Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,499 +1,500 @@
|
|
1 |
-
#!/usr/bin/env python3
|
2 |
-
# app.py - Health Reports processing agent (PDF -> cleaned text -> structured JSON)
|
3 |
-
# Requires: bloatectomy, unstructured, langgraph, langchain_groq (ChatGroq), python-dotenv
|
4 |
-
|
5 |
-
import os
|
6 |
-
import json
|
7 |
-
import logging
|
8 |
-
import re
|
9 |
-
from pathlib import Path
|
10 |
-
from typing import List, Dict, Any
|
11 |
-
|
12 |
-
from flask import Flask, request, jsonify
|
13 |
-
from flask_cors import CORS
|
14 |
-
from dotenv import load_dotenv
|
15 |
-
from unstructured.partition.pdf import partition_pdf
|
16 |
-
|
17 |
-
# Bloatectomy class (as per the source you provided)
|
18 |
-
from bloatectomy import bloatectomy
|
19 |
-
|
20 |
-
# LLM / agent
|
21 |
-
from langchain_groq import ChatGroq
|
22 |
-
from langgraph.prebuilt import create_react_agent
|
23 |
-
|
24 |
-
# LangGraph imports
|
25 |
-
from langgraph.graph import StateGraph, START, END
|
26 |
-
from typing_extensions import TypedDict, NotRequired
|
27 |
-
|
28 |
-
# --- Logging ---------------------------------------------------------------
|
29 |
-
logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s")
|
30 |
-
logger = logging.getLogger("health-agent")
|
31 |
-
|
32 |
-
# --- Environment & config -------------------------------------------------
|
33 |
-
load_dotenv()
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
agent
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
json_string = re.sub(r'
|
78 |
-
json_string = re.sub(r'\
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
json_string = re.sub(r',\s
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
generics =
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
for
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
"""
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
"
|
204 |
-
"
|
205 |
-
"
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
"
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
-
|
215 |
-
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
"
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
raw
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
"
|
325 |
-
"
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
"
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
"
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
"
|
353 |
-
"
|
354 |
-
"
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
"
|
364 |
-
"
|
365 |
-
"
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
graph_builder.add_node("
|
383 |
-
graph_builder.add_node("
|
384 |
-
graph_builder.add_node("
|
385 |
-
graph_builder.add_node("
|
386 |
-
|
387 |
-
|
388 |
-
graph_builder.add_edge(
|
389 |
-
graph_builder.add_edge("
|
390 |
-
graph_builder.add_edge("
|
391 |
-
graph_builder.add_edge("
|
392 |
-
graph_builder.add_edge("
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
"
|
442 |
-
"
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
"
|
455 |
-
"
|
456 |
-
"
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
result_state
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
"
|
479 |
-
"
|
480 |
-
"
|
481 |
-
"
|
482 |
-
"
|
483 |
-
|
484 |
-
"
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# app.py - Health Reports processing agent (PDF -> cleaned text -> structured JSON)
|
3 |
+
# Requires: bloatectomy, unstructured, langgraph, langchain_groq (ChatGroq), python-dotenv
|
4 |
+
|
5 |
+
import os
|
6 |
+
import json
|
7 |
+
import logging
|
8 |
+
import re
|
9 |
+
from pathlib import Path
|
10 |
+
from typing import List, Dict, Any
|
11 |
+
|
12 |
+
from flask import Flask, request, jsonify
|
13 |
+
from flask_cors import CORS
|
14 |
+
from dotenv import load_dotenv
|
15 |
+
from unstructured.partition.pdf import partition_pdf
|
16 |
+
|
17 |
+
# Bloatectomy class (as per the source you provided)
|
18 |
+
from bloatectomy import bloatectomy
|
19 |
+
|
20 |
+
# LLM / agent
|
21 |
+
from langchain_groq import ChatGroq
|
22 |
+
from langgraph.prebuilt import create_react_agent
|
23 |
+
|
24 |
+
# LangGraph imports
|
25 |
+
from langgraph.graph import StateGraph, START, END
|
26 |
+
from typing_extensions import TypedDict, NotRequired
|
27 |
+
|
28 |
+
# --- Logging ---------------------------------------------------------------
|
29 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s")
|
30 |
+
logger = logging.getLogger("health-agent")
|
31 |
+
|
32 |
+
# --- Environment & config -------------------------------------------------
|
33 |
+
load_dotenv()
|
34 |
+
from pathlib import Path
|
35 |
+
REPORTS_ROOT = Path(os.getenv("REPORTS_ROOT", r"app\reports")) # e.g. /app/reports/<patient_id>/<file.pdf>
|
36 |
+
SSRI_FILE = Path(os.getenv("SSRI_FILE", r"app\medicationCategories\SSRI_list.txt"))
|
37 |
+
MISC_FILE = Path(os.getenv("MISC_FILE", r"app\medicationCategories\MISC_list.txt"))
|
38 |
+
GROQ_API_KEY = os.getenv("GROQ_API_KEY", None)
|
39 |
+
|
40 |
+
# --- LLM setup -------------------------------------------------------------
|
41 |
+
llm = ChatGroq(
|
42 |
+
model=os.getenv("LLM_MODEL", "meta-llama/llama-4-scout-17b-16e-instruct"),
|
43 |
+
temperature=0.0,
|
44 |
+
max_tokens=None,
|
45 |
+
)
|
46 |
+
|
47 |
+
# Top-level strict system prompt for report JSON pieces (each node will use a more specific prompt)
|
48 |
+
NODE_BASE_INSTRUCTIONS = """
|
49 |
+
You are HealthAI — a clinical assistant producing JSON for downstream processing.
|
50 |
+
Produce only valid JSON (no extra text). Follow field types exactly. If missing data, return empty strings or empty arrays.
|
51 |
+
Be conservative: do not assert diagnoses; provide suggestions and ask physician confirmation where needed.
|
52 |
+
"""
|
53 |
+
|
54 |
+
# Build a generic agent and a JSON resolver agent (to fix broken JSON from LLM)
|
55 |
+
agent = create_react_agent(model=llm, tools=[], prompt=NODE_BASE_INSTRUCTIONS)
|
56 |
+
agent_json_resolver = create_react_agent(model=llm, tools=[], prompt="""
|
57 |
+
You are a JSON fixer. Input: a possibly-malformed JSON-like text. Output: valid JSON only (enclosed in triple backticks).
|
58 |
+
Fix missing quotes, trailing commas, unescaped newlines, stray assistant labels, and ensure schema compliance.
|
59 |
+
""")
|
60 |
+
|
61 |
+
# -------------------- JSON extraction / sanitizer ---------------------------
|
62 |
+
def extract_json_from_llm_response(raw_response: str) -> dict:
|
63 |
+
"""
|
64 |
+
Try extracting a JSON object from raw LLM text. Performs common cleanups seen in LLM outputs.
|
65 |
+
Raises JSONDecodeError if parsing still fails.
|
66 |
+
"""
|
67 |
+
# --- 1) Pull out the JSON code-block if present ---
|
68 |
+
md = re.search(r"```(?:json)?\s*([\s\S]*?)\s*```", raw_response)
|
69 |
+
json_string = md.group(1).strip() if md else raw_response
|
70 |
+
|
71 |
+
# --- 2) Trim to the outermost { … } so we drop any prefix/suffix junk ---
|
72 |
+
first, last = json_string.find('{'), json_string.rfind('}')
|
73 |
+
if 0 <= first < last:
|
74 |
+
json_string = json_string[first:last+1]
|
75 |
+
|
76 |
+
# --- 3) PRE-CLEANUP: remove rogue assistant labels, fix boolean quotes ---
|
77 |
+
json_string = re.sub(r'\b\w+\s*{', '{', json_string)
|
78 |
+
json_string = re.sub(r'"assistant"\s*:', '', json_string)
|
79 |
+
json_string = re.sub(r'\b(false|true)"', r'\1', json_string)
|
80 |
+
|
81 |
+
# --- 4) Escape embedded quotes in long string fields (best-effort) ---
|
82 |
+
def _esc(m):
|
83 |
+
prefix, body = m.group(1), m.group(2)
|
84 |
+
return prefix + body.replace('"', r'\"')
|
85 |
+
json_string = re.sub(
|
86 |
+
r'("logic"\s*:\s*")([\s\S]+?)(?=",\s*"[A-Za-z_]\w*"\s*:\s*)',
|
87 |
+
_esc,
|
88 |
+
json_string
|
89 |
+
)
|
90 |
+
|
91 |
+
# --- 5) Remove trailing commas before } or ] ---
|
92 |
+
json_string = re.sub(r',\s*(?=[}\],])', '', json_string)
|
93 |
+
json_string = re.sub(r',\s*,', ',', json_string)
|
94 |
+
|
95 |
+
# --- 6) Balance braces if obvious excess ---
|
96 |
+
ob, cb = json_string.count('{'), json_string.count('}')
|
97 |
+
if cb > ob:
|
98 |
+
excess = cb - ob
|
99 |
+
json_string = json_string.rstrip()[:-excess]
|
100 |
+
|
101 |
+
# --- 7) Escape literal newlines inside strings so json.loads can parse ---
|
102 |
+
def _escape_newlines_in_strings(s: str) -> str:
|
103 |
+
return re.sub(
|
104 |
+
r'"((?:[^"\\]|\\.)*?)"',
|
105 |
+
lambda m: '"' + m.group(1).replace('\n', '\\n').replace('\r', '\\r') + '"',
|
106 |
+
s,
|
107 |
+
flags=re.DOTALL
|
108 |
+
)
|
109 |
+
json_string = _escape_newlines_in_strings(json_string)
|
110 |
+
|
111 |
+
# Final parse
|
112 |
+
return json.loads(json_string)
|
113 |
+
|
114 |
+
# -------------------- Utility: Bloatectomy wrapper ------------------------
|
115 |
+
def clean_notes_with_bloatectomy(text: str, style: str = "remov") -> str:
|
116 |
+
"""
|
117 |
+
Uses the bloatectomy class to remove duplicates.
|
118 |
+
style: 'highlight'|'bold'|'remov' ; we use 'remov' to delete duplicates.
|
119 |
+
Returns cleaned text (single string).
|
120 |
+
"""
|
121 |
+
try:
|
122 |
+
b = bloatectomy(text, style=style, output="html")
|
123 |
+
tokens = getattr(b, "tokens", None)
|
124 |
+
if not tokens:
|
125 |
+
return text
|
126 |
+
return "\n".join(tokens)
|
127 |
+
except Exception:
|
128 |
+
logger.exception("Bloatectomy cleaning failed; returning original text")
|
129 |
+
return text
|
130 |
+
|
131 |
+
# --------------- Utility: medication extraction (adapted) -----------------
|
132 |
+
def readDrugs_from_file(path: Path):
|
133 |
+
if not path.exists():
|
134 |
+
return {}, []
|
135 |
+
txt = path.read_text(encoding="utf-8", errors="ignore")
|
136 |
+
generics = re.findall(r"^(.*?)\|", txt, re.MULTILINE)
|
137 |
+
generics = [g.lower() for g in generics if g]
|
138 |
+
lines = [ln.strip().lower() for ln in txt.splitlines() if ln.strip()]
|
139 |
+
return dict(zip(generics, lines)), generics
|
140 |
+
|
141 |
+
def addToDrugs_line(line: str, drugs_flags: List[int], listing: Dict[str,str], genList: List[str]) -> List[int]:
|
142 |
+
gen_index = {g:i for i,g in enumerate(genList)}
|
143 |
+
for generic, pattern_line in listing.items():
|
144 |
+
try:
|
145 |
+
if re.search(pattern_line, line, re.I):
|
146 |
+
idx = gen_index.get(generic)
|
147 |
+
if idx is not None:
|
148 |
+
drugs_flags[idx] = 1
|
149 |
+
except re.error:
|
150 |
+
continue
|
151 |
+
return drugs_flags
|
152 |
+
|
153 |
+
def extract_medications_from_text(text: str) -> List[str]:
|
154 |
+
ssri_map, ssri_generics = readDrugs_from_file(SSRI_FILE)
|
155 |
+
misc_map, misc_generics = readDrugs_from_file(MISC_FILE)
|
156 |
+
combined_map = {**ssri_map, **misc_map}
|
157 |
+
combined_generics = []
|
158 |
+
if ssri_generics:
|
159 |
+
combined_generics.extend(ssri_generics)
|
160 |
+
if misc_generics:
|
161 |
+
combined_generics.extend(misc_generics)
|
162 |
+
|
163 |
+
flags = [0]* len(combined_generics)
|
164 |
+
meds_found = set()
|
165 |
+
for ln in text.splitlines():
|
166 |
+
ln = ln.strip()
|
167 |
+
if not ln:
|
168 |
+
continue
|
169 |
+
if combined_map:
|
170 |
+
flags = addToDrugs_line(ln, flags, combined_map, combined_generics)
|
171 |
+
m = re.search(r"\b(Rx|Drug|Medication|Prescribed|Tablet)\s*[:\-]?\s*([A-Za-z0-9\-\s/\.]+)", ln, re.I)
|
172 |
+
if m:
|
173 |
+
meds_found.add(m.group(2).strip())
|
174 |
+
m2 = re.findall(r"\b([A-Z][a-z0-9\-]{2,}\s*(?:[0-9]{1,4}\s*(?:mg|mcg|g|IU))?)", ln)
|
175 |
+
for s in m2:
|
176 |
+
if re.search(r"\b(mg|mcg|g|IU)\b", s, re.I):
|
177 |
+
meds_found.add(s.strip())
|
178 |
+
for i, f in enumerate(flags):
|
179 |
+
if f == 1:
|
180 |
+
meds_found.add(combined_generics[i])
|
181 |
+
return list(meds_found)
|
182 |
+
|
183 |
+
# -------------------- Node prompts --------------------------
|
184 |
+
PATIENT_NODE_PROMPT = """
|
185 |
+
You will extract patientDetails from the provided document texts.
|
186 |
+
Return ONLY JSON with this exact shape:
|
187 |
+
{ "patientDetails": {"name": "", "age": "", "sex": "", "pid": ""} }
|
188 |
+
Fill fields using text evidence or leave empty strings.
|
189 |
+
"""
|
190 |
+
|
191 |
+
DOCTOR_NODE_PROMPT = """
|
192 |
+
You will extract doctorDetails found in the documents.
|
193 |
+
Return ONLY JSON with this exact shape:
|
194 |
+
{ "doctorDetails": {"referredBy": ""} }
|
195 |
+
"""
|
196 |
+
|
197 |
+
TEST_REPORT_NODE_PROMPT = """
|
198 |
+
You will extract per-test structured results from the documents.
|
199 |
+
Return ONLY JSON with this exact shape:
|
200 |
+
{
|
201 |
+
"reports": [
|
202 |
+
{
|
203 |
+
"testName": "",
|
204 |
+
"dateReported": "",
|
205 |
+
"timeReported": "",
|
206 |
+
"abnormalFindings": [
|
207 |
+
{"investigation": "", "result": 0, "unit": "", "status": "", "referenceValue": ""}
|
208 |
+
],
|
209 |
+
"interpretation": "",
|
210 |
+
"trends": []
|
211 |
+
}
|
212 |
+
]
|
213 |
+
}
|
214 |
+
- Include only findings that are outside reference ranges OR explicitly called 'abnormal' in the report.
|
215 |
+
- For result numeric parsing, prefer numeric values; if not numeric, keep original string.
|
216 |
+
- Use statuses: Low, High, Borderline, Positive, Negative, Normal.
|
217 |
+
"""
|
218 |
+
|
219 |
+
ANALYSIS_NODE_PROMPT = """
|
220 |
+
You will create an overallAnalysis based on the extracted reports (the agent will give you the 'reports' JSON).
|
221 |
+
Return ONLY JSON:
|
222 |
+
{ "overallAnalysis": { "summary": "", "recommendations": "", "longTermTrends": "",""risk_prediction": "","drug_interaction": "" } }
|
223 |
+
Be conservative, evidence-based, and suggest follow-up steps for physicians.
|
224 |
+
"""
|
225 |
+
|
226 |
+
CONDITION_LOOP_NODE_PROMPT = """
|
227 |
+
Validation and condition node:
|
228 |
+
Input: partial JSON (patientDetails, doctorDetails, reports, overallAnalysis).
|
229 |
+
Task: Check required keys exist and that each report has at least testName and abnormalFindings list.
|
230 |
+
Return ONLY JSON:
|
231 |
+
{ "valid": true, "missing": [] }
|
232 |
+
If missing fields, list keys in 'missing'. Do NOT modify content.
|
233 |
+
"""
|
234 |
+
|
235 |
+
# -------------------- Node helpers -------------------------
|
236 |
+
def call_node_agent(node_prompt: str, payload: dict) -> dict:
|
237 |
+
"""
|
238 |
+
Call the generic agent with a targeted node prompt and the payload.
|
239 |
+
Tries to parse JSON. If parsing fails, uses the JSON resolver agent once.
|
240 |
+
"""
|
241 |
+
try:
|
242 |
+
content = {
|
243 |
+
"prompt": node_prompt,
|
244 |
+
"payload": payload
|
245 |
+
}
|
246 |
+
resp = agent.invoke({"messages": [{"role": "user", "content": json.dumps(content)}]})
|
247 |
+
|
248 |
+
# Extract raw text from AIMessage or other response types
|
249 |
+
raw = None
|
250 |
+
if isinstance(resp, str):
|
251 |
+
raw = resp
|
252 |
+
elif hasattr(resp, "content"): # AIMessage or similar
|
253 |
+
raw = resp.content
|
254 |
+
elif isinstance(resp, dict):
|
255 |
+
msgs = resp.get("messages")
|
256 |
+
if msgs:
|
257 |
+
last_msg = msgs[-1]
|
258 |
+
if isinstance(last_msg, str):
|
259 |
+
raw = last_msg
|
260 |
+
elif hasattr(last_msg, "content"):
|
261 |
+
raw = last_msg.content
|
262 |
+
elif isinstance(last_msg, dict):
|
263 |
+
raw = last_msg.get("content", "")
|
264 |
+
else:
|
265 |
+
raw = str(last_msg)
|
266 |
+
else:
|
267 |
+
raw = json.dumps(resp)
|
268 |
+
else:
|
269 |
+
raw = str(resp)
|
270 |
+
|
271 |
+
parsed = extract_json_from_llm_response(raw)
|
272 |
+
return parsed
|
273 |
+
|
274 |
+
except Exception as e:
|
275 |
+
logger.warning("Node agent JSON parse failed: %s. Attempting JSON resolver.", e)
|
276 |
+
try:
|
277 |
+
resolver_prompt = f"Fix this JSON. Input:\n```json\n{raw}\n```\nReturn valid JSON only."
|
278 |
+
r = agent_json_resolver.invoke({"messages": [{"role": "user", "content": resolver_prompt}]})
|
279 |
+
|
280 |
+
rtxt = None
|
281 |
+
if isinstance(r, str):
|
282 |
+
rtxt = r
|
283 |
+
elif hasattr(r, "content"):
|
284 |
+
rtxt = r.content
|
285 |
+
elif isinstance(r, dict):
|
286 |
+
msgs = r.get("messages")
|
287 |
+
if msgs:
|
288 |
+
last_msg = msgs[-1]
|
289 |
+
if isinstance(last_msg, str):
|
290 |
+
rtxt = last_msg
|
291 |
+
elif hasattr(last_msg, "content"):
|
292 |
+
rtxt = last_msg.content
|
293 |
+
elif isinstance(last_msg, dict):
|
294 |
+
rtxt = last_msg.get("content", "")
|
295 |
+
else:
|
296 |
+
rtxt = str(last_msg)
|
297 |
+
else:
|
298 |
+
rtxt = json.dumps(r)
|
299 |
+
else:
|
300 |
+
rtxt = str(r)
|
301 |
+
|
302 |
+
corrected = extract_json_from_llm_response(rtxt)
|
303 |
+
return corrected
|
304 |
+
except Exception as e2:
|
305 |
+
logger.exception("JSON resolver also failed: %s", e2)
|
306 |
+
return {}
|
307 |
+
|
308 |
+
# -------------------- Define LangGraph State schema -------------------------
|
309 |
+
class State(TypedDict):
|
310 |
+
patient_meta: NotRequired[Dict[str, Any]]
|
311 |
+
patient_id: str
|
312 |
+
documents: List[Dict[str, Any]]
|
313 |
+
medications: List[str]
|
314 |
+
patientDetails: NotRequired[Dict[str, Any]]
|
315 |
+
doctorDetails: NotRequired[Dict[str, Any]]
|
316 |
+
reports: NotRequired[List[Dict[str, Any]]]
|
317 |
+
overallAnalysis: NotRequired[Dict[str, Any]]
|
318 |
+
valid: NotRequired[bool]
|
319 |
+
missing: NotRequired[List[str]]
|
320 |
+
|
321 |
+
# -------------------- Node implementations as LangGraph nodes -------------------------
|
322 |
+
def patient_details_node(state: State) -> dict:
|
323 |
+
payload = {
|
324 |
+
"patient_meta": state.get("patient_meta", {}),
|
325 |
+
"documents": state.get("documents", []),
|
326 |
+
"medications": state.get("medications", [])
|
327 |
+
}
|
328 |
+
logger.info("Running patient_details_node")
|
329 |
+
out = call_node_agent(PATIENT_NODE_PROMPT, payload)
|
330 |
+
return {"patientDetails": out.get("patientDetails", {}) if isinstance(out, dict) else {}}
|
331 |
+
|
332 |
+
def doctor_details_node(state: State) -> dict:
|
333 |
+
payload = {
|
334 |
+
"documents": state.get("documents", []),
|
335 |
+
"medications": state.get("medications", [])
|
336 |
+
}
|
337 |
+
logger.info("Running doctor_details_node")
|
338 |
+
out = call_node_agent(DOCTOR_NODE_PROMPT, payload)
|
339 |
+
return {"doctorDetails": out.get("doctorDetails", {}) if isinstance(out, dict) else {}}
|
340 |
+
|
341 |
+
def test_report_node(state: State) -> dict:
|
342 |
+
payload = {
|
343 |
+
"documents": state.get("documents", []),
|
344 |
+
"medications": state.get("medications", [])
|
345 |
+
}
|
346 |
+
logger.info("Running test_report_node")
|
347 |
+
out = call_node_agent(TEST_REPORT_NODE_PROMPT, payload)
|
348 |
+
return {"reports": out.get("reports", []) if isinstance(out, dict) else []}
|
349 |
+
|
350 |
+
def analysis_node(state: State) -> dict:
|
351 |
+
payload = {
|
352 |
+
"patientDetails": state.get("patientDetails", {}),
|
353 |
+
"doctorDetails": state.get("doctorDetails", {}),
|
354 |
+
"reports": state.get("reports", []),
|
355 |
+
"medications": state.get("medications", [])
|
356 |
+
}
|
357 |
+
logger.info("Running analysis_node")
|
358 |
+
out = call_node_agent(ANALYSIS_NODE_PROMPT, payload)
|
359 |
+
return {"overallAnalysis": out.get("overallAnalysis", {}) if isinstance(out, dict) else {}}
|
360 |
+
|
361 |
+
def condition_loop_node(state: State) -> dict:
|
362 |
+
payload = {
|
363 |
+
"patientDetails": state.get("patientDetails", {}),
|
364 |
+
"doctorDetails": state.get("doctorDetails", {}),
|
365 |
+
"reports": state.get("reports", []),
|
366 |
+
"overallAnalysis": state.get("overallAnalysis", {})
|
367 |
+
}
|
368 |
+
logger.info("Running condition_loop_node (validation)")
|
369 |
+
out = call_node_agent(CONDITION_LOOP_NODE_PROMPT, payload)
|
370 |
+
if isinstance(out, dict) and "valid" in out:
|
371 |
+
return {"valid": bool(out.get("valid")), "missing": out.get("missing", [])}
|
372 |
+
missing = []
|
373 |
+
if not state.get("patientDetails"):
|
374 |
+
missing.append("patientDetails")
|
375 |
+
if not state.get("reports"):
|
376 |
+
missing.append("reports")
|
377 |
+
return {"valid": len(missing) == 0, "missing": missing}
|
378 |
+
|
379 |
+
# -------------------- Build LangGraph StateGraph -------------------------
|
380 |
+
graph_builder = StateGraph(State)
|
381 |
+
|
382 |
+
graph_builder.add_node("patient_details", patient_details_node)
|
383 |
+
graph_builder.add_node("doctor_details", doctor_details_node)
|
384 |
+
graph_builder.add_node("test_report", test_report_node)
|
385 |
+
graph_builder.add_node("analysis", analysis_node)
|
386 |
+
graph_builder.add_node("condition_loop", condition_loop_node)
|
387 |
+
|
388 |
+
graph_builder.add_edge(START, "patient_details")
|
389 |
+
graph_builder.add_edge("patient_details", "doctor_details")
|
390 |
+
graph_builder.add_edge("doctor_details", "test_report")
|
391 |
+
graph_builder.add_edge("test_report", "analysis")
|
392 |
+
graph_builder.add_edge("analysis", "condition_loop")
|
393 |
+
graph_builder.add_edge("condition_loop", END)
|
394 |
+
|
395 |
+
graph = graph_builder.compile()
|
396 |
+
|
397 |
+
# -------------------- Flask app & endpoints -------------------------------
|
398 |
+
BASE_DIR = Path(__file__).resolve().parent
|
399 |
+
static_folder = BASE_DIR / "static"
|
400 |
+
app = Flask(__name__, static_folder=str(static_folder), static_url_path="/static")
|
401 |
+
CORS(app) # dev convenience; lock down in production
|
402 |
+
|
403 |
+
# serve frontend root
|
404 |
+
@app.route("/", methods=["GET"])
|
405 |
+
def serve_frontend():
|
406 |
+
try:
|
407 |
+
return app.send_static_file("frontend.html")
|
408 |
+
except Exception:
|
409 |
+
return "<h3>frontend.html not found in static/ — drop your frontend.html there.</h3>", 404
|
410 |
+
|
411 |
+
@app.route("/process_reports", methods=["POST"])
|
412 |
+
def process_reports():
|
413 |
+
data = request.get_json(force=True)
|
414 |
+
patient_id = data.get("patient_id")
|
415 |
+
filenames = data.get("filenames", [])
|
416 |
+
extra_patient_meta = data.get("patientDetails", {})
|
417 |
+
|
418 |
+
if not patient_id or not filenames:
|
419 |
+
return jsonify({"error": "missing patient_id or filenames"}), 400
|
420 |
+
|
421 |
+
patient_folder = REPORTS_ROOT / str(patient_id)
|
422 |
+
if not patient_folder.exists() or not patient_folder.is_dir():
|
423 |
+
return jsonify({"error": f"patient folder not found: {patient_folder}"}), 404
|
424 |
+
|
425 |
+
documents = []
|
426 |
+
combined_text_parts = []
|
427 |
+
|
428 |
+
for fname in filenames:
|
429 |
+
file_path = patient_folder / fname
|
430 |
+
if not file_path.exists():
|
431 |
+
logger.warning("file not found: %s", file_path)
|
432 |
+
continue
|
433 |
+
try:
|
434 |
+
elements = partition_pdf(filename=str(file_path))
|
435 |
+
page_text = "\n".join([el.text for el in elements if hasattr(el, "text") and el.text])
|
436 |
+
except Exception:
|
437 |
+
logger.exception("Failed to parse PDF %s", file_path)
|
438 |
+
page_text = ""
|
439 |
+
cleaned = clean_notes_with_bloatectomy(page_text, style="remov")
|
440 |
+
documents.append({
|
441 |
+
"filename": fname,
|
442 |
+
"raw_text": page_text,
|
443 |
+
"cleaned_text": cleaned
|
444 |
+
})
|
445 |
+
combined_text_parts.append(cleaned)
|
446 |
+
|
447 |
+
if not documents:
|
448 |
+
return jsonify({"error": "no valid documents found"}), 400
|
449 |
+
|
450 |
+
combined_text = "\n\n".join(combined_text_parts)
|
451 |
+
meds = extract_medications_from_text(combined_text)
|
452 |
+
|
453 |
+
initial_state = {
|
454 |
+
"patient_meta": extra_patient_meta,
|
455 |
+
"patient_id": patient_id,
|
456 |
+
"documents": documents,
|
457 |
+
"medications": meds
|
458 |
+
}
|
459 |
+
|
460 |
+
try:
|
461 |
+
result_state = graph.invoke(initial_state)
|
462 |
+
|
463 |
+
# Validate and fill placeholders if needed
|
464 |
+
if not result_state.get("valid", True):
|
465 |
+
missing = result_state.get("missing", [])
|
466 |
+
logger.info("Validation failed; missing keys: %s", missing)
|
467 |
+
if "patientDetails" in missing:
|
468 |
+
result_state["patientDetails"] = extra_patient_meta or {"name": "", "age": "", "sex": "", "pid": patient_id}
|
469 |
+
if "reports" in missing:
|
470 |
+
result_state["reports"] = []
|
471 |
+
# Re-run analysis node to keep overallAnalysis consistent
|
472 |
+
result_state.update(analysis_node(result_state))
|
473 |
+
# Re-validate
|
474 |
+
cond = condition_loop_node(result_state)
|
475 |
+
result_state.update(cond)
|
476 |
+
|
477 |
+
safe_response = {
|
478 |
+
"patientDetails": result_state.get("patientDetails", {"name": "", "age": "", "sex": "", "pid": patient_id}),
|
479 |
+
"doctorDetails": result_state.get("doctorDetails", {"referredBy": ""}),
|
480 |
+
"reports": result_state.get("reports", []),
|
481 |
+
"overallAnalysis": result_state.get("overallAnalysis", {"summary": "", "recommendations": "", "longTermTrends": ""}),
|
482 |
+
"_pre_extracted_medications": result_state.get("medications", []),
|
483 |
+
"_validation": {
|
484 |
+
"valid": result_state.get("valid", True),
|
485 |
+
"missing": result_state.get("missing", [])
|
486 |
+
}
|
487 |
+
}
|
488 |
+
return jsonify(safe_response), 200
|
489 |
+
|
490 |
+
except Exception as e:
|
491 |
+
logger.exception("Node pipeline failed")
|
492 |
+
return jsonify({"error": "Node pipeline failed", "detail": str(e)}), 500
|
493 |
+
|
494 |
+
@app.route("/ping", methods=["GET"])
|
495 |
+
def ping():
|
496 |
+
return jsonify({"status": "ok"})
|
497 |
+
|
498 |
+
if __name__ == "__main__":
|
499 |
+
port = int(os.getenv("PORT", 5000))
|
500 |
+
app.run(host="0.0.0.0", port=port, debug=True)
|