File size: 7,343 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Union
import torch
from torch import Tensor
from typing_extensions import Literal
from torchmetrics.functional.segmentation.utils import _ignore_background
from torchmetrics.utilities.checks import _check_same_shape
from torchmetrics.utilities.compute import _safe_divide
def _dice_score_validate_args(
num_classes: int,
include_background: bool,
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro",
input_format: Literal["one-hot", "index"] = "one-hot",
zero_divide: Union[float, Literal["warn", "nan"]] = 1.0,
) -> None:
"""Validate the arguments of the metric."""
if not isinstance(num_classes, int) or num_classes <= 0:
raise ValueError(f"Expected argument `num_classes` must be a positive integer, but got {num_classes}.")
if not isinstance(include_background, bool):
raise ValueError(f"Expected argument `include_background` must be a boolean, but got {include_background}.")
allowed_average = ["micro", "macro", "weighted", "none"]
if average is not None and average not in allowed_average:
raise ValueError(f"Expected argument `average` to be one of {allowed_average} or None, but got {average}.")
if input_format not in ["one-hot", "index"]:
raise ValueError(f"Expected argument `input_format` to be one of 'one-hot', 'index', but got {input_format}.")
if zero_divide not in [1.0, 0.0, "warn", "nan"]:
raise ValueError(
f"Expected argument `zero_divide` to be one of 1.0, 0.0, 'warn', 'nan', but got {zero_divide}."
)
def _dice_score_update(
preds: Tensor,
target: Tensor,
num_classes: int,
include_background: bool,
input_format: Literal["one-hot", "index"] = "one-hot",
) -> tuple[Tensor, Tensor, Tensor]:
"""Update the state with the current prediction and target."""
_check_same_shape(preds, target)
if input_format == "index":
preds = torch.nn.functional.one_hot(preds, num_classes=num_classes).movedim(-1, 1)
target = torch.nn.functional.one_hot(target, num_classes=num_classes).movedim(-1, 1)
if preds.ndim < 3:
raise ValueError(f"Expected both `preds` and `target` to have at least 3 dimensions, but got {preds.ndim}.")
if not include_background:
preds, target = _ignore_background(preds, target)
reduce_axis = list(range(2, target.ndim))
intersection = torch.sum(preds * target, dim=reduce_axis)
target_sum = torch.sum(target, dim=reduce_axis)
pred_sum = torch.sum(preds, dim=reduce_axis)
numerator = 2 * intersection
denominator = pred_sum + target_sum
support = target_sum
return numerator, denominator, support
def _dice_score_compute(
numerator: Tensor,
denominator: Tensor,
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro",
support: Optional[Tensor] = None,
zero_division: Union[float, Literal["warn", "nan"]] = 1.0,
) -> Tensor:
"""Compute the Dice score from the numerator and denominator."""
# If both numerator and denominator are 0, the dice score is 0
if torch.all(numerator == 0) and torch.all(denominator == 0):
return torch.tensor(0.0, device=numerator.device, dtype=torch.float)
if average == "micro":
numerator = torch.sum(numerator, dim=-1)
denominator = torch.sum(denominator, dim=-1)
dice = _safe_divide(numerator, denominator, zero_division=zero_division)
if average == "macro":
dice = torch.mean(dice, dim=-1)
elif average == "weighted" and support is not None:
weights = _safe_divide(support, torch.sum(support, dim=-1, keepdim=True), zero_division=zero_division)
dice = torch.sum(dice * weights, dim=-1)
return dice
def dice_score(
preds: Tensor,
target: Tensor,
num_classes: int,
include_background: bool = True,
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro",
input_format: Literal["one-hot", "index"] = "one-hot",
) -> Tensor:
"""Compute the Dice score for semantic segmentation.
Args:
preds: Predictions from model
target: Ground truth values
num_classes: Number of classes
include_background: Whether to include the background class in the computation
average: The method to average the dice score. Options are ``"micro"``, ``"macro"``, ``"weighted"``, ``"none"``
or ``None``. This determines how to average the dice score across different classes.
input_format: What kind of input the function receives. Choose between ``"one-hot"`` for one-hot encoded tensors
or ``"index"`` for index tensors
Returns:
The Dice score.
Example (with one-hot encoded tensors):
>>> from torch import randint
>>> from torchmetrics.functional.segmentation import dice_score
>>> preds = randint(0, 2, (4, 5, 16, 16)) # 4 samples, 5 classes, 16x16 prediction
>>> target = randint(0, 2, (4, 5, 16, 16)) # 4 samples, 5 classes, 16x16 target
>>> # dice score micro averaged over all classes
>>> dice_score(preds, target, num_classes=5, average="micro")
tensor([0.4842, 0.4968, 0.5053, 0.4902])
>>> # dice score per sample and class
>>> dice_score(preds, target, num_classes=5, average="none")
tensor([[0.4724, 0.5185, 0.4710, 0.5062, 0.4500],
[0.4571, 0.4980, 0.5191, 0.4380, 0.5649],
[0.5428, 0.4904, 0.5358, 0.4830, 0.4724],
[0.4715, 0.4925, 0.4797, 0.5267, 0.4788]])
Example (with index tensors):
>>> from torch import randint
>>> from torchmetrics.functional.segmentation import dice_score
>>> preds = randint(0, 5, (4, 16, 16)) # 4 samples, 5 classes, 16x16 prediction
>>> target = randint(0, 5, (4, 16, 16)) # 4 samples, 5 classes, 16x16 target
>>> # dice score micro averaged over all classes
>>> dice_score(preds, target, num_classes=5, average="micro", input_format="index")
tensor([0.2031, 0.1914, 0.2500, 0.2266])
>>> # dice score per sample and class
>>> dice_score(preds, target, num_classes=5, average="none", input_format="index")
tensor([[0.1714, 0.2500, 0.1304, 0.2524, 0.2069],
[0.1837, 0.2162, 0.0962, 0.2692, 0.1895],
[0.3866, 0.1348, 0.2526, 0.2301, 0.2083],
[0.1978, 0.2804, 0.1714, 0.1915, 0.2783]])
"""
_dice_score_validate_args(num_classes, include_background, average, input_format)
numerator, denominator, support = _dice_score_update(preds, target, num_classes, include_background, input_format)
return _dice_score_compute(numerator, denominator, average, support=support)
|