File size: 4,543 Bytes
9c6594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from sympy.core.function import Add, ArgumentIndexError, Function
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.sorting import default_sort_key
from sympy.core.sympify import sympify
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.elementary.miscellaneous import Max, Min
from .ast import Token, none


def _logaddexp(x1, x2, *, evaluate=True):
    return log(Add(exp(x1, evaluate=evaluate), exp(x2, evaluate=evaluate), evaluate=evaluate))


_two = S.One*2
_ln2 = log(_two)


def _lb(x, *, evaluate=True):
    return log(x, evaluate=evaluate)/_ln2


def _exp2(x, *, evaluate=True):
    return Pow(_two, x, evaluate=evaluate)


def _logaddexp2(x1, x2, *, evaluate=True):
    return _lb(Add(_exp2(x1, evaluate=evaluate),
                   _exp2(x2, evaluate=evaluate), evaluate=evaluate))


class logaddexp(Function):
    """ Logarithm of the sum of exponentiations of the inputs.

    Helper class for use with e.g. numpy.logaddexp

    See Also
    ========

    https://numpy.org/doc/stable/reference/generated/numpy.logaddexp.html
    """
    nargs = 2

    def __new__(cls, *args):
        return Function.__new__(cls, *sorted(args, key=default_sort_key))

    def fdiff(self, argindex=1):
        """
        Returns the first derivative of this function.
        """
        if argindex == 1:
            wrt, other = self.args
        elif argindex == 2:
            other, wrt = self.args
        else:
            raise ArgumentIndexError(self, argindex)
        return S.One/(S.One + exp(other-wrt))

    def _eval_rewrite_as_log(self, x1, x2, **kwargs):
        return _logaddexp(x1, x2)

    def _eval_evalf(self, *args, **kwargs):
        return self.rewrite(log).evalf(*args, **kwargs)

    def _eval_simplify(self, *args, **kwargs):
        a, b = (x.simplify(**kwargs) for x in self.args)
        candidate = _logaddexp(a, b)
        if candidate != _logaddexp(a, b, evaluate=False):
            return candidate
        else:
            return logaddexp(a, b)


class logaddexp2(Function):
    """ Logarithm of the sum of exponentiations of the inputs in base-2.

    Helper class for use with e.g. numpy.logaddexp2

    See Also
    ========

    https://numpy.org/doc/stable/reference/generated/numpy.logaddexp2.html
    """
    nargs = 2

    def __new__(cls, *args):
        return Function.__new__(cls, *sorted(args, key=default_sort_key))

    def fdiff(self, argindex=1):
        """
        Returns the first derivative of this function.
        """
        if argindex == 1:
            wrt, other = self.args
        elif argindex == 2:
            other, wrt = self.args
        else:
            raise ArgumentIndexError(self, argindex)
        return S.One/(S.One + _exp2(other-wrt))

    def _eval_rewrite_as_log(self, x1, x2, **kwargs):
        return _logaddexp2(x1, x2)

    def _eval_evalf(self, *args, **kwargs):
        return self.rewrite(log).evalf(*args, **kwargs)

    def _eval_simplify(self, *args, **kwargs):
        a, b = (x.simplify(**kwargs).factor() for x in self.args)
        candidate = _logaddexp2(a, b)
        if candidate != _logaddexp2(a, b, evaluate=False):
            return candidate
        else:
            return logaddexp2(a, b)


class amin(Token):
    """ Minimum value along an axis.

    Helper class for use with e.g. numpy.amin


    See Also
    ========

    https://numpy.org/doc/stable/reference/generated/numpy.amin.html
    """
    __slots__ = _fields = ('array', 'axis')
    defaults = {'axis': none}
    _construct_axis = staticmethod(sympify)


class amax(Token):
    """ Maximum value along an axis.

    Helper class for use with e.g. numpy.amax


    See Also
    ========

    https://numpy.org/doc/stable/reference/generated/numpy.amax.html
    """
    __slots__ = _fields = ('array', 'axis')
    defaults = {'axis': none}
    _construct_axis = staticmethod(sympify)


class maximum(Function):
    """ Element-wise maximum of array elements.

    Helper class for use with e.g. numpy.maximum


    See Also
    ========

    https://numpy.org/doc/stable/reference/generated/numpy.maximum.html
    """

    def _eval_rewrite_as_Max(self, *args):
        return Max(*self.args)


class minimum(Function):
    """ Element-wise minimum of array elements.

    Helper class for use with e.g. numpy.minimum


    See Also
    ========

    https://numpy.org/doc/stable/reference/generated/numpy.minimum.html
    """

    def _eval_rewrite_as_Min(self, *args):
        return Min(*self.args)