Create code_explanation.md
Browse files- code_explanation.md +116 -0
code_explanation.md
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# π Code Explanation: Image Caption Generator
|
3 |
+
|
4 |
+
This document explains the **Image Caption Generator** app, which uses a ViT+GPT2 model to generate descriptive captions for uploaded images.
|
5 |
+
|
6 |
+
---
|
7 |
+
|
8 |
+
## π Overview
|
9 |
+
|
10 |
+
**Purpose**
|
11 |
+
Upload an image and receive a concise, descriptive caption generated by a Vision Transformer (ViT) combined with GPT-2.
|
12 |
+
|
13 |
+
**Tech Stack**
|
14 |
+
- **Model**: `nlpconnect/vit-gpt2-image-captioning` (Vision Transformer + GPT-2)
|
15 |
+
- **Precision**: `torch_dtype=torch.bfloat16` for reduced memory usage and faster inference on supported hardware
|
16 |
+
- **Interface**: Gradio Blocks + Image + Textbox
|
17 |
+
|
18 |
+
---
|
19 |
+
|
20 |
+
## βοΈ Setup & Dependencies
|
21 |
+
|
22 |
+
Install required libraries:
|
23 |
+
|
24 |
+
```bash
|
25 |
+
pip install transformers gradio torch torchvision pillow
|
26 |
+
```
|
27 |
+
|
28 |
+
---
|
29 |
+
|
30 |
+
## π Detailed Block-by-Block Code Explanation
|
31 |
+
|
32 |
+
```python
|
33 |
+
import torch
|
34 |
+
import gradio as gr
|
35 |
+
from transformers import pipeline
|
36 |
+
|
37 |
+
# 1) Load the image-to-text pipeline
|
38 |
+
captioner = pipeline(
|
39 |
+
"image-to-text",
|
40 |
+
model="nlpconnect/vit-gpt2-image-captioning",
|
41 |
+
torch_dtype=torch.bfloat16
|
42 |
+
)
|
43 |
+
|
44 |
+
# 2) Caption generation function
|
45 |
+
def generate_caption(image):
|
46 |
+
outputs = captioner(image)
|
47 |
+
return outputs[0]["generated_text"]
|
48 |
+
|
49 |
+
# 3) Build Gradio interface
|
50 |
+
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
51 |
+
gr.Markdown(
|
52 |
+
"## πΌοΈ Image Caption Generator
|
53 |
+
"
|
54 |
+
"Upload an image to generate a descriptive caption using ViT+GPT2."
|
55 |
+
)
|
56 |
+
|
57 |
+
with gr.Row():
|
58 |
+
input_image = gr.Image(type="pil", label="Upload Image")
|
59 |
+
caption_output = gr.Textbox(label="Generated Caption", lines=2)
|
60 |
+
|
61 |
+
generate_btn = gr.Button("Generate Caption")
|
62 |
+
generate_btn.click(fn=generate_caption, inputs=input_image, outputs=caption_output)
|
63 |
+
|
64 |
+
gr.Markdown(
|
65 |
+
"---
|
66 |
+
"
|
67 |
+
"Built with π€ Transformers (`nlpconnect/vit-gpt2-image-captioning`) and π Gradio"
|
68 |
+
)
|
69 |
+
|
70 |
+
demo.launch()
|
71 |
+
```
|
72 |
+
|
73 |
+
**Explanation:**
|
74 |
+
1. **Imports**:
|
75 |
+
- `torch` for tensor operations and bfloat16 support.
|
76 |
+
- `gradio` for the web interface.
|
77 |
+
- `pipeline` from Transformers to load the image-captioning model.
|
78 |
+
2. **Pipeline Loading**:
|
79 |
+
- `"image-to-text"` task uses a ViT encoder and GPT-2 decoder.
|
80 |
+
- Loading with half-precision reduces memory use and speeds up inference.
|
81 |
+
3. **Caption Function**:
|
82 |
+
- Accepts a PIL image, runs the pipeline, and returns the generated caption text.
|
83 |
+
4. **Gradio UI**:
|
84 |
+
- Uses **Blocks** and **Row** to layout the uploader and output.
|
85 |
+
- **Image** component accepts uploaded images.
|
86 |
+
- **Textbox** displays the generated caption.
|
87 |
+
- **Button** triggers caption generation when clicked.
|
88 |
+
|
89 |
+
---
|
90 |
+
|
91 |
+
## π Core Concepts
|
92 |
+
|
93 |
+
| Concept | Why It Matters |
|
94 |
+
|-----------------------------|---------------------------------------------------------------|
|
95 |
+
| Vision Transformer (ViT) | Extracts visual features from images |
|
96 |
+
| GPT-2 Decoder | Generates natural language text from visual features |
|
97 |
+
| bfloat16 Precision | Lowers memory usage and speeds up inference on supported HW |
|
98 |
+
| Gradio Blocks & Components | Simplifies web app creation without frontend coding |
|
99 |
+
|
100 |
+
---
|
101 |
+
|
102 |
+
## π Extensions & Alternatives
|
103 |
+
|
104 |
+
- **Alternate Captioning Models**:
|
105 |
+
- `Salesforce/blip-image-captioning-base`
|
106 |
+
- `microsoft/git-base-coco`
|
107 |
+
|
108 |
+
- **UI Enhancements**:
|
109 |
+
- Allow batch upload of multiple images.
|
110 |
+
- Display generated captions alongside thumbnails.
|
111 |
+
- Add option to download captions as a text file.
|
112 |
+
|
113 |
+
- **Advanced Features**:
|
114 |
+
- Fine-tune the model on a custom image dataset for domain-specific descriptions.
|
115 |
+
- Integrate with image galleries or social media platforms for auto-captioning.
|
116 |
+
|