# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections.abc import Sequence from typing import Any, List, Optional, Union from torch import Tensor from typing_extensions import Literal from torchmetrics.functional.image.d_lambda import _spectral_distortion_index_compute, _spectral_distortion_index_update from torchmetrics.metric import Metric from torchmetrics.utilities import rank_zero_warn from torchmetrics.utilities.data import dim_zero_cat from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE if not _MATPLOTLIB_AVAILABLE: __doctest_skip__ = ["SpectralDistortionIndex.plot"] class SpectralDistortionIndex(Metric): """Compute Spectral Distortion Index (SpectralDistortionIndex_) also now as D_lambda. The metric is used to compare the spectral distortion between two images. As input to ``forward`` and ``update`` the metric accepts the following input - ``preds`` (:class:`~torch.Tensor`): Low resolution multispectral image of shape ``(N,C,H,W)`` - ``target``(:class:`~torch.Tensor`): High resolution fused image of shape ``(N,C,H,W)`` As output of `forward` and `compute` the metric returns the following output - ``sdi`` (:class:`~torch.Tensor`): if ``reduction!='none'`` returns float scalar tensor with average SDI value over sample else returns tensor of shape ``(N,)`` with SDI values per sample Args: p: Large spectral differences reduction: a method to reduce metric score over labels. - ``'elementwise_mean'``: takes the mean (default) - ``'sum'``: takes the sum - ``'none'``: no reduction will be applied kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info. Example: >>> from torch import rand >>> from torchmetrics.image import SpectralDistortionIndex >>> preds = rand([16, 3, 16, 16]) >>> target = rand([16, 3, 16, 16]) >>> sdi = SpectralDistortionIndex() >>> sdi(preds, target) tensor(0.0234) """ higher_is_better: bool = True is_differentiable: bool = True full_state_update: bool = False plot_lower_bound: float = 0.0 plot_upper_bound: float = 1.0 preds: List[Tensor] target: List[Tensor] def __init__( self, p: int = 1, reduction: Literal["elementwise_mean", "sum", "none"] = "elementwise_mean", **kwargs: Any ) -> None: super().__init__(**kwargs) rank_zero_warn( "Metric `SpectralDistortionIndex` will save all targets and" " predictions in buffer. For large datasets this may lead" " to large memory footprint." ) if not isinstance(p, int) or p <= 0: raise ValueError(f"Expected `p` to be a positive integer. Got p: {p}.") self.p = p allowed_reductions = ("elementwise_mean", "sum", "none") if reduction not in allowed_reductions: raise ValueError(f"Expected argument `reduction` be one of {allowed_reductions} but got {reduction}") self.reduction = reduction self.add_state("preds", default=[], dist_reduce_fx="cat") self.add_state("target", default=[], dist_reduce_fx="cat") def update(self, preds: Tensor, target: Tensor) -> None: """Update state with preds and target.""" preds, target = _spectral_distortion_index_update(preds, target) self.preds.append(preds) self.target.append(target) def compute(self) -> Tensor: """Compute and returns spectral distortion index.""" preds = dim_zero_cat(self.preds) target = dim_zero_cat(self.target) return _spectral_distortion_index_compute(preds, target, self.p, self.reduction) def plot( self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None ) -> _PLOT_OUT_TYPE: """Plot a single or multiple values from the metric. Args: val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results. If no value is provided, will automatically call `metric.compute` and plot that result. ax: An matplotlib axis object. If provided will add plot to that axis Returns: Figure and Axes object Raises: ModuleNotFoundError: If `matplotlib` is not installed .. plot:: :scale: 75 >>> # Example plotting a single value >>> from torch import rand >>> from torchmetrics.image import SpectralDistortionIndex >>> preds = rand([16, 3, 16, 16]) >>> target = rand([16, 3, 16, 16]) >>> metric = SpectralDistortionIndex() >>> metric.update(preds, target) >>> fig_, ax_ = metric.plot() .. plot:: :scale: 75 >>> # Example plotting multiple values >>> from torch import rand >>> from torchmetrics.image import SpectralDistortionIndex >>> preds = rand([16, 3, 16, 16]) >>> target = rand([16, 3, 16, 16]) >>> metric = SpectralDistortionIndex() >>> values = [ ] >>> for _ in range(10): ... values.append(metric(preds, target)) >>> fig_, ax_ = metric.plot(values) """ return self._plot(val, ax)