File size: 6,006 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Sequence
from typing import Any, List, Optional, Union

from torch import Tensor
from typing_extensions import Literal

from torchmetrics.functional.image.d_lambda import _spectral_distortion_index_compute, _spectral_distortion_index_update
from torchmetrics.metric import Metric
from torchmetrics.utilities import rank_zero_warn
from torchmetrics.utilities.data import dim_zero_cat
from torchmetrics.utilities.imports import _MATPLOTLIB_AVAILABLE
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE

if not _MATPLOTLIB_AVAILABLE:
    __doctest_skip__ = ["SpectralDistortionIndex.plot"]


class SpectralDistortionIndex(Metric):
    """Compute Spectral Distortion Index (SpectralDistortionIndex_) also now as D_lambda.

    The metric is used to compare the spectral distortion between two images.

    As input to ``forward`` and ``update`` the metric accepts the following input

    - ``preds`` (:class:`~torch.Tensor`): Low resolution multispectral image of shape ``(N,C,H,W)``
    - ``target``(:class:`~torch.Tensor`): High resolution fused image of shape ``(N,C,H,W)``

    As output of `forward` and `compute` the metric returns the following output

    - ``sdi`` (:class:`~torch.Tensor`): if ``reduction!='none'`` returns float scalar tensor with average SDI value
      over sample else returns tensor of shape ``(N,)`` with SDI values per sample

    Args:
        p: Large spectral differences
        reduction: a method to reduce metric score over labels.

            - ``'elementwise_mean'``: takes the mean (default)
            - ``'sum'``: takes the sum
            - ``'none'``: no reduction will be applied

        kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.

    Example:
        >>> from torch import rand
        >>> from torchmetrics.image import SpectralDistortionIndex
        >>> preds = rand([16, 3, 16, 16])
        >>> target = rand([16, 3, 16, 16])
        >>> sdi = SpectralDistortionIndex()
        >>> sdi(preds, target)
        tensor(0.0234)

    """

    higher_is_better: bool = True
    is_differentiable: bool = True
    full_state_update: bool = False
    plot_lower_bound: float = 0.0
    plot_upper_bound: float = 1.0

    preds: List[Tensor]
    target: List[Tensor]

    def __init__(
        self, p: int = 1, reduction: Literal["elementwise_mean", "sum", "none"] = "elementwise_mean", **kwargs: Any
    ) -> None:
        super().__init__(**kwargs)
        rank_zero_warn(
            "Metric `SpectralDistortionIndex` will save all targets and"
            " predictions in buffer. For large datasets this may lead"
            " to large memory footprint."
        )

        if not isinstance(p, int) or p <= 0:
            raise ValueError(f"Expected `p` to be a positive integer. Got p: {p}.")
        self.p = p
        allowed_reductions = ("elementwise_mean", "sum", "none")
        if reduction not in allowed_reductions:
            raise ValueError(f"Expected argument `reduction` be one of {allowed_reductions} but got {reduction}")
        self.reduction = reduction
        self.add_state("preds", default=[], dist_reduce_fx="cat")
        self.add_state("target", default=[], dist_reduce_fx="cat")

    def update(self, preds: Tensor, target: Tensor) -> None:
        """Update state with preds and target."""
        preds, target = _spectral_distortion_index_update(preds, target)
        self.preds.append(preds)
        self.target.append(target)

    def compute(self) -> Tensor:
        """Compute and returns spectral distortion index."""
        preds = dim_zero_cat(self.preds)
        target = dim_zero_cat(self.target)
        return _spectral_distortion_index_compute(preds, target, self.p, self.reduction)

    def plot(
        self, val: Optional[Union[Tensor, Sequence[Tensor]]] = None, ax: Optional[_AX_TYPE] = None
    ) -> _PLOT_OUT_TYPE:
        """Plot a single or multiple values from the metric.

        Args:
            val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
                If no value is provided, will automatically call `metric.compute` and plot that result.
            ax: An matplotlib axis object. If provided will add plot to that axis

        Returns:
            Figure and Axes object

        Raises:
            ModuleNotFoundError:
                If `matplotlib` is not installed

        .. plot::
            :scale: 75

            >>> # Example plotting a single value
            >>> from torch import rand
            >>> from torchmetrics.image import SpectralDistortionIndex
            >>> preds = rand([16, 3, 16, 16])
            >>> target = rand([16, 3, 16, 16])
            >>> metric = SpectralDistortionIndex()
            >>> metric.update(preds, target)
            >>> fig_, ax_ = metric.plot()

        .. plot::
            :scale: 75

            >>> # Example plotting multiple values
            >>> from torch import rand
            >>> from torchmetrics.image import SpectralDistortionIndex
            >>> preds = rand([16, 3, 16, 16])
            >>> target = rand([16, 3, 16, 16])
            >>> metric = SpectralDistortionIndex()
            >>> values = [ ]
            >>> for _ in range(10):
            ...     values.append(metric(preds, target))
            >>> fig_, ax_ = metric.plot(values)

        """
        return self._plot(val, ax)