# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections.abc import Sequence from typing import Any, Optional, Union import torch from torch import Tensor from torchmetrics.functional.image.rmse_sw import _rmse_sw_compute, _rmse_sw_update from torchmetrics.metric import Metric from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE if not _MATPLOTLIB_AVAILABLE: __doctest_skip__ = ["RootMeanSquaredErrorUsingSlidingWindow.plot"] class RootMeanSquaredErrorUsingSlidingWindow(Metric): """Computes Root Mean Squared Error (RMSE) using sliding window. As input to ``forward`` and ``update`` the metric accepts the following input - ``preds`` (:class:`~torch.Tensor`): Predictions from model of shape ``(N,C,H,W)`` - ``target`` (:class:`~torch.Tensor`): Ground truth values of shape ``(N,C,H,W)`` As output of `forward` and `compute` the metric returns the following output - ``rmse_sw`` (:class:`~torch.Tensor`): returns float scalar tensor with average RMSE-SW value over sample Args: window_size: Sliding window used for rmse calculation kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. Example: >>> from torch import rand >>> from torchmetrics.image import RootMeanSquaredErrorUsingSlidingWindow >>> preds = rand(4, 3, 16, 16) >>> target = rand(4, 3, 16, 16) >>> rmse_sw = RootMeanSquaredErrorUsingSlidingWindow() >>> rmse_sw(preds, target) tensor(0.4158) Raises: ValueError: If ``window_size`` is not a positive integer. """ higher_is_better: bool = False is_differentiable: bool = True full_state_update: bool = False plot_lower_bound: float = 0.0 rmse_val_sum: Tensor rmse_map: Optional[Tensor] = None total_images: Tensor def __init__( self, window_size: int = 8, **kwargs: dict[str, Any], ) -> None: super().__init__(**kwargs) if not isinstance(window_size, int) or (isinstance(window_size, int) and window_size < 1): raise ValueError("Argument `window_size` is expected to be a positive integer.") self.window_size = window_size self.add_state("rmse_val_sum", default=torch.tensor(0.0), dist_reduce_fx="sum") self.add_state("total_images", default=torch.tensor(0.0), dist_reduce_fx="sum") def update(self, preds: Tensor, target: Tensor) -> None: """Update state with predictions and targets.""" if self.rmse_map is None: _img_shape = target.shape[1:] # channels, width, height self.rmse_map = torch.zeros(_img_shape, dtype=target.dtype, device=target.device) self.rmse_val_sum, self.rmse_map, self.total_images = _rmse_sw_update( preds, target, self.window_size, self.rmse_val_sum, self.rmse_map, self.total_images ) def compute(self) -> Optional[Tensor]: """Compute Root Mean Squared Error (using sliding window) and potentially return RMSE map.""" assert self.rmse_map is not None # noqa: S101 # needed for mypy rmse, _ = _rmse_sw_compute(self.rmse_val_sum, self.rmse_map, self.total_images) return rmse def plot( self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None ) -> _PLOT_OUT_TYPE: """Plot a single or multiple values from the metric. Args: val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. If no value is provided, will automatically call `metric.compute` and plot that result. ax: An matplotlib axis object. If provided will add plot to that axis Returns: Figure and Axes object Raises: ModuleNotFoundError: If `matplotlib` is not installed .. plot:: :scale: 75 >>> # Example plotting a single value >>> import torch >>> from torchmetrics.image import RootMeanSquaredErrorUsingSlidingWindow >>> metric = RootMeanSquaredErrorUsingSlidingWindow() >>> metric.update(torch.rand(4, 3, 16, 16), torch.rand(4, 3, 16, 16)) >>> fig_, ax_ = metric.plot() .. plot:: :scale: 75 >>> # Example plotting multiple values >>> import torch >>> from torchmetrics.image import RootMeanSquaredErrorUsingSlidingWindow >>> metric = RootMeanSquaredErrorUsingSlidingWindow() >>> values = [ ] >>> for _ in range(10): ... values.append(metric(torch.rand(4, 3, 16, 16), torch.rand(4, 3, 16, 16))) >>> fig_, ax_ = metric.plot(values) """ return self._plot(val, ax)