File size: 3,746 Bytes
77efc1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

# πŸ“– Code Explanation: Image Caption Generator

This document explains the **Image Caption Generator** app, which uses a ViT+GPT2 model to generate descriptive captions for uploaded images.

---

## πŸ“ Overview

**Purpose**  
Upload an image and receive a concise, descriptive caption generated by a Vision Transformer (ViT) combined with GPT-2.

**Tech Stack**  
- **Model**: `nlpconnect/vit-gpt2-image-captioning` (Vision Transformer + GPT-2)  
- **Precision**: `torch_dtype=torch.bfloat16` for reduced memory usage and faster inference on supported hardware  
- **Interface**: Gradio Blocks + Image + Textbox  

---

## βš™οΈ Setup & Dependencies

Install required libraries:

```bash
pip install transformers gradio torch torchvision pillow
```

---

## πŸ” Detailed Block-by-Block Code Explanation

```python
import torch
import gradio as gr
from transformers import pipeline

# 1) Load the image-to-text pipeline
captioner = pipeline(
    "image-to-text",
    model="nlpconnect/vit-gpt2-image-captioning",
    torch_dtype=torch.bfloat16
)

# 2) Caption generation function
def generate_caption(image):
    outputs = captioner(image)
    return outputs[0]["generated_text"]

# 3) Build Gradio interface
with gr.Blocks(theme=gr.themes.Default()) as demo:
    gr.Markdown(
        "## πŸ–ΌοΈ Image Caption Generator
"
        "Upload an image to generate a descriptive caption using ViT+GPT2."
    )

    with gr.Row():
        input_image = gr.Image(type="pil", label="Upload Image")
        caption_output = gr.Textbox(label="Generated Caption", lines=2)

    generate_btn = gr.Button("Generate Caption")
    generate_btn.click(fn=generate_caption, inputs=input_image, outputs=caption_output)

    gr.Markdown(
        "---  
"
        "Built with πŸ€— Transformers (`nlpconnect/vit-gpt2-image-captioning`) and πŸš€ Gradio"
    )

demo.launch()
```

**Explanation:**  
1. **Imports**:  
   - `torch` for tensor operations and bfloat16 support.  
   - `gradio` for the web interface.  
   - `pipeline` from Transformers to load the image-captioning model.  
2. **Pipeline Loading**:  
   - `"image-to-text"` task uses a ViT encoder and GPT-2 decoder.  
   - Loading with half-precision reduces memory use and speeds up inference.  
3. **Caption Function**:  
   - Accepts a PIL image, runs the pipeline, and returns the generated caption text.  
4. **Gradio UI**:  
   - Uses **Blocks** and **Row** to layout the uploader and output.  
   - **Image** component accepts uploaded images.  
   - **Textbox** displays the generated caption.  
   - **Button** triggers caption generation when clicked.

---

## πŸš€ Core Concepts

| Concept                     | Why It Matters                                                |
|-----------------------------|---------------------------------------------------------------|
| Vision Transformer (ViT)    | Extracts visual features from images                          |
| GPT-2 Decoder               | Generates natural language text from visual features          |
| bfloat16 Precision          | Lowers memory usage and speeds up inference on supported HW    |
| Gradio Blocks & Components  | Simplifies web app creation without frontend coding           |

---

## πŸ”„ Extensions & Alternatives

- **Alternate Captioning Models**:  
  - `Salesforce/blip-image-captioning-base`  
  - `microsoft/git-base-coco`  

- **UI Enhancements**:  
  - Allow batch upload of multiple images.  
  - Display generated captions alongside thumbnails.  
  - Add option to download captions as a text file.

- **Advanced Features**:  
  - Fine-tune the model on a custom image dataset for domain-specific descriptions.  
  - Integrate with image galleries or social media platforms for auto-captioning.