|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections.abc import Sequence |
|
from typing import Any, Optional, Union |
|
|
|
from torch import Tensor, tensor |
|
|
|
from torchmetrics.functional.text.perplexity import _perplexity_compute, _perplexity_update |
|
from torchmetrics.metric import Metric |
|
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE |
|
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE |
|
|
|
if not _MATPLOTLIB_AVAILABLE: |
|
__doctest_skip__ = ["Perplexity.plot"] |
|
|
|
|
|
class Perplexity(Metric): |
|
r"""Perplexity measures how well a language model predicts a text sample. |
|
|
|
It's calculated as the average number of bits per word a model needs to represent the sample. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input: |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): Logits or a unnormalized score assigned to each token in a sequence with shape |
|
[batch_size, seq_len, vocab_size], which is the output of a language model. Scores will be normalized internally |
|
using softmax. |
|
- ``target`` (:class:`~torch.Tensor`): Ground truth values with a shape [batch_size, seq_len] |
|
|
|
As output of ``forward`` and ``compute`` the metric returns the following output: |
|
|
|
- ``perp`` (:class:`~torch.Tensor`): A tensor with the perplexity score |
|
|
|
Args: |
|
ignore_index: Integer specifying a target class to ignore. |
|
If given, this class index does not contribute to the returned score. |
|
kwargs: |
|
Additional keyword arguments, see :ref:`Metric kwargs` for more info. |
|
|
|
Examples: |
|
>>> from torch import rand, randint |
|
>>> from torchmetrics.text import Perplexity |
|
>>> preds = rand(2, 8, 5) |
|
>>> target = randint(5, (2, 8)) |
|
>>> target[0, 6:] = -100 |
|
>>> perp = Perplexity(ignore_index=-100) |
|
>>> perp(preds, target) |
|
tensor(5.8540) |
|
|
|
""" |
|
|
|
is_differentiable = True |
|
higher_is_better = False |
|
full_state_update = False |
|
total_log_probs: Tensor |
|
count: Tensor |
|
|
|
def __init__( |
|
self, |
|
ignore_index: Optional[int] = None, |
|
**kwargs: dict[str, Any], |
|
) -> None: |
|
super().__init__(**kwargs) |
|
if ignore_index is not None and not isinstance(ignore_index, int): |
|
raise ValueError(f"Argument `ignore_index` expected to either be `None` or an `int` but got {ignore_index}") |
|
self.ignore_index = ignore_index |
|
self.add_state("total_log_probs", default=tensor(0.0), dist_reduce_fx="sum") |
|
self.add_state("count", default=tensor(0.0), dist_reduce_fx="sum") |
|
|
|
def update(self, preds: Tensor, target: Tensor) -> None: |
|
"""Update state with predictions and targets.""" |
|
total_log_probs, count = _perplexity_update(preds, target, self.ignore_index) |
|
self.total_log_probs += total_log_probs |
|
self.count += count |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute the Perplexity.""" |
|
return _perplexity_compute(self.total_log_probs, self.count) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting a single value |
|
>>> import torch |
|
>>> from torchmetrics.text import Perplexity |
|
>>> metric = Perplexity() |
|
>>> metric.update(torch.rand(2, 8, 5), torch.randint(5, (2, 8))) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting multiple values |
|
>>> import torch |
|
>>> from torchmetrics.text import Perplexity |
|
>>> metric = Perplexity() |
|
>>> values = [ ] |
|
>>> for _ in range(10): |
|
... values.append(metric(torch.rand(2, 8, 5), torch.randint(5, (2, 8)))) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|