|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Optional |
|
|
|
from torch import Tensor, tensor |
|
|
|
from torchmetrics.functional.classification.auroc import binary_auroc |
|
from torchmetrics.utilities.checks import _check_retrieval_functional_inputs |
|
|
|
|
|
def retrieval_auroc( |
|
preds: Tensor, target: Tensor, top_k: Optional[int] = None, max_fpr: Optional[float] = None |
|
) -> Tensor: |
|
"""Compute area under the receiver operating characteristic curve (AUROC) for information retrieval. |
|
|
|
``preds`` and ``target`` should be of the same shape and live on the same device. If no ``target`` is ``True``, |
|
``0`` is returned. ``target`` must be either `bool` or `integers` and ``preds`` must be ``float``, |
|
otherwise an error is raised. |
|
|
|
Args: |
|
preds: estimated probabilities of each document to be relevant. |
|
target: ground truth about each document being relevant or not. |
|
top_k: consider only the top k elements (default: ``None``, which considers them all) |
|
max_fpr: If not ``None``, calculates standardized partial AUC over the range ``[0, max_fpr]``. |
|
|
|
Return: |
|
a single-value tensor with the auroc value of the predictions ``preds`` w.r.t. the labels ``target``. |
|
|
|
Raises: |
|
ValueError: |
|
If ``top_k`` is not ``None`` or an integer larger than 0. |
|
|
|
Example: |
|
>>> from torchmetrics.functional.retrieval import retrieval_auroc |
|
>>> preds = tensor([0.2, 0.3, 0.5]) |
|
>>> target = tensor([True, False, True]) |
|
>>> retrieval_auroc(preds, target) |
|
tensor(0.5000) |
|
|
|
""" |
|
preds, target = _check_retrieval_functional_inputs(preds, target) |
|
|
|
top_k = top_k or preds.shape[-1] |
|
if not (isinstance(top_k, int) and top_k > 0): |
|
raise ValueError("`top_k` has to be a positive integer or None") |
|
|
|
top_k_idx = preds.topk(min(top_k, preds.shape[-1]), sorted=True, dim=-1)[1] |
|
target = target[top_k_idx] |
|
if (0 not in target) or (1 not in target): |
|
return tensor(0.0, device=preds.device, dtype=preds.dtype) |
|
|
|
preds = preds[top_k_idx] |
|
return binary_auroc(preds, target.int(), max_fpr=max_fpr) |
|
|