# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Union import torch from torch import Tensor from typing_extensions import Literal from torchmetrics.functional.segmentation.utils import _ignore_background from torchmetrics.utilities.checks import _check_same_shape from torchmetrics.utilities.compute import _safe_divide def _dice_score_validate_args( num_classes: int, include_background: bool, average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro", input_format: Literal["one-hot", "index"] = "one-hot", zero_divide: Union[float, Literal["warn", "nan"]] = 1.0, ) -> None: """Validate the arguments of the metric.""" if not isinstance(num_classes, int) or num_classes <= 0: raise ValueError(f"Expected argument `num_classes` must be a positive integer, but got {num_classes}.") if not isinstance(include_background, bool): raise ValueError(f"Expected argument `include_background` must be a boolean, but got {include_background}.") allowed_average = ["micro", "macro", "weighted", "none"] if average is not None and average not in allowed_average: raise ValueError(f"Expected argument `average` to be one of {allowed_average} or None, but got {average}.") if input_format not in ["one-hot", "index"]: raise ValueError(f"Expected argument `input_format` to be one of 'one-hot', 'index', but got {input_format}.") if zero_divide not in [1.0, 0.0, "warn", "nan"]: raise ValueError( f"Expected argument `zero_divide` to be one of 1.0, 0.0, 'warn', 'nan', but got {zero_divide}." ) def _dice_score_update( preds: Tensor, target: Tensor, num_classes: int, include_background: bool, input_format: Literal["one-hot", "index"] = "one-hot", ) -> tuple[Tensor, Tensor, Tensor]: """Update the state with the current prediction and target.""" _check_same_shape(preds, target) if input_format == "index": preds = torch.nn.functional.one_hot(preds, num_classes=num_classes).movedim(-1, 1) target = torch.nn.functional.one_hot(target, num_classes=num_classes).movedim(-1, 1) if preds.ndim < 3: raise ValueError(f"Expected both `preds` and `target` to have at least 3 dimensions, but got {preds.ndim}.") if not include_background: preds, target = _ignore_background(preds, target) reduce_axis = list(range(2, target.ndim)) intersection = torch.sum(preds * target, dim=reduce_axis) target_sum = torch.sum(target, dim=reduce_axis) pred_sum = torch.sum(preds, dim=reduce_axis) numerator = 2 * intersection denominator = pred_sum + target_sum support = target_sum return numerator, denominator, support def _dice_score_compute( numerator: Tensor, denominator: Tensor, average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro", support: Optional[Tensor] = None, zero_division: Union[float, Literal["warn", "nan"]] = 1.0, ) -> Tensor: """Compute the Dice score from the numerator and denominator.""" # If both numerator and denominator are 0, the dice score is 0 if torch.all(numerator == 0) and torch.all(denominator == 0): return torch.tensor(0.0, device=numerator.device, dtype=torch.float) if average == "micro": numerator = torch.sum(numerator, dim=-1) denominator = torch.sum(denominator, dim=-1) dice = _safe_divide(numerator, denominator, zero_division=zero_division) if average == "macro": dice = torch.mean(dice, dim=-1) elif average == "weighted" and support is not None: weights = _safe_divide(support, torch.sum(support, dim=-1, keepdim=True), zero_division=zero_division) dice = torch.sum(dice * weights, dim=-1) return dice def dice_score( preds: Tensor, target: Tensor, num_classes: int, include_background: bool = True, average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro", input_format: Literal["one-hot", "index"] = "one-hot", ) -> Tensor: """Compute the Dice score for semantic segmentation. Args: preds: Predictions from model target: Ground truth values num_classes: Number of classes include_background: Whether to include the background class in the computation average: The method to average the dice score. Options are ``"micro"``, ``"macro"``, ``"weighted"``, ``"none"`` or ``None``. This determines how to average the dice score across different classes. input_format: What kind of input the function receives. Choose between ``"one-hot"`` for one-hot encoded tensors or ``"index"`` for index tensors Returns: The Dice score. Example (with one-hot encoded tensors): >>> from torch import randint >>> from torchmetrics.functional.segmentation import dice_score >>> preds = randint(0, 2, (4, 5, 16, 16)) # 4 samples, 5 classes, 16x16 prediction >>> target = randint(0, 2, (4, 5, 16, 16)) # 4 samples, 5 classes, 16x16 target >>> # dice score micro averaged over all classes >>> dice_score(preds, target, num_classes=5, average="micro") tensor([0.4842, 0.4968, 0.5053, 0.4902]) >>> # dice score per sample and class >>> dice_score(preds, target, num_classes=5, average="none") tensor([[0.4724, 0.5185, 0.4710, 0.5062, 0.4500], [0.4571, 0.4980, 0.5191, 0.4380, 0.5649], [0.5428, 0.4904, 0.5358, 0.4830, 0.4724], [0.4715, 0.4925, 0.4797, 0.5267, 0.4788]]) Example (with index tensors): >>> from torch import randint >>> from torchmetrics.functional.segmentation import dice_score >>> preds = randint(0, 5, (4, 16, 16)) # 4 samples, 5 classes, 16x16 prediction >>> target = randint(0, 5, (4, 16, 16)) # 4 samples, 5 classes, 16x16 target >>> # dice score micro averaged over all classes >>> dice_score(preds, target, num_classes=5, average="micro", input_format="index") tensor([0.2031, 0.1914, 0.2500, 0.2266]) >>> # dice score per sample and class >>> dice_score(preds, target, num_classes=5, average="none", input_format="index") tensor([[0.1714, 0.2500, 0.1304, 0.2524, 0.2069], [0.1837, 0.2162, 0.0962, 0.2692, 0.1895], [0.3866, 0.1348, 0.2526, 0.2301, 0.2083], [0.1978, 0.2804, 0.1714, 0.1915, 0.2783]]) """ _dice_score_validate_args(num_classes, include_background, average, input_format) numerator, denominator, support = _dice_score_update(preds, target, num_classes, include_background, input_format) return _dice_score_compute(numerator, denominator, average, support=support)