|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections.abc import Sequence |
|
from typing import Any, Optional, Union |
|
|
|
import torch |
|
from torch import Tensor |
|
|
|
from torchmetrics.functional.image.rmse_sw import _rmse_sw_compute, _rmse_sw_update |
|
from torchmetrics.metric import Metric |
|
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE |
|
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE |
|
|
|
if not _MATPLOTLIB_AVAILABLE: |
|
__doctest_skip__ = ["RootMeanSquaredErrorUsingSlidingWindow.plot"] |
|
|
|
|
|
class RootMeanSquaredErrorUsingSlidingWindow(Metric): |
|
"""Computes Root Mean Squared Error (RMSE) using sliding window. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): Predictions from model of shape ``(N,C,H,W)`` |
|
- ``target`` (:class:`~torch.Tensor`): Ground truth values of shape ``(N,C,H,W)`` |
|
|
|
As output of `forward` and `compute` the metric returns the following output |
|
|
|
- ``rmse_sw`` (:class:`~torch.Tensor`): returns float scalar tensor with average RMSE-SW value over sample |
|
|
|
Args: |
|
window_size: Sliding window used for rmse calculation |
|
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. |
|
|
|
Example: |
|
>>> from torch import rand |
|
>>> from torchmetrics.image import RootMeanSquaredErrorUsingSlidingWindow |
|
>>> preds = rand(4, 3, 16, 16) |
|
>>> target = rand(4, 3, 16, 16) |
|
>>> rmse_sw = RootMeanSquaredErrorUsingSlidingWindow() |
|
>>> rmse_sw(preds, target) |
|
tensor(0.4158) |
|
|
|
Raises: |
|
ValueError: If ``window_size`` is not a positive integer. |
|
|
|
""" |
|
|
|
higher_is_better: bool = False |
|
is_differentiable: bool = True |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
|
|
rmse_val_sum: Tensor |
|
rmse_map: Optional[Tensor] = None |
|
total_images: Tensor |
|
|
|
def __init__( |
|
self, |
|
window_size: int = 8, |
|
**kwargs: dict[str, Any], |
|
) -> None: |
|
super().__init__(**kwargs) |
|
if not isinstance(window_size, int) or (isinstance(window_size, int) and window_size < 1): |
|
raise ValueError("Argument `window_size` is expected to be a positive integer.") |
|
self.window_size = window_size |
|
|
|
self.add_state("rmse_val_sum", default=torch.tensor(0.0), dist_reduce_fx="sum") |
|
self.add_state("total_images", default=torch.tensor(0.0), dist_reduce_fx="sum") |
|
|
|
def update(self, preds: Tensor, target: Tensor) -> None: |
|
"""Update state with predictions and targets.""" |
|
if self.rmse_map is None: |
|
_img_shape = target.shape[1:] |
|
self.rmse_map = torch.zeros(_img_shape, dtype=target.dtype, device=target.device) |
|
|
|
self.rmse_val_sum, self.rmse_map, self.total_images = _rmse_sw_update( |
|
preds, target, self.window_size, self.rmse_val_sum, self.rmse_map, self.total_images |
|
) |
|
|
|
def compute(self) -> Optional[Tensor]: |
|
"""Compute Root Mean Squared Error (using sliding window) and potentially return RMSE map.""" |
|
assert self.rmse_map is not None |
|
rmse, _ = _rmse_sw_compute(self.rmse_val_sum, self.rmse_map, self.total_images) |
|
return rmse |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting a single value |
|
>>> import torch |
|
>>> from torchmetrics.image import RootMeanSquaredErrorUsingSlidingWindow |
|
>>> metric = RootMeanSquaredErrorUsingSlidingWindow() |
|
>>> metric.update(torch.rand(4, 3, 16, 16), torch.rand(4, 3, 16, 16)) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting multiple values |
|
>>> import torch |
|
>>> from torchmetrics.image import RootMeanSquaredErrorUsingSlidingWindow |
|
>>> metric = RootMeanSquaredErrorUsingSlidingWindow() |
|
>>> values = [ ] |
|
>>> for _ in range(10): |
|
... values.append(metric(torch.rand(4, 3, 16, 16), torch.rand(4, 3, 16, 16))) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|