File size: 7,343 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Union

import torch
from torch import Tensor
from typing_extensions import Literal

from torchmetrics.functional.segmentation.utils import _ignore_background
from torchmetrics.utilities.checks import _check_same_shape
from torchmetrics.utilities.compute import _safe_divide


def _dice_score_validate_args(
    num_classes: int,
    include_background: bool,
    average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro",
    input_format: Literal["one-hot", "index"] = "one-hot",
    zero_divide: Union[float, Literal["warn", "nan"]] = 1.0,
) -> None:
    """Validate the arguments of the metric."""
    if not isinstance(num_classes, int) or num_classes <= 0:
        raise ValueError(f"Expected argument `num_classes` must be a positive integer, but got {num_classes}.")
    if not isinstance(include_background, bool):
        raise ValueError(f"Expected argument `include_background` must be a boolean, but got {include_background}.")
    allowed_average = ["micro", "macro", "weighted", "none"]
    if average is not None and average not in allowed_average:
        raise ValueError(f"Expected argument `average` to be one of {allowed_average} or None, but got {average}.")
    if input_format not in ["one-hot", "index"]:
        raise ValueError(f"Expected argument `input_format` to be one of 'one-hot', 'index', but got {input_format}.")
    if zero_divide not in [1.0, 0.0, "warn", "nan"]:
        raise ValueError(
            f"Expected argument `zero_divide` to be one of 1.0, 0.0, 'warn', 'nan', but got {zero_divide}."
        )


def _dice_score_update(
    preds: Tensor,
    target: Tensor,
    num_classes: int,
    include_background: bool,
    input_format: Literal["one-hot", "index"] = "one-hot",
) -> tuple[Tensor, Tensor, Tensor]:
    """Update the state with the current prediction and target."""
    _check_same_shape(preds, target)

    if input_format == "index":
        preds = torch.nn.functional.one_hot(preds, num_classes=num_classes).movedim(-1, 1)
        target = torch.nn.functional.one_hot(target, num_classes=num_classes).movedim(-1, 1)

    if preds.ndim < 3:
        raise ValueError(f"Expected both `preds` and `target` to have at least 3 dimensions, but got {preds.ndim}.")

    if not include_background:
        preds, target = _ignore_background(preds, target)

    reduce_axis = list(range(2, target.ndim))
    intersection = torch.sum(preds * target, dim=reduce_axis)
    target_sum = torch.sum(target, dim=reduce_axis)
    pred_sum = torch.sum(preds, dim=reduce_axis)

    numerator = 2 * intersection
    denominator = pred_sum + target_sum
    support = target_sum
    return numerator, denominator, support


def _dice_score_compute(
    numerator: Tensor,
    denominator: Tensor,
    average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro",
    support: Optional[Tensor] = None,
    zero_division: Union[float, Literal["warn", "nan"]] = 1.0,
) -> Tensor:
    """Compute the Dice score from the numerator and denominator."""
    # If both numerator and denominator are 0, the dice score is 0
    if torch.all(numerator == 0) and torch.all(denominator == 0):
        return torch.tensor(0.0, device=numerator.device, dtype=torch.float)

    if average == "micro":
        numerator = torch.sum(numerator, dim=-1)
        denominator = torch.sum(denominator, dim=-1)
    dice = _safe_divide(numerator, denominator, zero_division=zero_division)
    if average == "macro":
        dice = torch.mean(dice, dim=-1)
    elif average == "weighted" and support is not None:
        weights = _safe_divide(support, torch.sum(support, dim=-1, keepdim=True), zero_division=zero_division)
        dice = torch.sum(dice * weights, dim=-1)
    return dice


def dice_score(
    preds: Tensor,
    target: Tensor,
    num_classes: int,
    include_background: bool = True,
    average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro",
    input_format: Literal["one-hot", "index"] = "one-hot",
) -> Tensor:
    """Compute the Dice score for semantic segmentation.

    Args:
        preds: Predictions from model
        target: Ground truth values
        num_classes: Number of classes
        include_background: Whether to include the background class in the computation
        average: The method to average the dice score. Options are ``"micro"``, ``"macro"``, ``"weighted"``, ``"none"``
          or ``None``. This determines how to average the dice score across different classes.
        input_format: What kind of input the function receives. Choose between ``"one-hot"`` for one-hot encoded tensors
          or ``"index"`` for index tensors

    Returns:
        The Dice score.

    Example (with one-hot encoded tensors):
        >>> from torch import randint
        >>> from torchmetrics.functional.segmentation import dice_score
        >>> preds = randint(0, 2, (4, 5, 16, 16))  # 4 samples, 5 classes, 16x16 prediction
        >>> target = randint(0, 2, (4, 5, 16, 16))  # 4 samples, 5 classes, 16x16 target
        >>> # dice score micro averaged over all classes
        >>> dice_score(preds, target, num_classes=5, average="micro")
        tensor([0.4842, 0.4968, 0.5053, 0.4902])
        >>> # dice score per sample and class
        >>> dice_score(preds, target, num_classes=5, average="none")
        tensor([[0.4724, 0.5185, 0.4710, 0.5062, 0.4500],
                [0.4571, 0.4980, 0.5191, 0.4380, 0.5649],
                [0.5428, 0.4904, 0.5358, 0.4830, 0.4724],
                [0.4715, 0.4925, 0.4797, 0.5267, 0.4788]])

    Example (with index tensors):
        >>> from torch import randint
        >>> from torchmetrics.functional.segmentation import dice_score
        >>> preds = randint(0, 5, (4, 16, 16))  # 4 samples, 5 classes, 16x16 prediction
        >>> target = randint(0, 5, (4, 16, 16))  # 4 samples, 5 classes, 16x16 target
        >>> # dice score micro averaged over all classes
        >>> dice_score(preds, target, num_classes=5, average="micro", input_format="index")
        tensor([0.2031, 0.1914, 0.2500, 0.2266])
        >>> # dice score per sample and class
        >>> dice_score(preds, target, num_classes=5, average="none", input_format="index")
        tensor([[0.1714, 0.2500, 0.1304, 0.2524, 0.2069],
                [0.1837, 0.2162, 0.0962, 0.2692, 0.1895],
                [0.3866, 0.1348, 0.2526, 0.2301, 0.2083],
                [0.1978, 0.2804, 0.1714, 0.1915, 0.2783]])

    """
    _dice_score_validate_args(num_classes, include_background, average, input_format)
    numerator, denominator, support = _dice_score_update(preds, target, num_classes, include_background, input_format)
    return _dice_score_compute(numerator, denominator, average, support=support)