Image_Caption_Generator / code_explanation.md
balaji4991512's picture
Create code_explanation.md
77efc1e verified

A newer version of the Gradio SDK is available: 5.43.1

Upgrade

πŸ“– Code Explanation: Image Caption Generator

This document explains the Image Caption Generator app, which uses a ViT+GPT2 model to generate descriptive captions for uploaded images.


πŸ“ Overview

Purpose
Upload an image and receive a concise, descriptive caption generated by a Vision Transformer (ViT) combined with GPT-2.

Tech Stack

  • Model: nlpconnect/vit-gpt2-image-captioning (Vision Transformer + GPT-2)
  • Precision: torch_dtype=torch.bfloat16 for reduced memory usage and faster inference on supported hardware
  • Interface: Gradio Blocks + Image + Textbox

βš™οΈ Setup & Dependencies

Install required libraries:

pip install transformers gradio torch torchvision pillow

πŸ” Detailed Block-by-Block Code Explanation

import torch
import gradio as gr
from transformers import pipeline

# 1) Load the image-to-text pipeline
captioner = pipeline(
    "image-to-text",
    model="nlpconnect/vit-gpt2-image-captioning",
    torch_dtype=torch.bfloat16
)

# 2) Caption generation function
def generate_caption(image):
    outputs = captioner(image)
    return outputs[0]["generated_text"]

# 3) Build Gradio interface
with gr.Blocks(theme=gr.themes.Default()) as demo:
    gr.Markdown(
        "## πŸ–ΌοΈ Image Caption Generator
"
        "Upload an image to generate a descriptive caption using ViT+GPT2."
    )

    with gr.Row():
        input_image = gr.Image(type="pil", label="Upload Image")
        caption_output = gr.Textbox(label="Generated Caption", lines=2)

    generate_btn = gr.Button("Generate Caption")
    generate_btn.click(fn=generate_caption, inputs=input_image, outputs=caption_output)

    gr.Markdown(
        "---  
"
        "Built with πŸ€— Transformers (`nlpconnect/vit-gpt2-image-captioning`) and πŸš€ Gradio"
    )

demo.launch()

Explanation:

  1. Imports:
    • torch for tensor operations and bfloat16 support.
    • gradio for the web interface.
    • pipeline from Transformers to load the image-captioning model.
  2. Pipeline Loading:
    • "image-to-text" task uses a ViT encoder and GPT-2 decoder.
    • Loading with half-precision reduces memory use and speeds up inference.
  3. Caption Function:
    • Accepts a PIL image, runs the pipeline, and returns the generated caption text.
  4. Gradio UI:
    • Uses Blocks and Row to layout the uploader and output.
    • Image component accepts uploaded images.
    • Textbox displays the generated caption.
    • Button triggers caption generation when clicked.

πŸš€ Core Concepts

Concept Why It Matters
Vision Transformer (ViT) Extracts visual features from images
GPT-2 Decoder Generates natural language text from visual features
bfloat16 Precision Lowers memory usage and speeds up inference on supported HW
Gradio Blocks & Components Simplifies web app creation without frontend coding

πŸ”„ Extensions & Alternatives

  • Alternate Captioning Models:

    • Salesforce/blip-image-captioning-base
    • microsoft/git-base-coco
  • UI Enhancements:

    • Allow batch upload of multiple images.
    • Display generated captions alongside thumbnails.
    • Add option to download captions as a text file.
  • Advanced Features:

    • Fine-tune the model on a custom image dataset for domain-specific descriptions.
    • Integrate with image galleries or social media platforms for auto-captioning.