"].apply(extract_numeric_ram).dropna()
    
    fig = go.Figure()
    
    fig.add_trace(go.Histogram(
        x=laptop_rams,
        name="Laptop RAM",
        opacity=0.7,
        nbinsx=10,
        marker_color='#1f77b4'
    ))
    
    fig.add_trace(go.Histogram(
        x=mobile_rams,
        name="Mobile RAM",
        opacity=0.7,
        nbinsx=10,
        marker_color='#ff7f0e'
    ))
    
    fig.update_layout(
        title="RAM Distribution Across Devices",
        xaxis_title="RAM (GB)",
        yaxis_title="Number of Students",
        barmode='overlay',
        height=400,
        showlegend=True
    )
    
    return fig

# Demo data generator for when Excel files are not available
def generate_demo_data():
    """Generate demo data for testing when Excel files are missing"""
    demo_data = {
        "Full Name": [
            "Demo Student 1", "Demo Student 2", "Demo Student 3", "Demo Student 4",
            "Demo Student 5", "Demo Student 6", "Demo Student 7", "Demo Student 8",
            "Demo Student 9", "Demo Student 10", "Demo Student 11", "Demo Student 12"
        ],
        "Laptop RAM": ["8GB", "16GB", "4GB", "32GB", "6GB", "12GB", "2GB", "24GB", "64GB", "3GB", "20GB", "10GB"],
        "Mobile RAM": ["4GB", "8GB", "3GB", "12GB", "6GB", "4GB", "2GB", "8GB", "16GB", "3GB", "6GB", "8GB"],
        "Laptop Operating System": [
            "Windows 11", "macOS Monterey", "Ubuntu 22.04", "Windows 10",
            "macOS Big Sur", "Fedora 36", "Windows 11", "macOS Ventura",
            "Ubuntu 20.04", "Windows 10", "macOS Sonoma", "Pop!_OS 22.04"
        ],
        "Mobile Operating System": [
            "Android 13", "iOS 16", "Android 12", "iOS 15",
            "Android 14", "iOS 17", "Android 11", "iOS 16",
            "Android 13", "iOS 15", "Android 14", "iOS 17"
        ]
    }
    return pd.DataFrame(demo_data)

# Function to safely prepare user options
def prepare_user_options(df):
    """Safely prepare user options for selectbox, handling NaN values and mixed types"""
    try:
        unique_names = df["Full Name"].dropna().unique()
        
        valid_names = []
        for name in unique_names:
            try:
                str_name = str(name).strip()
                if str_name and str_name.lower() != 'nan':
                    valid_names.append(str_name)
            except:
                continue
        
        options = ["Select a student..."] + sorted(valid_names)
        return options
    except Exception as e:
        st.error(f"Error preparing user options: {e}")
        return ["Select a student..."]

# Main App
st.title("๐Ÿง  LLM Compatibility Advisor")
st.markdown("Get personalized recommendations from **150+ popular open source AI models** with download sizes!")

# Load data with better error handling
df, error = load_data()

if error or df is None or df.empty:
    st.warning("โš ๏ธ Excel files not found. Running with demo data for testing.")
    st.info("๐Ÿ“ To use real data, place 'BITS_INTERNS.xlsx' and 'Summer of AI - ICFAI  (Responses) (3).xlsx' in the 'src/' directory.")
    df = generate_demo_data()
    
    with st.expander("๐Ÿ“‹ Expected Data Format"):
        st.markdown("""
        The app expects Excel files with the following columns:
        - **Full Name**: Student name
        - **Laptop RAM**: RAM specification (e.g., "8GB", "16 GB", "8192MB")
        - **Mobile RAM**: Mobile device RAM
        - **Laptop Operating System**: OS name
        - **Mobile Operating System**: Mobile OS name
        """)

# Verify required columns exist
required_columns = ["Full Name", "Laptop RAM", "Mobile RAM"]
missing_columns = [col for col in required_columns if col not in df.columns]

if missing_columns:
    st.error(f"Missing required columns: {missing_columns}")
    st.info("Please ensure your Excel file contains the required columns.")
    st.stop()

# Clean the dataframe
df = df.copy()
df["Full Name"] = df["Full Name"].astype(str).str.strip()

# Sidebar filters and info
with st.sidebar:
    st.header("๐Ÿ” Filters & Info")
    
    # Performance tier filter
    performance_filter = st.multiselect(
        "Filter by Performance Tier:",
        ["Ultra Low", "Low", "Moderate-Low", "Moderate", "Good", "High", "Ultra High", "Unknown"],
        default=["Ultra Low", "Low", "Moderate-Low", "Moderate", "Good", "High", "Ultra High", "Unknown"]
    )
    
    # Model category filter
    st.subheader("Model Categories")
    show_categories = st.multiselect(
        "Show specific categories:",
        ["general", "code", "chat", "reasoning", "multimodal"],
        default=["general", "code", "chat"]
    )
    
    st.markdown("---")
    st.markdown("### ๐Ÿ“Š Quick Stats")
    st.metric("Total Students", len(df))
    st.metric("Popular Models", "150+")
    
    # Calculate average RAM
    avg_laptop_ram = df["Laptop RAM"].apply(extract_numeric_ram).mean()
    avg_mobile_ram = df["Mobile RAM"].apply(extract_numeric_ram).mean()
    
    if not pd.isna(avg_laptop_ram):
        st.metric("Avg Laptop RAM", f"{avg_laptop_ram:.1f} GB")
    if not pd.isna(avg_mobile_ram):
        st.metric("Avg Mobile RAM", f"{avg_mobile_ram:.1f} GB")

# User selection with search - FIXED VERSION
st.subheader("๐Ÿ‘ค Individual Student Analysis")

# Prepare options safely
user_options = prepare_user_options(df)

selected_user = st.selectbox(
    "Choose a student:",
    options=user_options,
    index=0  # Default to first option ("Select a student...")
)

if selected_user and selected_user != "Select a student...":
    # Find user data with safe lookup
    user_data_mask = df["Full Name"].astype(str).str.strip() == selected_user
    if user_data_mask.any():
        user_data = df[user_data_mask].iloc[0]
        
        # Enhanced user display
        col1, col2 = st.columns(2)
        
        with col1:
            st.markdown("### ๐Ÿ’ป Laptop Configuration")
            laptop_os_icon, laptop_os_name = get_os_info(user_data.get('Laptop Operating System'))
            laptop_ram = user_data.get('Laptop RAM', 'Not specified')
            laptop_rec, laptop_tier, laptop_info, laptop_models = recommend_llm(laptop_ram)
            laptop_ram_gb = extract_numeric_ram(laptop_ram) or 0
            
            st.markdown(f"**OS:** {laptop_os_icon} {laptop_os_name}")
            st.markdown(f"**RAM:** {laptop_ram}")
            st.markdown(f"**Performance Tier:** {laptop_tier}")
            
            st.success(f"**๐Ÿ’ก Recommendation:** {laptop_rec}")
            st.info(f"**โ„น๏ธ Notes:** {laptop_info}")
            
            # Display detailed models for laptop
            if laptop_models:
                filtered_models = {k: v for k, v in laptop_models.items() if k in show_categories}
                display_model_categories(filtered_models, laptop_ram_gb)
        
        with col2:
            st.markdown("### ๐Ÿ“ฑ Mobile Configuration")
            mobile_os_icon, mobile_os_name = get_os_info(user_data.get('Mobile Operating System'))
            mobile_ram = user_data.get('Mobile RAM', 'Not specified')
            mobile_rec, mobile_tier, mobile_info, mobile_models = recommend_llm(mobile_ram)
            mobile_ram_gb = extract_numeric_ram(mobile_ram) or 0
            
            st.markdown(f"**OS:** {mobile_os_icon} {mobile_os_name}")
            st.markdown(f"**RAM:** {mobile_ram}")
            st.markdown(f"**Performance Tier:** {mobile_tier}")
            
            st.success(f"**๐Ÿ’ก Recommendation:** {mobile_rec}")
            st.info(f"**โ„น๏ธ Notes:** {mobile_info}")
            
            # Display detailed models for mobile
            if mobile_models:
                filtered_models = {k: v for k, v in mobile_models.items() if k in show_categories}
                display_model_categories(filtered_models, mobile_ram_gb)

# Batch Analysis Section
st.markdown("---")
st.header("๐Ÿ“Š Batch Analysis & Insights")

# Create enhanced batch table
df_display = df[["Full Name", "Laptop RAM", "Mobile RAM"]].copy()

# Add recommendations and performance tiers
laptop_recommendations = df["Laptop RAM"].apply(lambda x: recommend_llm(x)[0])
mobile_recommendations = df["Mobile RAM"].apply(lambda x: recommend_llm(x)[0])
laptop_tiers = df["Laptop RAM"].apply(lambda x: recommend_llm(x)[1])
mobile_tiers = df["Mobile RAM"].apply(lambda x: recommend_llm(x)[1])

df_display["Laptop LLM"] = laptop_recommendations
df_display["Mobile LLM"] = mobile_recommendations
df_display["Laptop Tier"] = laptop_tiers
df_display["Mobile Tier"] = mobile_tiers

# Filter based on sidebar selections
mask = (laptop_tiers.isin(performance_filter) | mobile_tiers.isin(performance_filter))
df_filtered = df_display[mask]

# Display filtered table
st.subheader(f"๐Ÿ“‹ Student Recommendations ({len(df_filtered)} students)")
st.dataframe(
    df_filtered, 
    use_container_width=True,
    column_config={
        "Full Name": st.column_config.TextColumn("Student Name", width="medium"),
        "Laptop RAM": st.column_config.TextColumn("Laptop RAM", width="small"),
        "Mobile RAM": st.column_config.TextColumn("Mobile RAM", width="small"),
        "Laptop LLM": st.column_config.TextColumn("Laptop Recommendation", width="large"),
        "Mobile LLM": st.column_config.TextColumn("Mobile Recommendation", width="large"),
        "Laptop Tier": st.column_config.TextColumn("L-Tier", width="small"),
        "Mobile Tier": st.column_config.TextColumn("M-Tier", width="small"),
    }
)

# Performance distribution chart
if len(df) > 1:
    st.subheader("๐Ÿ“ˆ RAM Distribution Analysis")
    fig = create_performance_chart(df)
    st.plotly_chart(fig, use_container_width=True)

# Performance tier summary
st.subheader("๐ŸŽฏ Performance Tier Summary")
tier_col1, tier_col2 = st.columns(2)

with tier_col1:
    st.markdown("**Laptop Performance Tiers:**")
    laptop_tier_counts = laptop_tiers.value_counts()
    for tier, count in laptop_tier_counts.items():
        percentage = (count / len(laptop_tiers)) * 100
        st.write(f"โ€ข {tier}: {count} students ({percentage:.1f}%)")

with tier_col2:
    st.markdown("**Mobile Performance Tiers:**")
    mobile_tier_counts = mobile_tiers.value_counts()
    for tier, count in mobile_tier_counts.items():
        percentage = (count / len(mobile_tier_counts)) * 100
        st.write(f"โ€ข {tier}: {count} students ({percentage:.1f}%)")

# Model Explorer Section
st.markdown("---")
st.header("๐Ÿ” Popular Model Explorer")

explorer_col1, explorer_col2 = st.columns(2)

with explorer_col1:
    selected_ram_range = st.selectbox(
        "Select RAM range to explore models:",
        ["โ‰ค2GB (Ultra Low)", "3-4GB (Low)", "5-6GB (Moderate-Low)", 
         "7-8GB (Moderate)", "9-16GB (Good)", "17-32GB (High)", ">32GB (Ultra High)"]
    )

with explorer_col2:
    selected_category = st.selectbox(
        "Select model category:",
        ["general", "code", "chat", "reasoning", "multimodal"]
    )

# Map selection to database key
ram_mapping = {
    "โ‰ค2GB (Ultra Low)": "ultra_low",
    "3-4GB (Low)": "low", 
    "5-6GB (Moderate-Low)": "moderate_low",
    "7-8GB (Moderate)": "moderate",
    "9-16GB (Good)": "good",
    "17-32GB (High)": "high",
    ">32GB (Ultra High)": "ultra_high"
}

selected_ram_key = ram_mapping[selected_ram_range]
if selected_ram_key in LLM_DATABASE and selected_category in LLM_DATABASE[selected_ram_key]:
    models = LLM_DATABASE[selected_ram_key][selected_category]
    
    st.subheader(f"๐ŸŽฏ {selected_category.title()} Models for {selected_ram_range}")
    
    # Display models in a detailed table
    for model in models:
        with st.container():
            col1, col2, col3 = st.columns([3, 1, 3])
            with col1:
                st.markdown(f"### {model['name']}")
            with col2:
                st.markdown(f"**{model['size']}**")
                st.caption("Download Size")
            with col3:
                st.markdown(f"*{model['description']}*")
                # Add download suggestion
                if "Llama" in model['name']:
                    st.caption("๐Ÿ”— Available on Hugging Face & Ollama")
                elif "Mistral" in model['name']:
                    st.caption("๐Ÿ”— Available on Hugging Face & Mistral AI")
                elif "Gemma" in model['name']:
                    st.caption("๐Ÿ”— Available on Hugging Face & Google")
                else:
                    st.caption("๐Ÿ”— Available on Hugging Face")
            st.markdown("---")
else:
    st.info(f"No {selected_category} models available for {selected_ram_range}")

# Enhanced reference guide
with st.expander("๐Ÿ“˜ Model Guide & Download Information"):
    st.markdown("""
    ## ๐Ÿš€ Popular Models by Category
    
    ### ๐ŸŽฏ **General Purpose Champions**
    - **Llama-2 Series**: Meta's flagship models (7B, 13B, 70B)
    - **Mistral Series**: Excellent efficiency and performance
    - **Gemma**: Google's efficient models (2B, 7B)
    - **Phi**: Microsoft's compact powerhouses
    
    ### ๐Ÿ’ป **Code Specialists** 
    - **CodeLlama**: Meta's dedicated coding models
    - **StarCoder**: BigCode's programming experts
    - **WizardCoder**: Enhanced coding capabilities
    - **DeepSeek-Coder**: Chinese tech giant's coder
    
    ### ๐Ÿ’ฌ **Chat Optimized**
    - **Vicuna**: UC Berkeley's ChatGPT alternative
    - **Zephyr**: HuggingFace's chat specialist
    - **OpenChat**: High-quality conversation models
    - **Neural-Chat**: Intel-optimized chat models
 
    ### ๐Ÿงฎ **Reasoning Masters**
    - **WizardMath**: Mathematical problem solving
    - **MetaMath**: Advanced arithmetic reasoning
    - **Orca-2**: Microsoft's reasoning specialist
    - **Goat**: Specialized arithmetic model
    
    ### ๐Ÿ‘๏ธ **Multimodal Models**
    - **LLaVA**: Large Language and Vision Assistant
    - **MiniGPT-4**: Multimodal conversational AI
    
    ## ๐Ÿ’พ Download Size Reference
    
    | Model Size | FP16 | 8-bit | 4-bit | Use Case |
    |------------|------|-------|-------|----------|
    | **1-3B** | 2-6GB | 1-3GB | 0.5-1.5GB | Mobile, Edge |
    | **7B** | 13GB | 7GB | 3.5GB | Desktop, Laptop |
    | **13B** | 26GB | 13GB | 7GB | Workstation |
    | **30-34B** | 60GB | 30GB | 15GB | Server, Cloud |
    | **70B** | 140GB | 70GB | 35GB | High-end Server |
    
    ## ๐Ÿ› ๏ธ Where to Download
    
    ### **Primary Sources**
    - **๐Ÿค— Hugging Face**: Largest repository with 400,000+ models
    - **๐Ÿฆ™ Ollama**: Simple CLI tool for local deployment
    - **๐Ÿ“ฆ LM Studio**: User-friendly GUI for model management
    
    ### **Quantized Formats**
    - **GGUF**: Best for CPU inference (llama.cpp)
    - **GPTQ**: GPU-optimized quantization
    - **AWQ**: Advanced weight quantization
    
    ### **Download Tips**
    - Use git lfs for large models from Hugging Face
    - Consider bandwidth and storage before downloading
    - Start with 4-bit quantized versions for testing
    - Use ollama pull model_name for easiest setup
    
    ## ๐Ÿ”ง Optimization Strategies
    
    ### **Memory Reduction**
    - **4-bit quantization**: 75% memory reduction
    - **8-bit quantization**: 50% memory reduction
    - **CPU offloading**: Use system RAM for overflow
    
    ### **Speed Optimization**
    - **GPU acceleration**: CUDA, ROCm, Metal
    - **Batch processing**: Process multiple requests
    - **Context caching**: Reuse computations
    """)

# Footer with updated resources
st.markdown("---")
st.markdown("""
### ๐Ÿ”— Essential Download & Deployment Tools
**๐Ÿ“ฆ Easy Model Deployment:**
- [**Ollama**](https://ollama.ai/) โ€“ curl -fsSL https://ollama.ai/install.sh | sh
- [**LM Studio**](https://lmstudio.ai/) โ€“ Drag-and-drop GUI for running models locally
- [**GPT4All**](https://gpt4all.io/) โ€“ Cross-platform desktop app for local LLMs
**๐Ÿค— Model Repositories:**
- [**Hugging Face Hub**](https://huggingface.co/models) โ€“ Filter by model size, task, and license
- [**TheBloke's Quantizations**](https://huggingface.co/TheBloke) โ€“ Pre-quantized models in GGUF/GPTQ format
- [**Awesome LLM**](https://github.com/Hannibal046/Awesome-LLMs) โ€“ Curated list of models and resources
---
""")