# Copyright The Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional from torch import Tensor, tensor from torchmetrics.functional.classification.auroc import binary_auroc from torchmetrics.utilities.checks import _check_retrieval_functional_inputs def retrieval_auroc( preds: Tensor, target: Tensor, top_k: Optional[int] = None, max_fpr: Optional[float] = None ) -> Tensor: """Compute area under the receiver operating characteristic curve (AUROC) for information retrieval. ``preds`` and ``target`` should be of the same shape and live on the same device. If no ``target`` is ``True``, ``0`` is returned. ``target`` must be either `bool` or `integers` and ``preds`` must be ``float``, otherwise an error is raised. Args: preds: estimated probabilities of each document to be relevant. target: ground truth about each document being relevant or not. top_k: consider only the top k elements (default: ``None``, which considers them all) max_fpr: If not ``None``, calculates standardized partial AUC over the range ``[0, max_fpr]``. Return: a single-value tensor with the auroc value of the predictions ``preds`` w.r.t. the labels ``target``. Raises: ValueError: If ``top_k`` is not ``None`` or an integer larger than 0. Example: >>> from torchmetrics.functional.retrieval import retrieval_auroc >>> preds = tensor([0.2, 0.3, 0.5]) >>> target = tensor([True, False, True]) >>> retrieval_auroc(preds, target) tensor(0.5000) """ preds, target = _check_retrieval_functional_inputs(preds, target) top_k = top_k or preds.shape[-1] if not (isinstance(top_k, int) and top_k > 0): raise ValueError("`top_k` has to be a positive integer or None") top_k_idx = preds.topk(min(top_k, preds.shape[-1]), sorted=True, dim=-1)[1] target = target[top_k_idx] if (0 not in target) or (1 not in target): return tensor(0.0, device=preds.device, dtype=preds.dtype) preds = preds[top_k_idx] return binary_auroc(preds, target.int(), max_fpr=max_fpr)