from sympy.core.function import Add, ArgumentIndexError, Function from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.sorting import default_sort_key from sympy.core.sympify import sympify from sympy.functions.elementary.exponential import exp, log from sympy.functions.elementary.miscellaneous import Max, Min from .ast import Token, none def _logaddexp(x1, x2, *, evaluate=True): return log(Add(exp(x1, evaluate=evaluate), exp(x2, evaluate=evaluate), evaluate=evaluate)) _two = S.One*2 _ln2 = log(_two) def _lb(x, *, evaluate=True): return log(x, evaluate=evaluate)/_ln2 def _exp2(x, *, evaluate=True): return Pow(_two, x, evaluate=evaluate) def _logaddexp2(x1, x2, *, evaluate=True): return _lb(Add(_exp2(x1, evaluate=evaluate), _exp2(x2, evaluate=evaluate), evaluate=evaluate)) class logaddexp(Function): """ Logarithm of the sum of exponentiations of the inputs. Helper class for use with e.g. numpy.logaddexp See Also ======== https://numpy.org/doc/stable/reference/generated/numpy.logaddexp.html """ nargs = 2 def __new__(cls, *args): return Function.__new__(cls, *sorted(args, key=default_sort_key)) def fdiff(self, argindex=1): """ Returns the first derivative of this function. """ if argindex == 1: wrt, other = self.args elif argindex == 2: other, wrt = self.args else: raise ArgumentIndexError(self, argindex) return S.One/(S.One + exp(other-wrt)) def _eval_rewrite_as_log(self, x1, x2, **kwargs): return _logaddexp(x1, x2) def _eval_evalf(self, *args, **kwargs): return self.rewrite(log).evalf(*args, **kwargs) def _eval_simplify(self, *args, **kwargs): a, b = (x.simplify(**kwargs) for x in self.args) candidate = _logaddexp(a, b) if candidate != _logaddexp(a, b, evaluate=False): return candidate else: return logaddexp(a, b) class logaddexp2(Function): """ Logarithm of the sum of exponentiations of the inputs in base-2. Helper class for use with e.g. numpy.logaddexp2 See Also ======== https://numpy.org/doc/stable/reference/generated/numpy.logaddexp2.html """ nargs = 2 def __new__(cls, *args): return Function.__new__(cls, *sorted(args, key=default_sort_key)) def fdiff(self, argindex=1): """ Returns the first derivative of this function. """ if argindex == 1: wrt, other = self.args elif argindex == 2: other, wrt = self.args else: raise ArgumentIndexError(self, argindex) return S.One/(S.One + _exp2(other-wrt)) def _eval_rewrite_as_log(self, x1, x2, **kwargs): return _logaddexp2(x1, x2) def _eval_evalf(self, *args, **kwargs): return self.rewrite(log).evalf(*args, **kwargs) def _eval_simplify(self, *args, **kwargs): a, b = (x.simplify(**kwargs).factor() for x in self.args) candidate = _logaddexp2(a, b) if candidate != _logaddexp2(a, b, evaluate=False): return candidate else: return logaddexp2(a, b) class amin(Token): """ Minimum value along an axis. Helper class for use with e.g. numpy.amin See Also ======== https://numpy.org/doc/stable/reference/generated/numpy.amin.html """ __slots__ = _fields = ('array', 'axis') defaults = {'axis': none} _construct_axis = staticmethod(sympify) class amax(Token): """ Maximum value along an axis. Helper class for use with e.g. numpy.amax See Also ======== https://numpy.org/doc/stable/reference/generated/numpy.amax.html """ __slots__ = _fields = ('array', 'axis') defaults = {'axis': none} _construct_axis = staticmethod(sympify) class maximum(Function): """ Element-wise maximum of array elements. Helper class for use with e.g. numpy.maximum See Also ======== https://numpy.org/doc/stable/reference/generated/numpy.maximum.html """ def _eval_rewrite_as_Max(self, *args): return Max(*self.args) class minimum(Function): """ Element-wise minimum of array elements. Helper class for use with e.g. numpy.minimum See Also ======== https://numpy.org/doc/stable/reference/generated/numpy.minimum.html """ def _eval_rewrite_as_Min(self, *args): return Min(*self.args)