File size: 22,021 Bytes
ceaa691
 
 
 
 
42e73f2
ceaa691
42e73f2
ceaa691
 
 
a35c9e2
ceaa691
42e73f2
ceaa691
 
5c0eb1b
42e73f2
ceaa691
42e73f2
57042f5
42e73f2
ceaa691
42e73f2
 
 
 
 
 
 
 
 
 
 
 
 
47c5ad7
 
 
42e73f2
ceaa691
 
 
42e73f2
 
ceaa691
 
 
 
 
 
 
 
 
 
 
 
 
42e73f2
099031b
47c5ad7
5c0eb1b
 
 
 
099031b
 
 
 
 
42e73f2
 
 
 
47c5ad7
42e73f2
 
 
 
 
 
 
ceaa691
 
5c0eb1b
099031b
5c0eb1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42e73f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ceaa691
42e73f2
 
 
 
 
 
 
ceaa691
42e73f2
 
 
ceaa691
099031b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42e73f2
ceaa691
 
 
ab97c26
42e73f2
5c0eb1b
ceaa691
47c5ad7
 
 
 
 
 
 
 
 
 
aed0c9b
47c5ad7
 
 
 
 
42e73f2
 
 
 
 
b2ae2a5
42e73f2
 
099031b
 
5c0eb1b
42e73f2
5c0eb1b
 
42e73f2
 
 
 
 
 
47c5ad7
5c0eb1b
099031b
 
5c0eb1b
 
 
 
47c5ad7
5c0eb1b
 
 
df21ba0
099031b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df21ba0
 
eb12761
aed0c9b
47c5ad7
eb12761
 
 
 
 
 
 
df21ba0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb12761
df21ba0
eb12761
 
 
 
 
 
42e73f2
df21ba0
 
eb12761
df21ba0
 
 
 
 
 
5c0eb1b
099031b
5c0eb1b
42e73f2
 
5c0eb1b
42e73f2
5c0eb1b
 
 
42e73f2
 
ceaa691
42e73f2
 
 
 
5c0eb1b
ceaa691
42e73f2
 
 
 
 
 
 
ceaa691
42e73f2
 
5c0eb1b
ceaa691
42e73f2
 
 
 
 
5c0eb1b
 
 
 
099031b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42e73f2
 
5c0eb1b
42e73f2
 
 
5c0eb1b
42e73f2
 
 
04342e7
f795335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b29aec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
389c056
ceaa691
 
 
 
 
10400ea
5c0eb1b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
#!/usr/bin/env python3
import os
import json
import logging
import re
from typing import Dict, Any
from pathlib import Path
from unstructured.partition.pdf import partition_pdf
from flask import Flask, request, jsonify
from flask_cors import CORS
from dotenv import load_dotenv
from flask import send_from_directory, abort
from bloatectomy import bloatectomy
from werkzeug.utils import secure_filename
from langchain_groq import ChatGroq
from typing_extensions import TypedDict, NotRequired

# --- Logging ---
logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s")
logger = logging.getLogger("patient-assistant")
ALLOWED_EXTENSIONS = {"pdf"}
# --- Load environment ---
load_dotenv()
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
if not GROQ_API_KEY:
    logger.error("GROQ_API_KEY not set in environment")
    exit(1)

# --- Flask app setup ---
BASE_DIR = Path(__file__).resolve().parent
REPORTS_ROOT = Path(os.getenv("REPORTS_ROOT", str(BASE_DIR / "reports")))
static_folder = BASE_DIR / "static"

app = Flask(__name__, static_folder=str(static_folder), static_url_path="/static")
CORS(app)

# Ensure the reports directory exists
os.makedirs(REPORTS_ROOT, exist_ok=True)

# --- LLM setup ---
llm = ChatGroq(
    model=os.getenv("LLM_MODEL", "meta-llama/llama-4-scout-17b-16e-instruct"),
    temperature=0.0,
    max_tokens=1024,
    api_key=GROQ_API_KEY,
)

def clean_notes_with_bloatectomy(text: str, style: str = "remov") -> str:
    try:
        b = bloatectomy(text, style=style, output="html")
        tokens = getattr(b, "tokens", None)
        if not tokens:
            return text
        return "\n".join(tokens)
    except Exception:
        logger.exception("Bloatectomy cleaning failed; returning original text")
        return text

PATIENT_ASSISTANT_PROMPT = """
You are a helpful medical assistant acting as a doctor. You respond naturally to greetings and general medical questions without asking for patient ID unless the user requests information about prior medical records

Behavior rules (follow these strictly):
- Do NOT ask for the patient ID at the start of every conversation. Only request the PID when the user's question explicitly requires accessing prior medical records (for example: "show my previous lab report", "what does my thyroid test from last month say", "what was my doctor's note for PID 12345", etc.).
- When you do ask for a PID, be concise and ask only for the PID (e.g., "Please provide the patient ID (PID) to retrieve previous records."). Do not request name/DOB/other verification unless the user explicitly asks for an extra verification step.
- If the user supplies a PID in their message (patterns like "pid 5678", "p5678", "patient id: 5678"), accept and use it — do not ask again.
- Never ask for the PID if it is already known. If the user provides a different PID later, update it and proceed accordingly.
- Avoid repeating unnecessary clarifying questions. If you previously asked for the PID and the user didn't provide it, ask once more succinctly and then offer to help with general guidance without records.
- When analyzing medical reports, trust the patient ID from the folder or query context as the source of truth.
- **If the report text mentions a different patient ID or name, do not refuse to answer but mention the discrepancy politely and proceed to answer based on the available data.**
- **Always protect patient privacy and avoid sharing information from reports not matching the current PID unless explicitly requested and with a clear disclaimer.**

STRICT OUTPUT FORMAT (JSON ONLY):
Return a single JSON object with the following keys:
- assistant_reply: string  // a natural language reply to the user (short, helpful, always present)
- patientDetails: object  // keys may include name, problem, pid (patient ID), city, contact (update if user shared info)
- conversationSummary: string (optional)  // short summary of conversation + relevant patient docs

Rules:
- ALWAYS include `assistant_reply` as a non-empty string.
- Do NOT produce any text outside the JSON object.
- Be concise in `assistant_reply`. If you need more details, ask a targeted follow-up question.
- Do not make up information that is not present in the provided medical reports or conversation history.
"""

PID_PATTERN = re.compile(r"(?:\bpid\b|\bpatient\s*id\b|\bp\b)\s*[:#\-]?\s*(p?\d+)", re.IGNORECASE)
DIGIT_PATTERN = re.compile(r"\b(p?\d{3,})\b")

RECORD_KEYWORDS = [
    "report", "lab", "result", "results", "previous", "history", "record", "records",
    "test", "tests", "scan", "imaging", "radiology", "thyroid", "tsh", "t3", "t4",
    "prescription", "doctor", "referral", "visit", "consultation",
]

def extract_pid_from_text(text: str) -> str | None:
    if not text:
        return None
    m = PID_PATTERN.search(text)
    if m:
        return m.group(1).lstrip('pP')
    if any(k in text.lower() for k in RECORD_KEYWORDS):
        m2 = DIGIT_PATTERN.search(text)
        if m2:
            return m2.group(1).lstrip('pP')
    return None

def needs_pid_for_query(text: str) -> bool:
    if not text:
        return False
    lower = text.lower()
    phrases = ["previous report", "previous lab", "my report", "my records", "past report", "last report", "previous test", "previous results"]
    if any(p in lower for p in phrases):
        return True
    if any(k in lower for k in RECORD_KEYWORDS):
        return True
    return False

def extract_json_from_llm_response(raw_response: str) -> dict:
    default = {
        "assistant_reply": "I'm sorry — I couldn't understand that. Could you please rephrase?",
        "patientDetails": {},
        "conversationSummary": "",
    }
    if not raw_response or not isinstance(raw_response, str):
        return default
    m = re.search(r"```(?:json)?\s*([\s\S]*?)\s*```", raw_response)
    json_string = m.group(1).strip() if m else raw_response
    first = json_string.find('{')
    last = json_string.rfind('}')
    if first == -1 or last == -1 or first >= last:
        try:
            return json.loads(json_string)
        except Exception:
            logger.warning("Could not locate JSON braces in LLM output. Falling back to default.")
            return default
    candidate = json_string[first:last+1]
    candidate = re.sub(r',\s*(?=[}\]])', '', candidate)
    try:
        parsed = json.loads(candidate)
    except Exception as e:
        logger.warning("Failed to parse JSON from LLM output: %s", e)
        return default
    if isinstance(parsed, dict) and "assistant_reply" in parsed and isinstance(parsed["assistant_reply"], str) and parsed["assistant_reply"].strip():
        parsed.setdefault("patientDetails", {})
        parsed.setdefault("conversationSummary", "")
        return parsed
    else:
        logger.warning("Parsed JSON missing 'assistant_reply' or invalid format. Returning default.")
        return default

def extract_details_from_user_message(user_message: str) -> dict:
    """
    Use the LLM to extract patient details (name, contact, city, problem) from the user's last message.
    Returns a dict with any found fields.
    """
    extraction_prompt = f"""
Extract any patient details from the following user message. Return a JSON object with keys name, contact, city, problem.
If a field is not present, omit it.

User message:
\"\"\"{user_message}\"\"\"
"""
    messages = [
        {"role": "system", "content": "You are a helpful assistant that extracts patient details from user messages."},
        {"role": "user", "content": extraction_prompt}
    ]
    try:
        response = llm.invoke(messages)
        content = response.content if hasattr(response, "content") else str(response)
        extracted = extract_json_from_llm_response(content)
        return extracted.get("patientDetails", extracted)  # support both keys
    except Exception as e:
        logger.warning(f"Detail extraction failed: {e}")
        return {}

# --- Flask routes ---
@app.route("/", methods=["GET"])
def serve_frontend():
    try:
        return app.send_static_file("frontend.html")
    except Exception:
        return "<h3>frontend.html not found in static/ — please add your frontend.html there.</h3>", 404

@app.route("/upload_report", methods=["POST"])
def upload_report():
    if 'report' not in request.files:
        return jsonify({"error": "No file part in the request"}), 400
    file = request.files['report']
    patient_id = request.form.get("patient_id")
    if file.filename == '' or not patient_id:
        return jsonify({"error": "No selected file or patient ID"}), 400
    if file:
        filename = secure_filename(file.filename)
        patient_folder = REPORTS_ROOT / f"{patient_id}"
        os.makedirs(patient_folder, exist_ok=True)
        file_path = patient_folder / filename
        file.save(file_path)
        return jsonify({"message": f"File '{filename}' uploaded successfully for patient ID '{patient_id}'."}), 200

@app.route("/chat", methods=["POST"])
def chat():
    data = request.get_json(force=True)
    if not isinstance(data, dict):
        return jsonify({"error": "invalid request body"}), 400

    chat_history = data.get("chat_history") or []
    patient_state = data.get("patient_state") or {}
    patient_details = patient_state.get("patientDetails", {})
    patient_id = patient_details.get("pid")

    state = patient_state.copy()
    state.setdefault("asked_for_pid", False)
    state.setdefault("conversationSummary", state.get("conversationSummary", ""))
    state["lastUserMessage"] = ""
    if chat_history:
        for msg in reversed(chat_history):
            if msg.get("role") == "user" and msg.get("content"):
                state["lastUserMessage"] = msg["content"]
                break

    inferred_pid = extract_pid_from_text(state.get("lastUserMessage", "") or "")
    patient_id_str = str(patient_id) if patient_id is not None else ""
    if (not patient_id_str or patient_id_str.strip() == "") and inferred_pid:
        logger.info("Inferred PID from user message: %s", inferred_pid)
        state.setdefault("patientDetails", {})["pid"] = inferred_pid
        patient_id = inferred_pid

    combined_text_parts = []

    wants_records = needs_pid_for_query(state.get("lastUserMessage", "") or "")

    # If user wants records but no PID yet, ask for PID (same behavior as before)
    if wants_records and (not patient_id or patient_id_str.strip() == ""):
        if not state.get("asked_for_pid", False):
            assistant_reply = "Please provide the patient ID (PID) to retrieve previous records."
            state["asked_for_pid"] = True
            response_payload = {
                "assistant_reply": assistant_reply,
                "updated_state": state,
            }
            return jsonify(response_payload)
        else:
            assistant_reply = (
                "I still need your Patient ID (PID) to access your records. "
                "If you prefer, I can help with general medical questions instead."
            )
            response_payload = {
                "assistant_reply": assistant_reply,
                "updated_state": state,
            }
            return jsonify(response_payload)

    # If we have a PID, check whether any allowed files exist for that PID.
    has_allowed_files = False
    if patient_id and str(patient_id).strip() != "":
        patient_folder = REPORTS_ROOT / f"{patient_id}"
        if patient_folder.exists() and patient_folder.is_dir():
            for f in patient_folder.iterdir():
                if f.is_file():
                    ext = f.suffix.lower().lstrip(".")
                    if ext in ALLOWED_EXTENSIONS:
                        has_allowed_files = True
                        break

        # IMPORTANT: do NOT short-circuit here.
        # If the user explicitly asked for previous records (wants_records == True)
        # and we have no files, we will tell the LLM that there are no uploaded records
        # via the SYSTEM_HINT (so LLM can respond appropriately). We DO NOT return early,
        # and we DO NOT add any extra JSON fields to the response.
        if has_allowed_files:
            # read files and build combined_text_parts (existing behavior)
            for fname in sorted(os.listdir(patient_folder)):
                file_path = patient_folder / fname
                page_text = ""
                if partition_pdf is not None and str(file_path).lower().endswith('.pdf'):
                    try:
                        elements = partition_pdf(filename=str(file_path))
                        page_text = "\n".join([el.text for el in elements if hasattr(el, 'text') and el.text])
                    except Exception:
                        logger.exception("Failed to parse PDF %s", file_path)
                else:
                    try:
                        page_text = file_path.read_text(encoding='utf-8', errors='ignore')
                    except Exception:
                        page_text = ""

                if page_text:
                    cleaned = clean_notes_with_bloatectomy(page_text, style="remov")
                    if cleaned:
                        combined_text_parts.append(cleaned)
        else:
            # no files: do not modify state or return. We'll include a hint for the LLM below
            logger.info("No uploaded files found for PID %s. Will inform LLM only if user asked for records.", patient_id)

    # Build conversationSummary from any docs we read (unchanged)
    base_summary = state.get("conversationSummary", "") or ""
    docs_summary = "\n\n".join(combined_text_parts)
    if docs_summary:
        state["conversationSummary"] = (base_summary + "\n\n" + docs_summary).strip()
    else:
        state["conversationSummary"] = base_summary

    # Prepare the action hint. If user asked for records but there are no uploaded files,
    # explicitly tell the LLM so it can respond like "No records available for PID X".
    if patient_id and str(patient_id).strip() != "":
        if wants_records and not has_allowed_files:
            action_hint = (
                f"User asked about prior records. NOTE: there are NO uploaded medical records for patient ID {patient_id}."
            )
        else:
            action_hint = f"Use the patient ID {patient_id} to retrieve and summarize any relevant reports."
    else:
        action_hint = "No PID provided and the user's request does not need prior records. Provide helpful, general medical guidance and offer to retrieve records if the user later supplies a PID."

    user_prompt = f"""
Current patientDetails: {json.dumps(state.get("patientDetails", {}))}
Current conversationSummary: {state.get("conversationSummary", "")[:4000]}
Last user message: {state.get("lastUserMessage", "")}

SYSTEM_HINT: {action_hint}

Return ONLY valid JSON with keys: assistant_reply, patientDetails, conversationSummary.
"""

    messages = [
        {"role": "system", "content": PATIENT_ASSISTANT_PROMPT},
        {"role": "user", "content": user_prompt}
    ]

    try:
        logger.info("Invoking LLM with prepared state and prompt...")
        llm_response = llm.invoke(messages)
        raw_response = ""
        if hasattr(llm_response, "content"):
            raw_response = llm_response.content
        else:
            raw_response = str(llm_response)

        logger.info(f"Raw LLM response: {raw_response}")
        parsed_result = extract_json_from_llm_response(raw_response)

    except Exception as e:
        logger.exception("LLM invocation failed")
        return jsonify({"error": "LLM invocation failed", "detail": str(e)}), 500

    updated_state = parsed_result or {}

    # Merge patientDetails back into state (but avoid overwriting asked_for_pid)
    state.setdefault("patientDetails", {}).update(updated_state.get("patientDetails", {}))
    state["conversationSummary"] = updated_state.get("conversationSummary", state.get("conversationSummary", ""))

    # --- New: Extract details from last user message to update patientDetails ---
    REQUIRED_DETAILS = ["name", "contact", "city", "problem"]
    booking_intent_keywords = ["book appointment", "schedule appointment", "make appointment", "appointment"]

    last_msg_lower = state.get("lastUserMessage", "").lower()
    conversation_summary_lower = state.get("conversationSummary", "").lower()

    wants_to_book = any(kw in last_msg_lower for kw in booking_intent_keywords) or \
                    any(kw in conversation_summary_lower for kw in booking_intent_keywords)

    if wants_to_book:
        # Extract details from last user message
        extracted_details = extract_details_from_user_message(state.get("lastUserMessage", ""))
        patient_details = state.setdefault("patientDetails", {})
        # Update patientDetails with any newly extracted info
        for key in REQUIRED_DETAILS:
            if key in extracted_details and extracted_details[key]:
                patient_details[key] = extracted_details[key]

        missing_fields = [field for field in REQUIRED_DETAILS if not patient_details.get(field)]
        if missing_fields:
            missing_field = missing_fields[0]
            field_prompts = {
                "name": "Could you please provide your full name?",
                "contact": "May I have your contact number?",
                "city": "What city are you located in?",
                "problem": "Please briefly describe your medical problem or reason for the appointment.",
            }
            assistant_reply = field_prompts.get(missing_field, f"Please provide your {missing_field}.")
            response_payload = {
                "assistant_reply": assistant_reply,
                "updated_state": state,
            }
            return jsonify(response_payload)

    assistant_reply = updated_state.get("assistant_reply")
    if not assistant_reply or not isinstance(assistant_reply, str) or not assistant_reply.strip():
        assistant_reply = "I'm here to help — could you tell me more about your symptoms or provide a Patient ID (PID) if you want me to fetch past reports?"

    response_payload = {
        "assistant_reply": assistant_reply,
        "updated_state": state,
    }

    return jsonify(response_payload)

@app.route("/upload_reports", methods=["POST"])
def upload_reports():
    try:
        patient_id = request.form.get("patient_id") or request.args.get("patient_id")
        if not patient_id:
            return jsonify({"error": "patient_id form field required"}), 400

        uploaded_files = request.files.getlist("files")
        if not uploaded_files:
            single = request.files.get("file")
            if single:
                uploaded_files = [single]

        if not uploaded_files:
            return jsonify({"error": "no files uploaded (use form field 'files')"}), 400

        patient_folder = REPORTS_ROOT / str(patient_id)
        patient_folder.mkdir(parents=True, exist_ok=True)

        saved = []
        skipped = []

        for file_storage in uploaded_files:
            orig_name = getattr(file_storage, "filename", "") or ""
            filename = secure_filename(orig_name)
            if not filename:
                skipped.append({"filename": orig_name, "reason": "invalid filename"})
                continue

            ext = filename.rsplit(".", 1)[1].lower() if "." in filename else ""
            if ext not in ALLOWED_EXTENSIONS:
                skipped.append({"filename": filename, "reason": f"extension '{ext}' not allowed"})
                continue

            dest = patient_folder / filename
            if dest.exists():
                base, dot, extension = filename.rpartition(".")
                base = base or filename
                i = 1
                while True:
                    candidate = f"{base}__{i}.{extension}" if extension else f"{base}__{i}"
                    dest = patient_folder / candidate
                    if not dest.exists():
                        filename = candidate
                        break
                    i += 1

            try:
                file_storage.save(str(dest))
                saved.append(filename)
            except Exception as e:
                logger.exception("Failed to save uploaded file %s: %s", filename, e)
                skipped.append({"filename": filename, "reason": f"save failed: {e}"})

        return jsonify({
            "patient_id": str(patient_id),
            "saved": saved,
            "skipped": skipped,
            "patient_folder": str(patient_folder)
        }), 200

    except Exception as exc:
        logger.exception("Upload failed: %s", exc)
        return jsonify({"error": "upload failed", "detail": str(exc)}), 500

@app.route("/<patient_id>/<filename>")
def serve_report(patient_id, filename):
    """
    Serve a specific uploaded PDF (or other allowed file) for a patient.
    URL format: /<patient_id>/<filename>
    Example:   /p14562/report1.pdf
    """
    try:
        patient_folder = REPORTS_ROOT / str(patient_id)

        if not patient_folder.exists():
            abort(404, description=f"Patient folder not found: {patient_id}")

        # security check: only allow files with allowed extensions
        ext = filename.rsplit(".", 1)[-1].lower() if "." in filename else ""
        if ext not in ALLOWED_EXTENSIONS:
            abort(403, description=f"Extension '{ext}' not allowed")

        return send_from_directory(
            directory=str(patient_folder),
            path=filename,
            as_attachment=False  # set True if you want download instead of inline view
        )

    except Exception as e:
        logger.exception("Failed to serve file %s/%s: %s", patient_id, filename, e)
        abort(500, description=f"Failed to serve file: {e}")


@app.route("/ping", methods=["GET"])
def ping():
    return jsonify({"status": "ok"})

if __name__ == "__main__":
    port = int(os.getenv("PORT", 7860))
    app.run(host="0.0.0.0", port=port, debug=True)