# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections.abc import Sequence from typing import Any, Optional, Union from torch import Tensor, tensor from torchmetrics.functional.text.perplexity import _perplexity_compute, _perplexity_update from torchmetrics.metric import Metric from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE if not _MATPLOTLIB_AVAILABLE: __doctest_skip__ = ["Perplexity.plot"] class Perplexity(Metric): r"""Perplexity measures how well a language model predicts a text sample. It's calculated as the average number of bits per word a model needs to represent the sample. As input to ``forward`` and ``update`` the metric accepts the following input: - ``preds`` (:class:`~torch.Tensor`): Logits or a unnormalized score assigned to each token in a sequence with shape [batch_size, seq_len, vocab_size], which is the output of a language model. Scores will be normalized internally using softmax. - ``target`` (:class:`~torch.Tensor`): Ground truth values with a shape [batch_size, seq_len] As output of ``forward`` and ``compute`` the metric returns the following output: - ``perp`` (:class:`~torch.Tensor`): A tensor with the perplexity score Args: ignore_index: Integer specifying a target class to ignore. If given, this class index does not contribute to the returned score. kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. Examples: >>> from torch import rand, randint >>> from torchmetrics.text import Perplexity >>> preds = rand(2, 8, 5) >>> target = randint(5, (2, 8)) >>> target[0, 6:] = -100 >>> perp = Perplexity(ignore_index=-100) >>> perp(preds, target) tensor(5.8540) """ is_differentiable = True higher_is_better = False full_state_update = False total_log_probs: Tensor count: Tensor def __init__( self, ignore_index: Optional[int] = None, **kwargs: dict[str, Any], ) -> None: super().__init__(**kwargs) if ignore_index is not None and not isinstance(ignore_index, int): raise ValueError(f"Argument `ignore_index` expected to either be `None` or an `int` but got {ignore_index}") self.ignore_index = ignore_index self.add_state("total_log_probs", default=tensor(0.0), dist_reduce_fx="sum") self.add_state("count", default=tensor(0.0), dist_reduce_fx="sum") def update(self, preds: Tensor, target: Tensor) -> None: """Update state with predictions and targets.""" total_log_probs, count = _perplexity_update(preds, target, self.ignore_index) self.total_log_probs += total_log_probs self.count += count def compute(self) -> Tensor: """Compute the Perplexity.""" return _perplexity_compute(self.total_log_probs, self.count) def plot( self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None ) -> _PLOT_OUT_TYPE: """Plot a single or multiple values from the metric. Args: val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. If no value is provided, will automatically call `metric.compute` and plot that result. ax: An matplotlib axis object. If provided will add plot to that axis Returns: Figure and Axes object Raises: ModuleNotFoundError: If `matplotlib` is not installed .. plot:: :scale: 75 >>> # Example plotting a single value >>> import torch >>> from torchmetrics.text import Perplexity >>> metric = Perplexity() >>> metric.update(torch.rand(2, 8, 5), torch.randint(5, (2, 8))) >>> fig_, ax_ = metric.plot() .. plot:: :scale: 75 >>> # Example plotting multiple values >>> import torch >>> from torchmetrics.text import Perplexity >>> metric = Perplexity() >>> values = [ ] >>> for _ in range(10): ... values.append(metric(torch.rand(2, 8, 5), torch.randint(5, (2, 8)))) >>> fig_, ax_ = metric.plot(values) """ return self._plot(val, ax)