File size: 5,429 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Any, Optional, Union
import torch
from torch import Tensor
from torchmetrics.functional.image.rmse_sw import _rmse_sw_compute, _rmse_sw_update
from torchmetrics.metric import Metric
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["RootMeanSquaredErrorUsingSlidingWindow.plot"]
class RootMeanSquaredErrorUsingSlidingWindow(Metric):
"""Computes Root Mean Squared Error (RMSE) using sliding window.
As input to ``forward`` and ``update`` the metric accepts the following input
- ``preds`` (:class:`~torch.Tensor`): Predictions from model of shape ``(N,C,H,W)``
- ``target`` (:class:`~torch.Tensor`): Ground truth values of shape ``(N,C,H,W)``
As output of `forward` and `compute` the metric returns the following output
- ``rmse_sw`` (:class:`~torch.Tensor`): returns float scalar tensor with average RMSE-SW value over sample
Args:
window_size: Sliding window used for rmse calculation
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Example:
>>> from torch import rand
>>> from torchmetrics.image import RootMeanSquaredErrorUsingSlidingWindow
>>> preds = rand(4, 3, 16, 16)
>>> target = rand(4, 3, 16, 16)
>>> rmse_sw = RootMeanSquaredErrorUsingSlidingWindow()
>>> rmse_sw(preds, target)
tensor(0.4158)
Raises:
ValueError: If ``window_size`` is not a positive integer.
"""
higher_is_better: bool = False
is_differentiable: bool = True
full_state_update: bool = False
plot_lower_bound: float = 0.0
rmse_val_sum: Tensor
rmse_map: Optional[Tensor] = None
total_images: Tensor
def __init__(
self,
window_size: int = 8,
**kwargs: dict[str, Any],
) -> None:
super().__init__(**kwargs)
if not isinstance(window_size, int) or (isinstance(window_size, int) and window_size < 1):
raise ValueError("Argument `window_size` is expected to be a positive integer.")
self.window_size = window_size
self.add_state("rmse_val_sum", default=torch.tensor(0.0), dist_reduce_fx="sum")
self.add_state("total_images", default=torch.tensor(0.0), dist_reduce_fx="sum")
def update(self, preds: Tensor, target: Tensor) -> None:
"""Update state with predictions and targets."""
if self.rmse_map is None:
_img_shape = target.shape[1:] # channels, width, height
self.rmse_map = torch.zeros(_img_shape, dtype=target.dtype, device=target.device)
self.rmse_val_sum, self.rmse_map, self.total_images = _rmse_sw_update(
preds, target, self.window_size, self.rmse_val_sum, self.rmse_map, self.total_images
)
def compute(self) -> Optional[Tensor]:
"""Compute Root Mean Squared Error (using sliding window) and potentially return RMSE map."""
assert self.rmse_map is not None # noqa: S101 # needed for mypy
rmse, _ = _rmse_sw_compute(self.rmse_val_sum, self.rmse_map, self.total_images)
return rmse
def plot(
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> # Example plotting a single value
>>> import torch
>>> from torchmetrics.image import RootMeanSquaredErrorUsingSlidingWindow
>>> metric = RootMeanSquaredErrorUsingSlidingWindow()
>>> metric.update(torch.rand(4, 3, 16, 16), torch.rand(4, 3, 16, 16))
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> import torch
>>> from torchmetrics.image import RootMeanSquaredErrorUsingSlidingWindow
>>> metric = RootMeanSquaredErrorUsingSlidingWindow()
>>> values = [ ]
>>> for _ in range(10):
... values.append(metric(torch.rand(4, 3, 16, 16), torch.rand(4, 3, 16, 16)))
>>> fig_, ax_ = metric.plot(values)
"""
return self._plot(val, ax)
|