Update src/streamlit_app.py
Browse files- src/streamlit_app.py +55 -77
src/streamlit_app.py
CHANGED
@@ -12,11 +12,8 @@ import numpy as np
|
|
12 |
import re
|
13 |
import plotly.express as px
|
14 |
import plotly.graph_objects as go
|
15 |
-
from
|
16 |
-
from typing import Optional, Tuple, List, Dict, Any
|
17 |
import json
|
18 |
-
from datetime import datetime, timedelta
|
19 |
-
import time
|
20 |
|
21 |
# β
MUST be the first Streamlit command
|
22 |
st.set_page_config(
|
@@ -25,60 +22,6 @@ st.set_page_config(
|
|
25 |
page_icon="π§ ",
|
26 |
initial_sidebar_state="expanded"
|
27 |
)
|
28 |
-
# Custom CSS for better styling
|
29 |
-
st.markdown("""
|
30 |
-
<style>
|
31 |
-
.main-header {
|
32 |
-
font-size: 3rem;
|
33 |
-
font-weight: bold;
|
34 |
-
text-align: center;
|
35 |
-
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
|
36 |
-
-webkit-background-clip: text;
|
37 |
-
-webkit-text-fill-color: transparent;
|
38 |
-
margin-bottom: 2rem;
|
39 |
-
}
|
40 |
-
.metric-card {
|
41 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
42 |
-
padding: 1rem;
|
43 |
-
border-radius: 10px;
|
44 |
-
color: white;
|
45 |
-
margin: 0.5rem 0;
|
46 |
-
}
|
47 |
-
.model-card {
|
48 |
-
border: 2px solid #e0e0e0;
|
49 |
-
border-radius: 10px;
|
50 |
-
padding: 1rem;
|
51 |
-
margin: 0.5rem 0;
|
52 |
-
background: white;
|
53 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
54 |
-
}
|
55 |
-
.performance-badge {
|
56 |
-
padding: 0.25rem 0.5rem;
|
57 |
-
border-radius: 15px;
|
58 |
-
font-size: 0.8rem;
|
59 |
-
font-weight: bold;
|
60 |
-
color: white;
|
61 |
-
}
|
62 |
-
.badge-ultra-high { background: #8B5CF6; }
|
63 |
-
.badge-high { background: #3B82F6; }
|
64 |
-
.badge-good { background: #10B981; }
|
65 |
-
.badge-moderate { background: #F59E0B; }
|
66 |
-
.badge-low { background: #EF4444; }
|
67 |
-
.badge-ultra-low { background: #6B7280; }
|
68 |
-
.stTabs [data-baseweb="tab-list"] {
|
69 |
-
gap: 2px;
|
70 |
-
}
|
71 |
-
.stTabs [data-baseweb="tab"] {
|
72 |
-
height: 50px;
|
73 |
-
padding-left: 20px;
|
74 |
-
padding-right: 20px;
|
75 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
76 |
-
border-radius: 10px 10px 0 0;
|
77 |
-
color: white;
|
78 |
-
font-weight: bold;
|
79 |
-
}
|
80 |
-
</style>
|
81 |
-
""", unsafe_allow_html=True)
|
82 |
|
83 |
# Enhanced data loading with error handling
|
84 |
@st.cache_data
|
@@ -130,14 +73,42 @@ def extract_numeric_ram(ram) -> Optional[int]:
|
|
130 |
|
131 |
# Quantization options and size calculations
|
132 |
QUANTIZATION_FORMATS = {
|
133 |
-
"FP16": {
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
}
|
138 |
|
139 |
def calculate_quantized_size(base_size_str, quant_format):
|
140 |
-
"""Calculate quantized model size"""
|
141 |
size_match = re.search(r'(\d+\.?\d*)', base_size_str)
|
142 |
if not size_match:
|
143 |
return base_size_str
|
@@ -148,7 +119,13 @@ def calculate_quantized_size(base_size_str, quant_format):
|
|
148 |
multiplier = QUANTIZATION_FORMATS[quant_format]["multiplier"]
|
149 |
new_size = base_size * multiplier
|
150 |
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
# Enhanced LLM database with more models and metadata
|
154 |
LLM_DATABASE = {
|
@@ -271,20 +248,21 @@ LLM_DATABASE = {
|
|
271 |
}
|
272 |
|
273 |
# GPU compatibility database
|
|
|
274 |
GPU_DATABASE = {
|
275 |
-
"RTX 3060": {"vram": 8, "performance": "mid", "architecture": "Ampere"},
|
276 |
-
"RTX 3070": {"vram": 8, "performance": "high", "architecture": "Ampere"},
|
277 |
-
"RTX 3080": {"vram": 10, "performance": "high", "architecture": "Ampere"},
|
278 |
-
"RTX 3090": {"vram": 24, "performance": "ultra", "architecture": "Ampere"},
|
279 |
-
"RTX 4060": {"vram": 8, "performance": "mid", "architecture": "Ada Lovelace"},
|
280 |
-
"RTX 4070": {"vram": 12, "performance": "high", "architecture": "Ada Lovelace"},
|
281 |
-
"RTX 4080": {"vram": 16, "performance": "ultra", "architecture": "Ada Lovelace"},
|
282 |
-
"RTX 4090": {"vram": 24, "performance": "ultra", "architecture": "Ada Lovelace"},
|
283 |
-
"Apple M1": {"vram": 8, "performance": "mid", "architecture": "Apple Silicon"},
|
284 |
-
"Apple M2": {"vram": 16, "performance": "high", "architecture": "Apple Silicon"},
|
285 |
-
"Apple M3": {"vram": 24, "performance": "ultra", "architecture": "Apple Silicon"},
|
286 |
-
"RX 6700 XT": {"vram": 12, "performance": "mid", "architecture": "RDNA 2"},
|
287 |
-
"RX 7900 XTX": {"vram": 24, "performance": "ultra", "architecture": "RDNA 3"},
|
288 |
}
|
289 |
|
290 |
def get_gpu_recommendations(gpu_name, ram_gb):
|
|
|
12 |
import re
|
13 |
import plotly.express as px
|
14 |
import plotly.graph_objects as go
|
15 |
+
from typing import Optional, Tuple, List, Dict
|
|
|
16 |
import json
|
|
|
|
|
17 |
|
18 |
# β
MUST be the first Streamlit command
|
19 |
st.set_page_config(
|
|
|
22 |
page_icon="π§ ",
|
23 |
initial_sidebar_state="expanded"
|
24 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
# Enhanced data loading with error handling
|
27 |
@st.cache_data
|
|
|
73 |
|
74 |
# Quantization options and size calculations
|
75 |
QUANTIZATION_FORMATS = {
|
76 |
+
"FP16": {
|
77 |
+
"multiplier": 1.0,
|
78 |
+
"description": "Full precision, best quality",
|
79 |
+
"icon": "π₯",
|
80 |
+
"quality": "Excellent",
|
81 |
+
"speed": "Moderate",
|
82 |
+
"memory_efficiency": "Low"
|
83 |
+
},
|
84 |
+
"8-bit": {
|
85 |
+
"multiplier": 0.5,
|
86 |
+
"description": "50% smaller, good quality",
|
87 |
+
"icon": "β‘",
|
88 |
+
"quality": "Very Good",
|
89 |
+
"speed": "Good",
|
90 |
+
"memory_efficiency": "Good"
|
91 |
+
},
|
92 |
+
"4-bit": {
|
93 |
+
"multiplier": 0.25,
|
94 |
+
"description": "75% smaller, acceptable quality",
|
95 |
+
"icon": "π",
|
96 |
+
"quality": "Good",
|
97 |
+
"speed": "Very Good",
|
98 |
+
"memory_efficiency": "Excellent"
|
99 |
+
},
|
100 |
+
"2-bit": {
|
101 |
+
"multiplier": 0.125,
|
102 |
+
"description": "87.5% smaller, experimental",
|
103 |
+
"icon": "π§ͺ",
|
104 |
+
"quality": "Fair",
|
105 |
+
"speed": "Excellent",
|
106 |
+
"memory_efficiency": "Outstanding"
|
107 |
+
}
|
108 |
}
|
109 |
|
110 |
def calculate_quantized_size(base_size_str, quant_format):
|
111 |
+
"""Calculate quantized model size with better formatting"""
|
112 |
size_match = re.search(r'(\d+\.?\d*)', base_size_str)
|
113 |
if not size_match:
|
114 |
return base_size_str
|
|
|
119 |
multiplier = QUANTIZATION_FORMATS[quant_format]["multiplier"]
|
120 |
new_size = base_size * multiplier
|
121 |
|
122 |
+
# Smart unit conversion
|
123 |
+
if unit.upper() == "GB" and new_size < 1:
|
124 |
+
return f"{new_size * 1024:.0f}MB"
|
125 |
+
elif unit.upper() == "MB" and new_size > 1024:
|
126 |
+
return f"{new_size / 1024:.1f}GB"
|
127 |
+
else:
|
128 |
+
return f"{new_size:.1f}{unit}"
|
129 |
|
130 |
# Enhanced LLM database with more models and metadata
|
131 |
LLM_DATABASE = {
|
|
|
248 |
}
|
249 |
|
250 |
# GPU compatibility database
|
251 |
+
# Enhanced GPU compatibility database with more details
|
252 |
GPU_DATABASE = {
|
253 |
+
"RTX 3060": {"vram": 8, "performance": "mid", "architecture": "Ampere", "tensor_cores": "2nd gen", "memory_bandwidth": "360 GB/s"},
|
254 |
+
"RTX 3070": {"vram": 8, "performance": "high", "architecture": "Ampere", "tensor_cores": "2nd gen", "memory_bandwidth": "448 GB/s"},
|
255 |
+
"RTX 3080": {"vram": 10, "performance": "high", "architecture": "Ampere", "tensor_cores": "2nd gen", "memory_bandwidth": "760 GB/s"},
|
256 |
+
"RTX 3090": {"vram": 24, "performance": "ultra", "architecture": "Ampere", "tensor_cores": "2nd gen", "memory_bandwidth": "936 GB/s"},
|
257 |
+
"RTX 4060": {"vram": 8, "performance": "mid", "architecture": "Ada Lovelace", "tensor_cores": "4th gen", "memory_bandwidth": "272 GB/s"},
|
258 |
+
"RTX 4070": {"vram": 12, "performance": "high", "architecture": "Ada Lovelace", "tensor_cores": "4th gen", "memory_bandwidth": "504 GB/s"},
|
259 |
+
"RTX 4080": {"vram": 16, "performance": "ultra", "architecture": "Ada Lovelace", "tensor_cores": "4th gen", "memory_bandwidth": "716 GB/s"},
|
260 |
+
"RTX 4090": {"vram": 24, "performance": "ultra", "architecture": "Ada Lovelace", "tensor_cores": "4th gen", "memory_bandwidth": "1008 GB/s"},
|
261 |
+
"Apple M1": {"vram": 8, "performance": "mid", "architecture": "Apple Silicon", "tensor_cores": "None", "memory_bandwidth": "68.25 GB/s"},
|
262 |
+
"Apple M2": {"vram": 16, "performance": "high", "architecture": "Apple Silicon", "tensor_cores": "None", "memory_bandwidth": "100 GB/s"},
|
263 |
+
"Apple M3": {"vram": 24, "performance": "ultra", "architecture": "Apple Silicon", "tensor_cores": "None", "memory_bandwidth": "150 GB/s"},
|
264 |
+
"RX 6700 XT": {"vram": 12, "performance": "mid", "architecture": "RDNA 2", "tensor_cores": "None", "memory_bandwidth": "384 GB/s"},
|
265 |
+
"RX 7900 XTX": {"vram": 24, "performance": "ultra", "architecture": "RDNA 3", "tensor_cores": "None", "memory_bandwidth": "960 GB/s"},
|
266 |
}
|
267 |
|
268 |
def get_gpu_recommendations(gpu_name, ram_gb):
|