Update src/streamlit_app.py
Browse files- src/streamlit_app.py +237 -138
src/streamlit_app.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
"""
|
3 |
-
LLM Compatibility Advisor -
|
4 |
Author: Assistant
|
5 |
-
Description:
|
6 |
Requirements: streamlit, pandas, plotly, openpyxl
|
7 |
"""
|
8 |
|
@@ -13,10 +13,11 @@ import re
|
|
13 |
import plotly.express as px
|
14 |
import plotly.graph_objects as go
|
15 |
from typing import Optional, Tuple, List, Dict
|
|
|
16 |
|
17 |
# β
MUST be the first Streamlit command
|
18 |
st.set_page_config(
|
19 |
-
page_title="LLM Compatibility Advisor",
|
20 |
layout="wide",
|
21 |
page_icon="π§ ",
|
22 |
initial_sidebar_state="expanded"
|
@@ -41,7 +42,6 @@ def load_data():
|
|
41 |
except Exception as e:
|
42 |
return None, f"Error loading '{path}': {str(e)}"
|
43 |
|
44 |
-
# Return success case - this was missing!
|
45 |
if combined_df.empty:
|
46 |
return None, "No data found in Excel files."
|
47 |
else:
|
@@ -71,161 +71,221 @@ def extract_numeric_ram(ram) -> Optional[int]:
|
|
71 |
|
72 |
return None
|
73 |
|
74 |
-
#
|
75 |
-
|
76 |
-
"
|
77 |
-
"
|
78 |
-
"
|
|
|
79 |
}
|
80 |
|
81 |
-
def calculate_quantized_size(base_size_str
|
82 |
-
"""Calculate quantized model size
|
83 |
-
|
84 |
-
|
85 |
-
match = re.match(r'(\d+(?:\.\d+)?)\s*(GB|MB)', base_size_str.upper())
|
86 |
-
if not match:
|
87 |
-
return base_size_str
|
88 |
-
|
89 |
-
value, unit = float(match.group(1)), match.group(2)
|
90 |
-
multiplier = QUANTIZATION_INFO[quantization]["multiplier"]
|
91 |
-
|
92 |
-
new_value = value * multiplier
|
93 |
-
|
94 |
-
if unit == "MB" and new_value >= 1024:
|
95 |
-
new_value = new_value / 1024
|
96 |
-
unit = "GB"
|
97 |
-
elif unit == "GB" and new_value < 1:
|
98 |
-
new_value = new_value * 1024
|
99 |
-
unit = "MB"
|
100 |
-
|
101 |
-
return f"{new_value:.0f}{unit}" if new_value >= 10 else f"{new_value:.1f}{unit}"
|
102 |
-
except:
|
103 |
return base_size_str
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
|
106 |
-
"""Recommend best quantization options based on available RAM"""
|
107 |
-
if ram_gb <= 2:
|
108 |
-
return ["4bit"]
|
109 |
-
elif ram_gb <= 4:
|
110 |
-
return ["4bit", "8bit"]
|
111 |
-
elif ram_gb <= 8:
|
112 |
-
return ["4bit", "8bit"]
|
113 |
-
elif ram_gb <= 16:
|
114 |
-
return ["8bit", "fp16"]
|
115 |
-
else:
|
116 |
-
return ["fp16", "8bit", "4bit"]
|
117 |
-
|
118 |
LLM_DATABASE = {
|
119 |
"ultra_low": { # β€2GB
|
120 |
"general": [
|
121 |
-
{"name": "TinyLlama-1.1B-Chat", "size": "637MB", "description": "Compact chat model"},
|
122 |
-
{"name": "DistilBERT-base", "size": "268MB", "description": "Efficient BERT variant"},
|
123 |
-
{"name": "all-MiniLM-L6-v2", "size": "91MB", "description": "Sentence embeddings"}
|
|
|
124 |
],
|
125 |
"code": [
|
126 |
-
{"name": "CodeT5-small", "size": "242MB", "description": "Code generation"},
|
127 |
-
{"name": "Replit-code-v1-3B", "size": "1.2GB", "description": "Code completion"}
|
128 |
]
|
129 |
},
|
130 |
"low": { # 3-4GB
|
131 |
"general": [
|
132 |
-
{"name": "Phi-1.5", "size": "2.8GB", "description": "Microsoft's efficient model"},
|
133 |
-
{"name": "Gemma-2B", "size": "1.4GB", "description": "Google's compact model"},
|
134 |
-
{"name": "OpenLLaMA-3B", "size": "2.1GB", "description": "Open source LLaMA"}
|
|
|
135 |
],
|
136 |
"code": [
|
137 |
-
{"name": "CodeGen-2B", "size": "1.8GB", "description": "Salesforce code model"},
|
138 |
-
{"name": "StarCoder-1B", "size": "1.1GB", "description": "BigCode project"}
|
139 |
],
|
140 |
"chat": [
|
141 |
-
{"name": "Alpaca-3B", "size": "2.0GB", "description": "Stanford's instruction model"},
|
142 |
-
{"name": "Vicuna-3B", "size": "2.1GB", "description": "ChatGPT-style training"}
|
143 |
]
|
144 |
},
|
145 |
"moderate_low": { # 5-6GB
|
146 |
"general": [
|
147 |
-
{"name": "Phi-2", "size": "5.2GB", "description": "Microsoft's 2.7B model"},
|
148 |
-
{"name": "Gemma-7B-it", "size": "4.2GB", "description": "Google instruction tuned"},
|
149 |
-
{"name": "Mistral-7B-v0.1", "size": "4.1GB", "description": "Mistral AI base model"}
|
|
|
150 |
],
|
151 |
"code": [
|
152 |
-
{"name": "CodeLlama-7B", "size": "3.8GB", "description": "Meta's code specialist"},
|
153 |
-
{"name": "StarCoder-7B", "size": "4.0GB", "description": "Code generation expert"}
|
154 |
],
|
155 |
"chat": [
|
156 |
-
{"name": "Zephyr-7B-beta", "size": "4.2GB", "description": "HuggingFace chat model"},
|
157 |
-
{"name": "Neural-Chat-7B", "size": "4.1GB", "description": "Intel optimized"}
|
158 |
]
|
159 |
},
|
160 |
"moderate": { # 7-8GB
|
161 |
"general": [
|
162 |
-
{"name": "Llama-2-7B-Chat", "size": "3.5GB", "description": "Meta's popular chat model"},
|
163 |
-
{"name": "Mistral-7B-Instruct-v0.2", "size": "4.1GB", "description": "Latest Mistral instruct"},
|
164 |
-
{"name": "Qwen-7B-Chat", "size": "4.0GB", "description": "Alibaba's multilingual"}
|
|
|
165 |
],
|
166 |
"code": [
|
167 |
-
{"name": "CodeLlama-7B-Instruct", "size": "3.8GB", "description": "Instruction-tuned CodeLlama"},
|
168 |
-
{"name": "WizardCoder-7B", "size": "4.0GB", "description": "Enhanced coding abilities"},
|
169 |
-
{"name": "Phind-CodeLlama-34B-v2", "size": "4.2GB", "description": "4-bit quantized version"}
|
170 |
],
|
171 |
"reasoning": [
|
172 |
-
{"name": "WizardMath-7B", "size": "4.0GB", "description": "Mathematical reasoning"},
|
173 |
-
{"name": "MetaMath-7B", "size": "3.9GB", "description": "Math problem solving"}
|
174 |
]
|
175 |
},
|
176 |
"good": { # 9-16GB
|
177 |
"general": [
|
178 |
-
{"name": "Llama-2-13B-Chat", "size": "7.3GB", "description": "Larger Llama variant"},
|
179 |
-
{"name": "Vicuna-13B-v1.5", "size": "7.2GB", "description": "Enhanced Vicuna"},
|
180 |
-
{"name": "OpenChat-3.5", "size": "7.1GB", "description": "High-quality chat model"}
|
|
|
181 |
],
|
182 |
"code": [
|
183 |
-
{"name": "CodeLlama-13B-Instruct", "size": "7.3GB", "description": "Larger code model"},
|
184 |
-
{"name": "WizardCoder-15B", "size": "8.2GB", "description": "Advanced coding"},
|
185 |
-
{"name": "StarCoder-15B", "size": "8.5GB", "description": "Large code model"}
|
186 |
],
|
187 |
"multimodal": [
|
188 |
-
{"name": "LLaVA-7B", "size": "7.0GB", "description": "Vision + language"},
|
189 |
-
{"name": "MiniGPT-4-7B", "size": "6.8GB", "description": "Multimodal chat"}
|
|
|
190 |
],
|
191 |
"reasoning": [
|
192 |
-
{"name": "WizardMath-13B", "size": "7.3GB", "description": "Advanced math"},
|
193 |
-
{"name": "Orca-2-13B", "size": "7.4GB", "description": "Microsoft reasoning"}
|
194 |
]
|
195 |
},
|
196 |
"high": { # 17-32GB
|
197 |
"general": [
|
198 |
-
{"name": "Mixtral-8x7B-Instruct-v0.1", "size": "26.9GB", "description": "Mixture of experts"},
|
199 |
-
{"name": "Llama-2-70B-Chat", "size": "38.0GB", "description": "8-bit quantized"},
|
200 |
-
{"name": "Yi-34B-Chat", "size": "19.5GB", "description": "01.AI's large model"}
|
|
|
201 |
],
|
202 |
"code": [
|
203 |
-
{"name": "CodeLlama-34B-Instruct", "size": "19.0GB", "description": "Large code specialist"},
|
204 |
-
{"name": "DeepSeek-Coder-33B", "size": "18.5GB", "description": "DeepSeek's coder"},
|
205 |
-
{"name": "WizardCoder-34B", "size": "19.2GB", "description": "Enterprise coding"}
|
206 |
],
|
207 |
"reasoning": [
|
208 |
-
{"name": "WizardMath-70B", "size": "38.5GB", "description": "8-bit quantized math"},
|
209 |
-
{"name": "MetaMath-70B", "size": "38.0GB", "description": "8-bit math reasoning"}
|
210 |
]
|
211 |
},
|
212 |
"ultra_high": { # >32GB
|
213 |
"general": [
|
214 |
-
{"name": "Llama-2-70B", "size": "130GB", "description": "Full precision"},
|
215 |
-
{"name": "Mixtral-8x22B", "size": "176GB", "description": "Latest mixture model"},
|
216 |
-
{"name": "Qwen-72B", "size": "145GB", "description": "Alibaba's flagship"}
|
|
|
217 |
],
|
218 |
"code": [
|
219 |
-
{"name": "CodeLlama-34B", "size": "68GB", "description": "Full precision code"},
|
220 |
-
{"name": "DeepSeek-Coder-33B", "size": "66GB", "description": "Full precision coding"}
|
221 |
],
|
222 |
"reasoning": [
|
223 |
-
{"name": "WizardMath-70B", "size": "130GB", "description": "Full precision math"},
|
224 |
-
{"name": "Goat-70B", "size": "132GB", "description": "Arithmetic reasoning"}
|
225 |
]
|
226 |
}
|
227 |
}
|
228 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
# Enhanced LLM recommendation with performance tiers
|
230 |
def recommend_llm(ram_str) -> Tuple[str, str, str, Dict[str, List[Dict]]]:
|
231 |
"""Returns (recommendation, performance_tier, additional_info, detailed_models)"""
|
@@ -300,37 +360,33 @@ def get_os_info(os_name) -> Tuple[str, str]:
|
|
300 |
else:
|
301 |
return "π»", os_name
|
302 |
|
303 |
-
#
|
304 |
-
def
|
305 |
-
"""Create a
|
306 |
-
|
307 |
-
mobile_rams = df["Mobile RAM"].apply(extract_numeric_ram).dropna()
|
308 |
-
|
309 |
-
fig = go.Figure()
|
310 |
-
|
311 |
-
fig.add_trace(go.Histogram(
|
312 |
-
x=laptop_rams,
|
313 |
-
name="Laptop RAM",
|
314 |
-
opacity=0.7,
|
315 |
-
nbinsx=10
|
316 |
-
))
|
317 |
-
|
318 |
-
fig.add_trace(go.Histogram(
|
319 |
-
x=mobile_rams,
|
320 |
-
name="Mobile RAM",
|
321 |
-
opacity=0.7,
|
322 |
-
nbinsx=10
|
323 |
-
))
|
324 |
-
|
325 |
-
fig.update_layout(
|
326 |
-
title="RAM Distribution Across Devices",
|
327 |
-
xaxis_title="RAM (GB)",
|
328 |
-
yaxis_title="Number of Students",
|
329 |
-
barmode='overlay',
|
330 |
-
height=400
|
331 |
-
)
|
332 |
|
333 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
|
335 |
# Enhanced model details display function
|
336 |
def display_model_categories(models_dict: Dict[str, List[Dict]], ram_gb: int, show_quantization=True):
|
@@ -343,8 +399,18 @@ def display_model_categories(models_dict: Dict[str, List[Dict]], ram_gb: int, sh
|
|
343 |
for category, model_list in models_dict.items():
|
344 |
if model_list:
|
345 |
with st.expander(f"π {category.replace('_', ' ').title()} Models"):
|
346 |
-
for model in model_list[:6]: #
|
347 |
st.markdown(f"**{model['name']}**")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
348 |
st.markdown(f"*{model['description']}*")
|
349 |
|
350 |
if show_quantization:
|
@@ -354,32 +420,68 @@ def display_model_categories(models_dict: Dict[str, List[Dict]], ram_gb: int, sh
|
|
354 |
with quant_cols[i]:
|
355 |
quant_size = calculate_quantized_size(model['size'], quant_type)
|
356 |
st.metric(
|
357 |
-
label=quant_type,
|
358 |
value=quant_size,
|
359 |
help=quant_info['description']
|
360 |
)
|
361 |
-
else:
|
362 |
-
st.markdown(f"**Original Size:** {model['size']}")
|
363 |
|
364 |
st.markdown("---")
|
365 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
366 |
# Demo data generator for when Excel files are not available
|
367 |
def generate_demo_data():
|
368 |
"""Generate demo data for testing when Excel files are missing"""
|
369 |
demo_data = {
|
370 |
"Full Name": [
|
371 |
"Demo Student 1", "Demo Student 2", "Demo Student 3", "Demo Student 4",
|
372 |
-
"Demo Student 5", "Demo Student 6", "Demo Student 7", "Demo Student 8"
|
|
|
373 |
],
|
374 |
-
"Laptop RAM": ["8GB", "16GB", "4GB", "32GB", "6GB", "12GB", "2GB", "24GB"],
|
375 |
-
"Mobile RAM": ["4GB", "8GB", "3GB", "12GB", "6GB", "4GB", "2GB", "8GB"],
|
376 |
"Laptop Operating System": [
|
377 |
"Windows 11", "macOS Monterey", "Ubuntu 22.04", "Windows 10",
|
378 |
-
"macOS Big Sur", "Fedora 36", "Windows 11", "macOS Ventura"
|
|
|
379 |
],
|
380 |
"Mobile Operating System": [
|
381 |
"Android 13", "iOS 16", "Android 12", "iOS 15",
|
382 |
-
"Android 14", "iOS 17", "Android 11", "iOS 16"
|
|
|
383 |
]
|
384 |
}
|
385 |
return pd.DataFrame(demo_data)
|
@@ -388,10 +490,8 @@ def generate_demo_data():
|
|
388 |
def prepare_user_options(df):
|
389 |
"""Safely prepare user options for selectbox, handling NaN values and mixed types"""
|
390 |
try:
|
391 |
-
# Get unique names and filter out NaN values
|
392 |
unique_names = df["Full Name"].dropna().unique()
|
393 |
|
394 |
-
# Convert to strings and filter out any remaining non-string values
|
395 |
valid_names = []
|
396 |
for name in unique_names:
|
397 |
try:
|
@@ -401,7 +501,6 @@ def prepare_user_options(df):
|
|
401 |
except:
|
402 |
continue
|
403 |
|
404 |
-
# Create options list with proper string concatenation
|
405 |
options = ["Select a student..."] + sorted(valid_names)
|
406 |
return options
|
407 |
except Exception as e:
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
"""
|
3 |
+
Enhanced LLM Compatibility Advisor - Complete with Quantization & Advanced Features
|
4 |
Author: Assistant
|
5 |
+
Description: Comprehensive device-based LLM recommendations with quantization, comparison, and download assistance
|
6 |
Requirements: streamlit, pandas, plotly, openpyxl
|
7 |
"""
|
8 |
|
|
|
13 |
import plotly.express as px
|
14 |
import plotly.graph_objects as go
|
15 |
from typing import Optional, Tuple, List, Dict
|
16 |
+
import json
|
17 |
|
18 |
# β
MUST be the first Streamlit command
|
19 |
st.set_page_config(
|
20 |
+
page_title="Enhanced LLM Compatibility Advisor",
|
21 |
layout="wide",
|
22 |
page_icon="π§ ",
|
23 |
initial_sidebar_state="expanded"
|
|
|
42 |
except Exception as e:
|
43 |
return None, f"Error loading '{path}': {str(e)}"
|
44 |
|
|
|
45 |
if combined_df.empty:
|
46 |
return None, "No data found in Excel files."
|
47 |
else:
|
|
|
71 |
|
72 |
return None
|
73 |
|
74 |
+
# Quantization options and size calculations
|
75 |
+
QUANTIZATION_FORMATS = {
|
76 |
+
"FP16": {"multiplier": 1.0, "description": "Full precision, best quality", "icon": "π₯"},
|
77 |
+
"8-bit": {"multiplier": 0.5, "description": "50% smaller, good quality", "icon": "β‘"},
|
78 |
+
"4-bit": {"multiplier": 0.25, "description": "75% smaller, acceptable quality", "icon": "π"},
|
79 |
+
"2-bit": {"multiplier": 0.125, "description": "87.5% smaller, experimental", "icon": "π§ͺ"}
|
80 |
}
|
81 |
|
82 |
+
def calculate_quantized_size(base_size_str, quant_format):
|
83 |
+
"""Calculate quantized model size"""
|
84 |
+
size_match = re.search(r'(\d+\.?\d*)', base_size_str)
|
85 |
+
if not size_match:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
return base_size_str
|
87 |
+
|
88 |
+
base_size = float(size_match.group(1))
|
89 |
+
unit = base_size_str.replace(size_match.group(1), "").strip()
|
90 |
+
|
91 |
+
multiplier = QUANTIZATION_FORMATS[quant_format]["multiplier"]
|
92 |
+
new_size = base_size * multiplier
|
93 |
+
|
94 |
+
return f"{new_size:.1f}{unit}"
|
95 |
|
96 |
+
# Enhanced LLM database with more models and metadata
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
LLM_DATABASE = {
|
98 |
"ultra_low": { # β€2GB
|
99 |
"general": [
|
100 |
+
{"name": "TinyLlama-1.1B-Chat", "size": "637MB", "description": "Compact chat model", "parameters": "1.1B", "context": "2K"},
|
101 |
+
{"name": "DistilBERT-base", "size": "268MB", "description": "Efficient BERT variant", "parameters": "66M", "context": "512"},
|
102 |
+
{"name": "all-MiniLM-L6-v2", "size": "91MB", "description": "Sentence embeddings", "parameters": "22M", "context": "256"},
|
103 |
+
{"name": "OpenELM-270M", "size": "540MB", "description": "Apple's efficient model", "parameters": "270M", "context": "2K"}
|
104 |
],
|
105 |
"code": [
|
106 |
+
{"name": "CodeT5-small", "size": "242MB", "description": "Code generation", "parameters": "60M", "context": "512"},
|
107 |
+
{"name": "Replit-code-v1-3B", "size": "1.2GB", "description": "Code completion", "parameters": "3B", "context": "4K"}
|
108 |
]
|
109 |
},
|
110 |
"low": { # 3-4GB
|
111 |
"general": [
|
112 |
+
{"name": "Phi-1.5", "size": "2.8GB", "description": "Microsoft's efficient model", "parameters": "1.3B", "context": "2K"},
|
113 |
+
{"name": "Gemma-2B", "size": "1.4GB", "description": "Google's compact model", "parameters": "2B", "context": "8K"},
|
114 |
+
{"name": "OpenLLaMA-3B", "size": "2.1GB", "description": "Open source LLaMA", "parameters": "3B", "context": "2K"},
|
115 |
+
{"name": "StableLM-3B", "size": "2.2GB", "description": "Stability AI model", "parameters": "3B", "context": "4K"}
|
116 |
],
|
117 |
"code": [
|
118 |
+
{"name": "CodeGen-2B", "size": "1.8GB", "description": "Salesforce code model", "parameters": "2B", "context": "2K"},
|
119 |
+
{"name": "StarCoder-1B", "size": "1.1GB", "description": "BigCode project", "parameters": "1B", "context": "8K"}
|
120 |
],
|
121 |
"chat": [
|
122 |
+
{"name": "Alpaca-3B", "size": "2.0GB", "description": "Stanford's instruction model", "parameters": "3B", "context": "2K"},
|
123 |
+
{"name": "Vicuna-3B", "size": "2.1GB", "description": "ChatGPT-style training", "parameters": "3B", "context": "2K"}
|
124 |
]
|
125 |
},
|
126 |
"moderate_low": { # 5-6GB
|
127 |
"general": [
|
128 |
+
{"name": "Phi-2", "size": "5.2GB", "description": "Microsoft's 2.7B model", "parameters": "2.7B", "context": "2K"},
|
129 |
+
{"name": "Gemma-7B-it", "size": "4.2GB", "description": "Google instruction tuned", "parameters": "7B", "context": "8K"},
|
130 |
+
{"name": "Mistral-7B-v0.1", "size": "4.1GB", "description": "Mistral AI base model", "parameters": "7B", "context": "8K"},
|
131 |
+
{"name": "Llama-2-7B", "size": "4.0GB", "description": "Meta's foundation model", "parameters": "7B", "context": "4K"}
|
132 |
],
|
133 |
"code": [
|
134 |
+
{"name": "CodeLlama-7B", "size": "3.8GB", "description": "Meta's code specialist", "parameters": "7B", "context": "16K"},
|
135 |
+
{"name": "StarCoder-7B", "size": "4.0GB", "description": "Code generation expert", "parameters": "7B", "context": "8K"}
|
136 |
],
|
137 |
"chat": [
|
138 |
+
{"name": "Zephyr-7B-beta", "size": "4.2GB", "description": "HuggingFace chat model", "parameters": "7B", "context": "32K"},
|
139 |
+
{"name": "Neural-Chat-7B", "size": "4.1GB", "description": "Intel optimized", "parameters": "7B", "context": "32K"}
|
140 |
]
|
141 |
},
|
142 |
"moderate": { # 7-8GB
|
143 |
"general": [
|
144 |
+
{"name": "Llama-2-7B-Chat", "size": "3.5GB", "description": "Meta's popular chat model", "parameters": "7B", "context": "4K"},
|
145 |
+
{"name": "Mistral-7B-Instruct-v0.2", "size": "4.1GB", "description": "Latest Mistral instruct", "parameters": "7B", "context": "32K"},
|
146 |
+
{"name": "Qwen-7B-Chat", "size": "4.0GB", "description": "Alibaba's multilingual", "parameters": "7B", "context": "32K"},
|
147 |
+
{"name": "Solar-10.7B-Instruct", "size": "5.8GB", "description": "Upstage's efficient model", "parameters": "10.7B", "context": "4K"}
|
148 |
],
|
149 |
"code": [
|
150 |
+
{"name": "CodeLlama-7B-Instruct", "size": "3.8GB", "description": "Instruction-tuned CodeLlama", "parameters": "7B", "context": "16K"},
|
151 |
+
{"name": "WizardCoder-7B", "size": "4.0GB", "description": "Enhanced coding abilities", "parameters": "7B", "context": "16K"},
|
152 |
+
{"name": "Phind-CodeLlama-34B-v2", "size": "4.2GB", "description": "4-bit quantized version", "parameters": "34B", "context": "16K"}
|
153 |
],
|
154 |
"reasoning": [
|
155 |
+
{"name": "WizardMath-7B", "size": "4.0GB", "description": "Mathematical reasoning", "parameters": "7B", "context": "2K"},
|
156 |
+
{"name": "MetaMath-7B", "size": "3.9GB", "description": "Math problem solving", "parameters": "7B", "context": "2K"}
|
157 |
]
|
158 |
},
|
159 |
"good": { # 9-16GB
|
160 |
"general": [
|
161 |
+
{"name": "Llama-2-13B-Chat", "size": "7.3GB", "description": "Larger Llama variant", "parameters": "13B", "context": "4K"},
|
162 |
+
{"name": "Vicuna-13B-v1.5", "size": "7.2GB", "description": "Enhanced Vicuna", "parameters": "13B", "context": "16K"},
|
163 |
+
{"name": "OpenChat-3.5", "size": "7.1GB", "description": "High-quality chat model", "parameters": "7B", "context": "8K"},
|
164 |
+
{"name": "Nous-Hermes-2-Mixtral-8x7B-DPO", "size": "12.9GB", "description": "4-bit quantized MoE", "parameters": "47B", "context": "32K"}
|
165 |
],
|
166 |
"code": [
|
167 |
+
{"name": "CodeLlama-13B-Instruct", "size": "7.3GB", "description": "Larger code model", "parameters": "13B", "context": "16K"},
|
168 |
+
{"name": "WizardCoder-15B", "size": "8.2GB", "description": "Advanced coding", "parameters": "15B", "context": "16K"},
|
169 |
+
{"name": "StarCoder-15B", "size": "8.5GB", "description": "Large code model", "parameters": "15B", "context": "8K"}
|
170 |
],
|
171 |
"multimodal": [
|
172 |
+
{"name": "LLaVA-7B", "size": "7.0GB", "description": "Vision + language", "parameters": "7B", "context": "2K"},
|
173 |
+
{"name": "MiniGPT-4-7B", "size": "6.8GB", "description": "Multimodal chat", "parameters": "7B", "context": "2K"},
|
174 |
+
{"name": "Instructblip-7B", "size": "7.2GB", "description": "Instruction-tuned VLM", "parameters": "7B", "context": "2K"}
|
175 |
],
|
176 |
"reasoning": [
|
177 |
+
{"name": "WizardMath-13B", "size": "7.3GB", "description": "Advanced math", "parameters": "13B", "context": "2K"},
|
178 |
+
{"name": "Orca-2-13B", "size": "7.4GB", "description": "Microsoft reasoning", "parameters": "13B", "context": "4K"}
|
179 |
]
|
180 |
},
|
181 |
"high": { # 17-32GB
|
182 |
"general": [
|
183 |
+
{"name": "Mixtral-8x7B-Instruct-v0.1", "size": "26.9GB", "description": "Mixture of experts", "parameters": "47B", "context": "32K"},
|
184 |
+
{"name": "Llama-2-70B-Chat", "size": "38.0GB", "description": "8-bit quantized", "parameters": "70B", "context": "4K"},
|
185 |
+
{"name": "Yi-34B-Chat", "size": "19.5GB", "description": "01.AI's large model", "parameters": "34B", "context": "200K"},
|
186 |
+
{"name": "Nous-Hermes-2-Yi-34B", "size": "19.2GB", "description": "Enhanced Yi variant", "parameters": "34B", "context": "200K"}
|
187 |
],
|
188 |
"code": [
|
189 |
+
{"name": "CodeLlama-34B-Instruct", "size": "19.0GB", "description": "Large code specialist", "parameters": "34B", "context": "16K"},
|
190 |
+
{"name": "DeepSeek-Coder-33B", "size": "18.5GB", "description": "DeepSeek's coder", "parameters": "33B", "context": "16K"},
|
191 |
+
{"name": "WizardCoder-34B", "size": "19.2GB", "description": "Enterprise coding", "parameters": "34B", "context": "16K"}
|
192 |
],
|
193 |
"reasoning": [
|
194 |
+
{"name": "WizardMath-70B", "size": "38.5GB", "description": "8-bit quantized math", "parameters": "70B", "context": "2K"},
|
195 |
+
{"name": "MetaMath-70B", "size": "38.0GB", "description": "8-bit math reasoning", "parameters": "70B", "context": "2K"}
|
196 |
]
|
197 |
},
|
198 |
"ultra_high": { # >32GB
|
199 |
"general": [
|
200 |
+
{"name": "Llama-2-70B", "size": "130GB", "description": "Full precision", "parameters": "70B", "context": "4K"},
|
201 |
+
{"name": "Mixtral-8x22B", "size": "176GB", "description": "Latest mixture model", "parameters": "141B", "context": "64K"},
|
202 |
+
{"name": "Qwen-72B", "size": "145GB", "description": "Alibaba's flagship", "parameters": "72B", "context": "32K"},
|
203 |
+
{"name": "Llama-3-70B", "size": "140GB", "description": "Meta's latest", "parameters": "70B", "context": "8K"}
|
204 |
],
|
205 |
"code": [
|
206 |
+
{"name": "CodeLlama-34B", "size": "68GB", "description": "Full precision code", "parameters": "34B", "context": "16K"},
|
207 |
+
{"name": "DeepSeek-Coder-33B", "size": "66GB", "description": "Full precision coding", "parameters": "33B", "context": "16K"}
|
208 |
],
|
209 |
"reasoning": [
|
210 |
+
{"name": "WizardMath-70B", "size": "130GB", "description": "Full precision math", "parameters": "70B", "context": "2K"},
|
211 |
+
{"name": "Goat-70B", "size": "132GB", "description": "Arithmetic reasoning", "parameters": "70B", "context": "2K"}
|
212 |
]
|
213 |
}
|
214 |
}
|
215 |
|
216 |
+
# GPU compatibility database
|
217 |
+
GPU_DATABASE = {
|
218 |
+
"RTX 3060": {"vram": 8, "performance": "mid", "architecture": "Ampere"},
|
219 |
+
"RTX 3070": {"vram": 8, "performance": "high", "architecture": "Ampere"},
|
220 |
+
"RTX 3080": {"vram": 10, "performance": "high", "architecture": "Ampere"},
|
221 |
+
"RTX 3090": {"vram": 24, "performance": "ultra", "architecture": "Ampere"},
|
222 |
+
"RTX 4060": {"vram": 8, "performance": "mid", "architecture": "Ada Lovelace"},
|
223 |
+
"RTX 4070": {"vram": 12, "performance": "high", "architecture": "Ada Lovelace"},
|
224 |
+
"RTX 4080": {"vram": 16, "performance": "ultra", "architecture": "Ada Lovelace"},
|
225 |
+
"RTX 4090": {"vram": 24, "performance": "ultra", "architecture": "Ada Lovelace"},
|
226 |
+
"Apple M1": {"vram": 8, "performance": "mid", "architecture": "Apple Silicon"},
|
227 |
+
"Apple M2": {"vram": 16, "performance": "high", "architecture": "Apple Silicon"},
|
228 |
+
"Apple M3": {"vram": 24, "performance": "ultra", "architecture": "Apple Silicon"},
|
229 |
+
"RX 6700 XT": {"vram": 12, "performance": "mid", "architecture": "RDNA 2"},
|
230 |
+
"RX 7900 XTX": {"vram": 24, "performance": "ultra", "architecture": "RDNA 3"},
|
231 |
+
}
|
232 |
+
|
233 |
+
def get_gpu_recommendations(gpu_name, ram_gb):
|
234 |
+
"""Get GPU-specific model recommendations"""
|
235 |
+
if gpu_name == "No GPU":
|
236 |
+
return "CPU-only models recommended", "Use 4-bit quantization for better performance"
|
237 |
+
|
238 |
+
gpu_info = GPU_DATABASE.get(gpu_name.split(" (")[0], {"vram": 0, "performance": "low"})
|
239 |
+
vram = gpu_info["vram"]
|
240 |
+
|
241 |
+
if vram <= 8:
|
242 |
+
return f"7B models with 4-bit quantization", f"Estimated VRAM usage: ~{vram-1}GB"
|
243 |
+
elif vram <= 12:
|
244 |
+
return f"13B models with 8-bit quantization", f"Estimated VRAM usage: ~{vram-1}GB"
|
245 |
+
elif vram <= 16:
|
246 |
+
return f"13B models at FP16 or 30B with 4-bit", f"Estimated VRAM usage: ~{vram-1}GB"
|
247 |
+
else:
|
248 |
+
return f"70B models with 4-bit quantization", f"Estimated VRAM usage: ~{vram-2}GB"
|
249 |
+
|
250 |
+
def predict_inference_speed(model_size_gb, ram_gb, has_gpu=False, gpu_name=""):
|
251 |
+
"""Predict approximate inference speed"""
|
252 |
+
if model_size_gb > ram_gb:
|
253 |
+
return "β Insufficient RAM", "Consider smaller model or quantization"
|
254 |
+
|
255 |
+
if has_gpu and gpu_name != "No GPU":
|
256 |
+
gpu_info = GPU_DATABASE.get(gpu_name.split(" (")[0], {"performance": "low"})
|
257 |
+
perf = gpu_info["performance"]
|
258 |
+
|
259 |
+
if perf == "ultra":
|
260 |
+
if model_size_gb <= 4:
|
261 |
+
return "β‘ Blazing Fast", "~50-100 tokens/sec"
|
262 |
+
elif model_size_gb <= 8:
|
263 |
+
return "π Very Fast", "~30-60 tokens/sec"
|
264 |
+
elif model_size_gb <= 16:
|
265 |
+
return "π Fast", "~15-30 tokens/sec"
|
266 |
+
else:
|
267 |
+
return "π Moderate", "~5-15 tokens/sec"
|
268 |
+
elif perf == "high":
|
269 |
+
if model_size_gb <= 4:
|
270 |
+
return "β‘ Very Fast", "~30-50 tokens/sec"
|
271 |
+
elif model_size_gb <= 8:
|
272 |
+
return "π Fast", "~15-30 tokens/sec"
|
273 |
+
else:
|
274 |
+
return "π Moderate", "~5-15 tokens/sec"
|
275 |
+
else: # mid performance
|
276 |
+
if model_size_gb <= 4:
|
277 |
+
return "β‘ Fast", "~15-30 tokens/sec"
|
278 |
+
else:
|
279 |
+
return "π Slow", "~3-10 tokens/sec"
|
280 |
+
else:
|
281 |
+
# CPU inference
|
282 |
+
if model_size_gb <= 2:
|
283 |
+
return "β‘ Acceptable", "~5-15 tokens/sec"
|
284 |
+
elif model_size_gb <= 4:
|
285 |
+
return "π Slow", "~1-5 tokens/sec"
|
286 |
+
else:
|
287 |
+
return "π Very Slow", "~0.5-2 tokens/sec"
|
288 |
+
|
289 |
# Enhanced LLM recommendation with performance tiers
|
290 |
def recommend_llm(ram_str) -> Tuple[str, str, str, Dict[str, List[Dict]]]:
|
291 |
"""Returns (recommendation, performance_tier, additional_info, detailed_models)"""
|
|
|
360 |
else:
|
361 |
return "π»", os_name
|
362 |
|
363 |
+
# Model comparison function
|
364 |
+
def create_model_comparison_table(selected_models, quantization_type="FP16"):
|
365 |
+
"""Create a comparison table for selected models"""
|
366 |
+
comparison_data = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
367 |
|
368 |
+
for model_info in selected_models:
|
369 |
+
quant_size = calculate_quantized_size(model_info['size'], quantization_type)
|
370 |
+
|
371 |
+
# Extract numeric size for VRAM calculation
|
372 |
+
size_match = re.search(r'(\d+\.?\d*)', quant_size)
|
373 |
+
if size_match:
|
374 |
+
size_num = float(size_match.group(1))
|
375 |
+
estimated_vram = f"{size_num * 1.2:.1f}GB"
|
376 |
+
else:
|
377 |
+
estimated_vram = "Unknown"
|
378 |
+
|
379 |
+
comparison_data.append({
|
380 |
+
'Model': model_info['name'],
|
381 |
+
'Parameters': model_info.get('parameters', 'Unknown'),
|
382 |
+
'Context': model_info.get('context', 'Unknown'),
|
383 |
+
'Original Size': model_info['size'],
|
384 |
+
f'{quantization_type} Size': quant_size,
|
385 |
+
'Est. VRAM': estimated_vram,
|
386 |
+
'Description': model_info['description']
|
387 |
+
})
|
388 |
+
|
389 |
+
return pd.DataFrame(comparison_data)
|
390 |
|
391 |
# Enhanced model details display function
|
392 |
def display_model_categories(models_dict: Dict[str, List[Dict]], ram_gb: int, show_quantization=True):
|
|
|
399 |
for category, model_list in models_dict.items():
|
400 |
if model_list:
|
401 |
with st.expander(f"π {category.replace('_', ' ').title()} Models"):
|
402 |
+
for model in model_list[:6]: # Show top 6 models per category
|
403 |
st.markdown(f"**{model['name']}**")
|
404 |
+
|
405 |
+
# Model details
|
406 |
+
detail_col1, detail_col2, detail_col3 = st.columns(3)
|
407 |
+
with detail_col1:
|
408 |
+
st.caption(f"π {model.get('parameters', 'Unknown')} params")
|
409 |
+
with detail_col2:
|
410 |
+
st.caption(f"π {model.get('context', 'Unknown')} context")
|
411 |
+
with detail_col3:
|
412 |
+
st.caption(f"πΎ {model['size']} original")
|
413 |
+
|
414 |
st.markdown(f"*{model['description']}*")
|
415 |
|
416 |
if show_quantization:
|
|
|
420 |
with quant_cols[i]:
|
421 |
quant_size = calculate_quantized_size(model['size'], quant_type)
|
422 |
st.metric(
|
423 |
+
label=f"{quant_info['icon']} {quant_type}",
|
424 |
value=quant_size,
|
425 |
help=quant_info['description']
|
426 |
)
|
|
|
|
|
427 |
|
428 |
st.markdown("---")
|
429 |
|
430 |
+
# Performance visualization
|
431 |
+
def create_performance_chart(df):
|
432 |
+
"""Create a performance distribution chart"""
|
433 |
+
laptop_rams = df["Laptop RAM"].apply(extract_numeric_ram).dropna()
|
434 |
+
mobile_rams = df["Mobile RAM"].apply(extract_numeric_ram).dropna()
|
435 |
+
|
436 |
+
fig = go.Figure()
|
437 |
+
|
438 |
+
fig.add_trace(go.Histogram(
|
439 |
+
x=laptop_rams,
|
440 |
+
name="Laptop RAM",
|
441 |
+
opacity=0.7,
|
442 |
+
nbinsx=10,
|
443 |
+
marker_color='#1f77b4'
|
444 |
+
))
|
445 |
+
|
446 |
+
fig.add_trace(go.Histogram(
|
447 |
+
x=mobile_rams,
|
448 |
+
name="Mobile RAM",
|
449 |
+
opacity=0.7,
|
450 |
+
nbinsx=10,
|
451 |
+
marker_color='#ff7f0e'
|
452 |
+
))
|
453 |
+
|
454 |
+
fig.update_layout(
|
455 |
+
title="RAM Distribution Across Devices",
|
456 |
+
xaxis_title="RAM (GB)",
|
457 |
+
yaxis_title="Number of Students",
|
458 |
+
barmode='overlay',
|
459 |
+
height=400,
|
460 |
+
showlegend=True
|
461 |
+
)
|
462 |
+
|
463 |
+
return fig
|
464 |
+
|
465 |
# Demo data generator for when Excel files are not available
|
466 |
def generate_demo_data():
|
467 |
"""Generate demo data for testing when Excel files are missing"""
|
468 |
demo_data = {
|
469 |
"Full Name": [
|
470 |
"Demo Student 1", "Demo Student 2", "Demo Student 3", "Demo Student 4",
|
471 |
+
"Demo Student 5", "Demo Student 6", "Demo Student 7", "Demo Student 8",
|
472 |
+
"Demo Student 9", "Demo Student 10", "Demo Student 11", "Demo Student 12"
|
473 |
],
|
474 |
+
"Laptop RAM": ["8GB", "16GB", "4GB", "32GB", "6GB", "12GB", "2GB", "24GB", "64GB", "3GB", "20GB", "10GB"],
|
475 |
+
"Mobile RAM": ["4GB", "8GB", "3GB", "12GB", "6GB", "4GB", "2GB", "8GB", "16GB", "3GB", "6GB", "8GB"],
|
476 |
"Laptop Operating System": [
|
477 |
"Windows 11", "macOS Monterey", "Ubuntu 22.04", "Windows 10",
|
478 |
+
"macOS Big Sur", "Fedora 36", "Windows 11", "macOS Ventura",
|
479 |
+
"Ubuntu 20.04", "Windows 10", "macOS Sonoma", "Pop!_OS 22.04"
|
480 |
],
|
481 |
"Mobile Operating System": [
|
482 |
"Android 13", "iOS 16", "Android 12", "iOS 15",
|
483 |
+
"Android 14", "iOS 17", "Android 11", "iOS 16",
|
484 |
+
"Android 13", "iOS 15", "Android 14", "iOS 17"
|
485 |
]
|
486 |
}
|
487 |
return pd.DataFrame(demo_data)
|
|
|
490 |
def prepare_user_options(df):
|
491 |
"""Safely prepare user options for selectbox, handling NaN values and mixed types"""
|
492 |
try:
|
|
|
493 |
unique_names = df["Full Name"].dropna().unique()
|
494 |
|
|
|
495 |
valid_names = []
|
496 |
for name in unique_names:
|
497 |
try:
|
|
|
501 |
except:
|
502 |
continue
|
503 |
|
|
|
504 |
options = ["Select a student..."] + sorted(valid_names)
|
505 |
return options
|
506 |
except Exception as e:
|