|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Optional, Union |
|
|
|
import torch |
|
from torch import Tensor |
|
from typing_extensions import Literal |
|
|
|
from torchmetrics.functional.segmentation.utils import _ignore_background |
|
from torchmetrics.utilities.checks import _check_same_shape |
|
from torchmetrics.utilities.compute import _safe_divide |
|
|
|
|
|
def _dice_score_validate_args( |
|
num_classes: int, |
|
include_background: bool, |
|
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro", |
|
input_format: Literal["one-hot", "index"] = "one-hot", |
|
zero_divide: Union[float, Literal["warn", "nan"]] = 1.0, |
|
) -> None: |
|
"""Validate the arguments of the metric.""" |
|
if not isinstance(num_classes, int) or num_classes <= 0: |
|
raise ValueError(f"Expected argument `num_classes` must be a positive integer, but got {num_classes}.") |
|
if not isinstance(include_background, bool): |
|
raise ValueError(f"Expected argument `include_background` must be a boolean, but got {include_background}.") |
|
allowed_average = ["micro", "macro", "weighted", "none"] |
|
if average is not None and average not in allowed_average: |
|
raise ValueError(f"Expected argument `average` to be one of {allowed_average} or None, but got {average}.") |
|
if input_format not in ["one-hot", "index"]: |
|
raise ValueError(f"Expected argument `input_format` to be one of 'one-hot', 'index', but got {input_format}.") |
|
if zero_divide not in [1.0, 0.0, "warn", "nan"]: |
|
raise ValueError( |
|
f"Expected argument `zero_divide` to be one of 1.0, 0.0, 'warn', 'nan', but got {zero_divide}." |
|
) |
|
|
|
|
|
def _dice_score_update( |
|
preds: Tensor, |
|
target: Tensor, |
|
num_classes: int, |
|
include_background: bool, |
|
input_format: Literal["one-hot", "index"] = "one-hot", |
|
) -> tuple[Tensor, Tensor, Tensor]: |
|
"""Update the state with the current prediction and target.""" |
|
_check_same_shape(preds, target) |
|
|
|
if input_format == "index": |
|
preds = torch.nn.functional.one_hot(preds, num_classes=num_classes).movedim(-1, 1) |
|
target = torch.nn.functional.one_hot(target, num_classes=num_classes).movedim(-1, 1) |
|
|
|
if preds.ndim < 3: |
|
raise ValueError(f"Expected both `preds` and `target` to have at least 3 dimensions, but got {preds.ndim}.") |
|
|
|
if not include_background: |
|
preds, target = _ignore_background(preds, target) |
|
|
|
reduce_axis = list(range(2, target.ndim)) |
|
intersection = torch.sum(preds * target, dim=reduce_axis) |
|
target_sum = torch.sum(target, dim=reduce_axis) |
|
pred_sum = torch.sum(preds, dim=reduce_axis) |
|
|
|
numerator = 2 * intersection |
|
denominator = pred_sum + target_sum |
|
support = target_sum |
|
return numerator, denominator, support |
|
|
|
|
|
def _dice_score_compute( |
|
numerator: Tensor, |
|
denominator: Tensor, |
|
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro", |
|
support: Optional[Tensor] = None, |
|
zero_division: Union[float, Literal["warn", "nan"]] = 1.0, |
|
) -> Tensor: |
|
"""Compute the Dice score from the numerator and denominator.""" |
|
|
|
if torch.all(numerator == 0) and torch.all(denominator == 0): |
|
return torch.tensor(0.0, device=numerator.device, dtype=torch.float) |
|
|
|
if average == "micro": |
|
numerator = torch.sum(numerator, dim=-1) |
|
denominator = torch.sum(denominator, dim=-1) |
|
dice = _safe_divide(numerator, denominator, zero_division=zero_division) |
|
if average == "macro": |
|
dice = torch.mean(dice, dim=-1) |
|
elif average == "weighted" and support is not None: |
|
weights = _safe_divide(support, torch.sum(support, dim=-1, keepdim=True), zero_division=zero_division) |
|
dice = torch.sum(dice * weights, dim=-1) |
|
return dice |
|
|
|
|
|
def dice_score( |
|
preds: Tensor, |
|
target: Tensor, |
|
num_classes: int, |
|
include_background: bool = True, |
|
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro", |
|
input_format: Literal["one-hot", "index"] = "one-hot", |
|
) -> Tensor: |
|
"""Compute the Dice score for semantic segmentation. |
|
|
|
Args: |
|
preds: Predictions from model |
|
target: Ground truth values |
|
num_classes: Number of classes |
|
include_background: Whether to include the background class in the computation |
|
average: The method to average the dice score. Options are ``"micro"``, ``"macro"``, ``"weighted"``, ``"none"`` |
|
or ``None``. This determines how to average the dice score across different classes. |
|
input_format: What kind of input the function receives. Choose between ``"one-hot"`` for one-hot encoded tensors |
|
or ``"index"`` for index tensors |
|
|
|
Returns: |
|
The Dice score. |
|
|
|
Example (with one-hot encoded tensors): |
|
>>> from torch import randint |
|
>>> from torchmetrics.functional.segmentation import dice_score |
|
>>> preds = randint(0, 2, (4, 5, 16, 16)) # 4 samples, 5 classes, 16x16 prediction |
|
>>> target = randint(0, 2, (4, 5, 16, 16)) # 4 samples, 5 classes, 16x16 target |
|
>>> # dice score micro averaged over all classes |
|
>>> dice_score(preds, target, num_classes=5, average="micro") |
|
tensor([0.4842, 0.4968, 0.5053, 0.4902]) |
|
>>> # dice score per sample and class |
|
>>> dice_score(preds, target, num_classes=5, average="none") |
|
tensor([[0.4724, 0.5185, 0.4710, 0.5062, 0.4500], |
|
[0.4571, 0.4980, 0.5191, 0.4380, 0.5649], |
|
[0.5428, 0.4904, 0.5358, 0.4830, 0.4724], |
|
[0.4715, 0.4925, 0.4797, 0.5267, 0.4788]]) |
|
|
|
Example (with index tensors): |
|
>>> from torch import randint |
|
>>> from torchmetrics.functional.segmentation import dice_score |
|
>>> preds = randint(0, 5, (4, 16, 16)) # 4 samples, 5 classes, 16x16 prediction |
|
>>> target = randint(0, 5, (4, 16, 16)) # 4 samples, 5 classes, 16x16 target |
|
>>> # dice score micro averaged over all classes |
|
>>> dice_score(preds, target, num_classes=5, average="micro", input_format="index") |
|
tensor([0.2031, 0.1914, 0.2500, 0.2266]) |
|
>>> # dice score per sample and class |
|
>>> dice_score(preds, target, num_classes=5, average="none", input_format="index") |
|
tensor([[0.1714, 0.2500, 0.1304, 0.2524, 0.2069], |
|
[0.1837, 0.2162, 0.0962, 0.2692, 0.1895], |
|
[0.3866, 0.1348, 0.2526, 0.2301, 0.2083], |
|
[0.1978, 0.2804, 0.1714, 0.1915, 0.2783]]) |
|
|
|
""" |
|
_dice_score_validate_args(num_classes, include_background, average, input_format) |
|
numerator, denominator, support = _dice_score_update(preds, target, num_classes, include_background, input_format) |
|
return _dice_score_compute(numerator, denominator, average, support=support) |
|
|