|
from sympy.core.function import Add, ArgumentIndexError, Function |
|
from sympy.core.power import Pow |
|
from sympy.core.singleton import S |
|
from sympy.core.sorting import default_sort_key |
|
from sympy.core.sympify import sympify |
|
from sympy.functions.elementary.exponential import exp, log |
|
from sympy.functions.elementary.miscellaneous import Max, Min |
|
from .ast import Token, none |
|
|
|
|
|
def _logaddexp(x1, x2, *, evaluate=True): |
|
return log(Add(exp(x1, evaluate=evaluate), exp(x2, evaluate=evaluate), evaluate=evaluate)) |
|
|
|
|
|
_two = S.One*2 |
|
_ln2 = log(_two) |
|
|
|
|
|
def _lb(x, *, evaluate=True): |
|
return log(x, evaluate=evaluate)/_ln2 |
|
|
|
|
|
def _exp2(x, *, evaluate=True): |
|
return Pow(_two, x, evaluate=evaluate) |
|
|
|
|
|
def _logaddexp2(x1, x2, *, evaluate=True): |
|
return _lb(Add(_exp2(x1, evaluate=evaluate), |
|
_exp2(x2, evaluate=evaluate), evaluate=evaluate)) |
|
|
|
|
|
class logaddexp(Function): |
|
""" Logarithm of the sum of exponentiations of the inputs. |
|
|
|
Helper class for use with e.g. numpy.logaddexp |
|
|
|
See Also |
|
======== |
|
|
|
https://numpy.org/doc/stable/reference/generated/numpy.logaddexp.html |
|
""" |
|
nargs = 2 |
|
|
|
def __new__(cls, *args): |
|
return Function.__new__(cls, *sorted(args, key=default_sort_key)) |
|
|
|
def fdiff(self, argindex=1): |
|
""" |
|
Returns the first derivative of this function. |
|
""" |
|
if argindex == 1: |
|
wrt, other = self.args |
|
elif argindex == 2: |
|
other, wrt = self.args |
|
else: |
|
raise ArgumentIndexError(self, argindex) |
|
return S.One/(S.One + exp(other-wrt)) |
|
|
|
def _eval_rewrite_as_log(self, x1, x2, **kwargs): |
|
return _logaddexp(x1, x2) |
|
|
|
def _eval_evalf(self, *args, **kwargs): |
|
return self.rewrite(log).evalf(*args, **kwargs) |
|
|
|
def _eval_simplify(self, *args, **kwargs): |
|
a, b = (x.simplify(**kwargs) for x in self.args) |
|
candidate = _logaddexp(a, b) |
|
if candidate != _logaddexp(a, b, evaluate=False): |
|
return candidate |
|
else: |
|
return logaddexp(a, b) |
|
|
|
|
|
class logaddexp2(Function): |
|
""" Logarithm of the sum of exponentiations of the inputs in base-2. |
|
|
|
Helper class for use with e.g. numpy.logaddexp2 |
|
|
|
See Also |
|
======== |
|
|
|
https://numpy.org/doc/stable/reference/generated/numpy.logaddexp2.html |
|
""" |
|
nargs = 2 |
|
|
|
def __new__(cls, *args): |
|
return Function.__new__(cls, *sorted(args, key=default_sort_key)) |
|
|
|
def fdiff(self, argindex=1): |
|
""" |
|
Returns the first derivative of this function. |
|
""" |
|
if argindex == 1: |
|
wrt, other = self.args |
|
elif argindex == 2: |
|
other, wrt = self.args |
|
else: |
|
raise ArgumentIndexError(self, argindex) |
|
return S.One/(S.One + _exp2(other-wrt)) |
|
|
|
def _eval_rewrite_as_log(self, x1, x2, **kwargs): |
|
return _logaddexp2(x1, x2) |
|
|
|
def _eval_evalf(self, *args, **kwargs): |
|
return self.rewrite(log).evalf(*args, **kwargs) |
|
|
|
def _eval_simplify(self, *args, **kwargs): |
|
a, b = (x.simplify(**kwargs).factor() for x in self.args) |
|
candidate = _logaddexp2(a, b) |
|
if candidate != _logaddexp2(a, b, evaluate=False): |
|
return candidate |
|
else: |
|
return logaddexp2(a, b) |
|
|
|
|
|
class amin(Token): |
|
""" Minimum value along an axis. |
|
|
|
Helper class for use with e.g. numpy.amin |
|
|
|
|
|
See Also |
|
======== |
|
|
|
https://numpy.org/doc/stable/reference/generated/numpy.amin.html |
|
""" |
|
__slots__ = _fields = ('array', 'axis') |
|
defaults = {'axis': none} |
|
_construct_axis = staticmethod(sympify) |
|
|
|
|
|
class amax(Token): |
|
""" Maximum value along an axis. |
|
|
|
Helper class for use with e.g. numpy.amax |
|
|
|
|
|
See Also |
|
======== |
|
|
|
https://numpy.org/doc/stable/reference/generated/numpy.amax.html |
|
""" |
|
__slots__ = _fields = ('array', 'axis') |
|
defaults = {'axis': none} |
|
_construct_axis = staticmethod(sympify) |
|
|
|
|
|
class maximum(Function): |
|
""" Element-wise maximum of array elements. |
|
|
|
Helper class for use with e.g. numpy.maximum |
|
|
|
|
|
See Also |
|
======== |
|
|
|
https://numpy.org/doc/stable/reference/generated/numpy.maximum.html |
|
""" |
|
|
|
def _eval_rewrite_as_Max(self, *args): |
|
return Max(*self.args) |
|
|
|
|
|
class minimum(Function): |
|
""" Element-wise minimum of array elements. |
|
|
|
Helper class for use with e.g. numpy.minimum |
|
|
|
|
|
See Also |
|
======== |
|
|
|
https://numpy.org/doc/stable/reference/generated/numpy.minimum.html |
|
""" |
|
|
|
def _eval_rewrite_as_Min(self, *args): |
|
return Min(*self.args) |
|
|