|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections.abc import Sequence |
|
from typing import Any, List, Optional, Union |
|
|
|
from torch import Tensor |
|
from typing_extensions import Literal |
|
|
|
from torchmetrics.functional.image.d_lambda import _spectral_distortion_index_compute, _spectral_distortion_index_update |
|
from torchmetrics.metric import Metric |
|
from torchmetrics.utilities import rank_zero_warn |
|
from torchmetrics.utilities.data import dim_zero_cat |
|
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE |
|
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE |
|
|
|
if not _MATPLOTLIB_AVAILABLE: |
|
__doctest_skip__ = ["SpectralDistortionIndex.plot"] |
|
|
|
|
|
class SpectralDistortionIndex(Metric): |
|
"""Compute Spectral Distortion Index (SpectralDistortionIndex_) also now as D_lambda. |
|
|
|
The metric is used to compare the spectral distortion between two images. |
|
|
|
As input to ``forward`` and ``update`` the metric accepts the following input |
|
|
|
- ``preds`` (:class:`~torch.Tensor`): Low resolution multispectral image of shape ``(N,C,H,W)`` |
|
- ``target``(:class:`~torch.Tensor`): High resolution fused image of shape ``(N,C,H,W)`` |
|
|
|
As output of `forward` and `compute` the metric returns the following output |
|
|
|
- ``sdi`` (:class:`~torch.Tensor`): if ``reduction!='none'`` returns float scalar tensor with average SDI value |
|
over sample else returns tensor of shape ``(N,)`` with SDI values per sample |
|
|
|
Args: |
|
p: Large spectral differences |
|
reduction: a method to reduce metric score over labels. |
|
|
|
- ``'elementwise_mean'``: takes the mean (default) |
|
- ``'sum'``: takes the sum |
|
- ``'none'``: no reduction will be applied |
|
|
|
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. |
|
|
|
Example: |
|
>>> from torch import rand |
|
>>> from torchmetrics.image import SpectralDistortionIndex |
|
>>> preds = rand([16, 3, 16, 16]) |
|
>>> target = rand([16, 3, 16, 16]) |
|
>>> sdi = SpectralDistortionIndex() |
|
>>> sdi(preds, target) |
|
tensor(0.0234) |
|
|
|
""" |
|
|
|
higher_is_better: bool = True |
|
is_differentiable: bool = True |
|
full_state_update: bool = False |
|
plot_lower_bound: float = 0.0 |
|
plot_upper_bound: float = 1.0 |
|
|
|
preds: List[Tensor] |
|
target: List[Tensor] |
|
|
|
def __init__( |
|
self, p: int = 1, reduction: Literal["elementwise_mean", "sum", "none"] = "elementwise_mean", **kwargs: Any |
|
) -> None: |
|
super().__init__(**kwargs) |
|
rank_zero_warn( |
|
"Metric `SpectralDistortionIndex` will save all targets and" |
|
" predictions in buffer. For large datasets this may lead" |
|
" to large memory footprint." |
|
) |
|
|
|
if not isinstance(p, int) or p <= 0: |
|
raise ValueError(f"Expected `p` to be a positive integer. Got p: {p}.") |
|
self.p = p |
|
allowed_reductions = ("elementwise_mean", "sum", "none") |
|
if reduction not in allowed_reductions: |
|
raise ValueError(f"Expected argument `reduction` be one of {allowed_reductions} but got {reduction}") |
|
self.reduction = reduction |
|
self.add_state("preds", default=[], dist_reduce_fx="cat") |
|
self.add_state("target", default=[], dist_reduce_fx="cat") |
|
|
|
def update(self, preds: Tensor, target: Tensor) -> None: |
|
"""Update state with preds and target.""" |
|
preds, target = _spectral_distortion_index_update(preds, target) |
|
self.preds.append(preds) |
|
self.target.append(target) |
|
|
|
def compute(self) -> Tensor: |
|
"""Compute and returns spectral distortion index.""" |
|
preds = dim_zero_cat(self.preds) |
|
target = dim_zero_cat(self.target) |
|
return _spectral_distortion_index_compute(preds, target, self.p, self.reduction) |
|
|
|
def plot( |
|
self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None |
|
) -> _PLOT_OUT_TYPE: |
|
"""Plot a single or multiple values from the metric. |
|
|
|
Args: |
|
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. |
|
If no value is provided, will automatically call `metric.compute` and plot that result. |
|
ax: An matplotlib axis object. If provided will add plot to that axis |
|
|
|
Returns: |
|
Figure and Axes object |
|
|
|
Raises: |
|
ModuleNotFoundError: |
|
If `matplotlib` is not installed |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting a single value |
|
>>> from torch import rand |
|
>>> from torchmetrics.image import SpectralDistortionIndex |
|
>>> preds = rand([16, 3, 16, 16]) |
|
>>> target = rand([16, 3, 16, 16]) |
|
>>> metric = SpectralDistortionIndex() |
|
>>> metric.update(preds, target) |
|
>>> fig_, ax_ = metric.plot() |
|
|
|
.. plot:: |
|
:scale: 75 |
|
|
|
>>> # Example plotting multiple values |
|
>>> from torch import rand |
|
>>> from torchmetrics.image import SpectralDistortionIndex |
|
>>> preds = rand([16, 3, 16, 16]) |
|
>>> target = rand([16, 3, 16, 16]) |
|
>>> metric = SpectralDistortionIndex() |
|
>>> values = [ ] |
|
>>> for _ in range(10): |
|
... values.append(metric(preds, target)) |
|
>>> fig_, ax_ = metric.plot(values) |
|
|
|
""" |
|
return self._plot(val, ax) |
|
|