Update src/streamlit_app.py
Browse files- src/streamlit_app.py +64 -70
src/streamlit_app.py
CHANGED
@@ -131,82 +131,76 @@ def calculate_quantized_size(base_size_str, quant_format):
|
|
131 |
LLM_DATABASE = {
|
132 |
"ultra_low": { # ≤2GB
|
133 |
"general": [
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
|
|
|
|
159 |
],
|
160 |
"code": [
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
|
|
|
|
|
|
176 |
]
|
177 |
},
|
178 |
"low": { # 3-4GB
|
179 |
"general": [
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
{ name: "Switch-2B", size: "2.0GB", description: "Switch Transformer sparse model" },
|
200 |
-
{ name: "GPT-NeoX-2B", size: "2.0GB", description: "EleutherAI's NeoX architecture" },
|
201 |
-
{ name: "OPT-1.3B", size: "1.3GB", description: "Meta's 1.3B parameter model" },
|
202 |
-
{ name: "BLOOM-1B7", size: "1.7GB", description: "BigScience's 1.7B model" },
|
203 |
-
{ name: "Pythia-1.4B", size: "1.4GB", description: "EleutherAI's 1.4B model" },
|
204 |
-
{ name: "StableLM-Alpha-3B", size: "2.2GB", description: "Stability AI's alpha model" },
|
205 |
-
{ name: "OpenLLM-3B", size: "2.1GB", description: "Open-sourced language model" },
|
206 |
-
{ name: "Dolly-v1-6B", size: "3.0GB", description: "Databricks' instruction model" },
|
207 |
-
{ name: "GPT4All-J-6B", size: "3.2GB", description: "Nomic AI's assistant model" },
|
208 |
-
{ name: "Vicuna-3B", size: "2.1GB", description: "UC Berkeley's 3B chat model" },
|
209 |
-
{ name: "Alpaca-3B", size: "2.0GB", description: "Stanford's 3B instruction model" }
|
210 |
],
|
211 |
"code": [
|
212 |
{"name": "CodeGen-2B", "size": "1.8GB", "description": "Salesforce code model", "parameters": "2B", "context": "2K"},
|
|
|
131 |
LLM_DATABASE = {
|
132 |
"ultra_low": { # ≤2GB
|
133 |
"general": [
|
134 |
+
{ "name": "TinyLlama-1.1B-Chat", "size": "2.2GB", "description": "Ultra-compact conversational model" },
|
135 |
+
{ "name": "DistilBERT-base", "size": "0.3GB", "description": "Efficient BERT variant for NLP tasks" },
|
136 |
+
{ "name": "all-MiniLM-L6-v2", "size": "0.1GB", "description": "Sentence embeddings specialist" },
|
137 |
+
{ "name": "OPT-125M", "size": "0.5GB", "description": "Meta's lightweight language model" },
|
138 |
+
{ "name": "GPT-Neo-125M", "size": "0.5GB", "description": "EleutherAI's compact model" },
|
139 |
+
{ "name": "DistilGPT-2", "size": "0.3GB", "description": "Distilled version of GPT-2" },
|
140 |
+
{ "name": "MobileBERT", "size": "0.2GB", "description": "Google's mobile-optimized BERT" },
|
141 |
+
{ "name": "ALBERT-base", "size": "0.4GB", "description": "A Lite BERT for self-supervised learning" },
|
142 |
+
{ "name": "RoBERTa-base", "size": "0.5GB", "description": "Robustly optimized BERT pretraining" },
|
143 |
+
{ "name": "ELECTRA-small", "size": "0.2GB", "description": "Efficiently learning encoder representations" },
|
144 |
+
{ "name": "MobileLLaMA-1B", "size": "1.0GB", "description": "Mobile-optimized Llama variant" },
|
145 |
+
{ "name": "GPT-2-small", "size": "0.5GB", "description": "OpenAI's original small model" },
|
146 |
+
{ "name": "T5-small", "size": "0.2GB", "description": "Text-to-Text Transfer Transformer" },
|
147 |
+
{ "name": "FLAN-T5-small", "size": "0.3GB", "description": "Instruction-tuned T5" },
|
148 |
+
{ "name": "UL2-small", "size": "0.8GB", "description": "Unified Language Learner" },
|
149 |
+
{ "name": "DeBERTa-v3-small", "size": "0.4GB", "description": "Microsoft's enhanced BERT" },
|
150 |
+
{ "name": "CANINE-s", "size": "0.5GB", "description": "Character-level model" },
|
151 |
+
{ "name": "Longformer-base", "size": "0.6GB", "description": "Long document understanding" },
|
152 |
+
{ "name": "BigBird-small", "size": "0.7GB", "description": "Sparse attention model" },
|
153 |
+
{ "name": "Reformer-small", "size": "0.3GB", "description": "Memory-efficient transformer" },
|
154 |
+
{ "name": "FNet-small", "size": "0.4GB", "description": "Fourier transform model" },
|
155 |
+
{ "name": "Synthesizer-small", "size": "0.3GB", "description": "Synthetic attention patterns" },
|
156 |
+
{ "name": "GPT-Neo-1.3B", "size": "1.3GB", "description": "EleutherAI's 1.3B model" },
|
157 |
+
{ "name": "OPT-350M", "size": "0.7GB", "description": "Meta's 350M parameter model" },
|
158 |
+
{ "name": "BLOOM-560M", "size": "1.1GB", "description": "BigScience's small multilingual" }
|
159 |
+
|
160 |
+
|
161 |
],
|
162 |
"code": [
|
163 |
+
|
164 |
+
{ "name": "CodeT5-small", "size": "0.3GB", "description": "Compact code generation model" },
|
165 |
+
{ "name": "Replit-code-v1-3B", "size": "1.2GB", "description": "Code completion specialist" },
|
166 |
+
{ "name": "UnixCoder-base", "size": "0.5GB", "description": "Microsoft's code understanding model" },
|
167 |
+
{ "name": "CodeBERT-base", "size": "0.5GB", "description": "Bimodal pre-trained model for programming" },
|
168 |
+
{ "name": "GraphCodeBERT-base", "size": "0.5GB", "description": "Pre-trained model with data flow" },
|
169 |
+
{ "name": "CodeT5-base", "size": "0.9GB", "description": "Identifier-aware unified pre-trained encoder-decoder" },
|
170 |
+
{ "name": "PyCodeGPT-110M", "size": "0.4GB", "description": "Python code generation specialist" },
|
171 |
+
{ "name": "CodeParrot-110M", "size": "0.4GB", "description": "GPT-2 model trained on Python code" },
|
172 |
+
{ "name": "CodeSearchNet-small", "size": "0.6GB", "description": "Code search and understanding" },
|
173 |
+
{ "name": "CuBERT-small", "size": "0.4GB", "description": "Google's code understanding" },
|
174 |
+
{ "name": "CodeGPT-small", "size": "0.5GB", "description": "Microsoft's code GPT" },
|
175 |
+
{ "name": "PLBART-small", "size": "0.7GB", "description": "Programming language BART" },
|
176 |
+
{ "name": "TreeBERT-small", "size": "0.6GB", "description": "Tree-based code representation" },
|
177 |
+
{ "name": "CoTexT-small", "size": "0.5GB", "description": "Code and text pre-training" },
|
178 |
+
{ "name": "SynCoBERT-small", "size": "0.6GB", "description": "Syntax-guided code BERT" }
|
179 |
+
|
180 |
+
|
181 |
]
|
182 |
},
|
183 |
"low": { # 3-4GB
|
184 |
"general": [
|
185 |
+
|
186 |
+
{ "name": "Phi-1.5", "size": "2.8GB", "description": "Microsoft's efficient reasoning model" },
|
187 |
+
{ "name": "Gemma-2B", "size": "1.4GB", "description": "Google's compact foundation model" },
|
188 |
+
{ "name": "OpenLLaMA-3B", "size": "2.1GB", "description": "Open source LLaMA reproduction" },
|
189 |
+
{ "name": "RedPajama-3B", "size": "2.0GB", "description": "Together AI's open model" },
|
190 |
+
{ "name": "StableLM-3B", "size": "2.3GB", "description": "Stability AI's language model" },
|
191 |
+
{ "name": "Pythia-2.8B", "size": "2.8GB", "description": "EleutherAI's training suite model" },
|
192 |
+
{ "name": "GPT-Neo-2.7B", "size": "2.7GB", "description": "EleutherAI's open GPT model" },
|
193 |
+
{ "name": "OPT-2.7B", "size": "2.7GB", "description": "Meta's open pre-trained transformer" },
|
194 |
+
{ "name": "BLOOM-3B", "size": "3.0GB", "description": "BigScience's multilingual model" },
|
195 |
+
{ "name": "GPT-J-6B", "size": "3.5GB", "description": "EleutherAI's 6B parameter model" },
|
196 |
+
{ "name": "Cerebras-GPT-2.7B", "size": "2.7GB", "description": "Cerebras Systems' open model" },
|
197 |
+
{ "name": "PaLM-2B", "size": "2.0GB", "description": "Google's Pathways Language Model" },
|
198 |
+
{ "name": "LaMDA-2B", "size": "2.2GB", "description": "Google's Language Model for Dialogue" },
|
199 |
+
{ "name": "FairSeq-2.7B", "size": "2.7GB", "description": "Facebook's sequence-to-sequence toolkit" },
|
200 |
+
{ "name": "Megatron-2.5B", "size": "2.5GB", "description": "NVIDIA's transformer model" },
|
201 |
+
{ "name": "GLM-2B", "size": "2.0GB", "description": "General Language Model pretraining" },
|
202 |
+
{ "name": "CPM-2", "size": "2.6GB", "description": "Chinese"},
|
203 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
],
|
205 |
"code": [
|
206 |
{"name": "CodeGen-2B", "size": "1.8GB", "description": "Salesforce code model", "parameters": "2B", "context": "2K"},
|