File size: 5,019 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections.abc import Sequence
from typing import Any, Optional, Union

from torch import Tensor, tensor

from torchmetrics.functional.text.perplexity import _perplexity_compute, _perplexity_update
from torchmetrics.metric import Metric
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE

if not _MATPLOTLIB_AVAILABLE:
    __doctest_skip__ = ["Perplexity.plot"]


class Perplexity(Metric):
    r"""Perplexity measures how well a language model predicts a text sample.

    It's calculated as the average number of bits per word a model needs to represent the sample.

    As input to ``forward`` and ``update`` the metric accepts the following input:

    - ``preds`` (:class:`~torch.Tensor`): Logits or a unnormalized score assigned to each token in a sequence with shape
      [batch_size, seq_len, vocab_size], which is the output of a language model. Scores will be normalized internally
      using softmax.
    - ``target`` (:class:`~torch.Tensor`): Ground truth values with a shape [batch_size, seq_len]

    As output of ``forward`` and ``compute`` the metric returns the following output:

    - ``perp`` (:class:`~torch.Tensor`): A tensor with the perplexity score

    Args:
        ignore_index: Integer specifying a target class to ignore.
            If given, this class index does not contribute to the returned score.
        kwargs:
            Additional keyword arguments, see :ref:`Metric kwargs` for more info.

    Examples:
        >>> from torch import rand, randint
        >>> from torchmetrics.text import Perplexity
        >>> preds = rand(2, 8, 5)
        >>> target = randint(5, (2, 8))
        >>> target[0, 6:] = -100
        >>> perp = Perplexity(ignore_index=-100)
        >>> perp(preds, target)
        tensor(5.8540)

    """

    is_differentiable = True
    higher_is_better = False
    full_state_update = False
    total_log_probs: Tensor
    count: Tensor

    def __init__(
        self,
        ignore_index: Optional[int] = None,
        **kwargs: dict[str, Any],
    ) -> None:
        super().__init__(**kwargs)
        if ignore_index is not None and not isinstance(ignore_index, int):
            raise ValueError(f"Argument `ignore_index` expected to either be `None` or an `int` but got {ignore_index}")
        self.ignore_index = ignore_index
        self.add_state("total_log_probs", default=tensor(0.0), dist_reduce_fx="sum")
        self.add_state("count", default=tensor(0.0), dist_reduce_fx="sum")

    def update(self, preds: Tensor, target: Tensor) -> None:
        """Update state with predictions and targets."""
        total_log_probs, count = _perplexity_update(preds, target, self.ignore_index)
        self.total_log_probs += total_log_probs
        self.count += count

    def compute(self) -> Tensor:
        """Compute the Perplexity."""
        return _perplexity_compute(self.total_log_probs, self.count)

    def plot(
        self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
    ) -> _PLOT_OUT_TYPE:
        """Plot a single or multiple values from the metric.

        Args:
            val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
                If no value is provided, will automatically call `metric.compute` and plot that result.
            ax: An matplotlib axis object. If provided will add plot to that axis

        Returns:
            Figure and Axes object

        Raises:
            ModuleNotFoundError:
                If `matplotlib` is not installed

        .. plot::
            :scale: 75

            >>> # Example plotting a single value
            >>> import torch
            >>> from torchmetrics.text import Perplexity
            >>> metric = Perplexity()
            >>> metric.update(torch.rand(2, 8, 5), torch.randint(5, (2, 8)))
            >>> fig_, ax_ = metric.plot()

        .. plot::
            :scale: 75

            >>> # Example plotting multiple values
            >>> import torch
            >>> from torchmetrics.text import Perplexity
            >>> metric = Perplexity()
            >>> values = [ ]
            >>> for _ in range(10):
            ...     values.append(metric(torch.rand(2, 8, 5), torch.randint(5, (2, 8))))
            >>> fig_, ax_ = metric.plot(values)

        """
        return self._plot(val, ax)