File size: 2,663 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
# Copyright The Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional
from torch import Tensor, tensor
from torchmetrics.functional.classification.auroc import binary_auroc
from torchmetrics.utilities.checks import _check_retrieval_functional_inputs
def retrieval_auroc(
preds: Tensor, target: Tensor, top_k: Optional[int] = None, max_fpr: Optional[float] = None
) -> Tensor:
"""Compute area under the receiver operating characteristic curve (AUROC) for information retrieval.
``preds`` and ``target`` should be of the same shape and live on the same device. If no ``target`` is ``True``,
``0`` is returned. ``target`` must be either `bool` or `integers` and ``preds`` must be ``float``,
otherwise an error is raised.
Args:
preds: estimated probabilities of each document to be relevant.
target: ground truth about each document being relevant or not.
top_k: consider only the top k elements (default: ``None``, which considers them all)
max_fpr: If not ``None``, calculates standardized partial AUC over the range ``[0, max_fpr]``.
Return:
a single-value tensor with the auroc value of the predictions ``preds`` w.r.t. the labels ``target``.
Raises:
ValueError:
If ``top_k`` is not ``None`` or an integer larger than 0.
Example:
>>> from torchmetrics.functional.retrieval import retrieval_auroc
>>> preds = tensor([0.2, 0.3, 0.5])
>>> target = tensor([True, False, True])
>>> retrieval_auroc(preds, target)
tensor(0.5000)
"""
preds, target = _check_retrieval_functional_inputs(preds, target)
top_k = top_k or preds.shape[-1]
if not (isinstance(top_k, int) and top_k > 0):
raise ValueError("`top_k` has to be a positive integer or None")
top_k_idx = preds.topk(min(top_k, preds.shape[-1]), sorted=True, dim=-1)[1]
target = target[top_k_idx]
if (0 not in target) or (1 not in target):
return tensor(0.0, device=preds.device, dtype=preds.dtype)
preds = preds[top_k_idx]
return binary_auroc(preds, target.int(), max_fpr=max_fpr)
|