Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -33,6 +33,9 @@ static_folder = BASE_DIR / "static"
|
|
33 |
app = Flask(__name__, static_folder=str(static_folder), static_url_path="/static")
|
34 |
CORS(app)
|
35 |
|
|
|
|
|
|
|
36 |
# --- LLM setup ---
|
37 |
llm = ChatGroq(
|
38 |
model=os.getenv("LLM_MODEL", "meta-llama/llama-4-scout-17b-16e-instruct"),
|
@@ -55,21 +58,22 @@ def clean_notes_with_bloatectomy(text: str, style: str = "remov") -> str:
|
|
55 |
|
56 |
# --- Agent prompt instructions ---
|
57 |
PATIENT_ASSISTANT_PROMPT = """
|
58 |
-
You are a patient assistant helping to analyze medical records and reports. Your
|
|
|
|
|
59 |
|
60 |
Your tasks include:
|
|
|
61 |
- Analyzing medical records and reports to detect anomalies, redundant tests, or misleading treatments.
|
62 |
- Suggesting preventive care based on the overall patient health history.
|
63 |
-
- Optimizing healthcare costs by comparing past visits and treatments
|
64 |
-
- Offering personalized lifestyle recommendations
|
65 |
- Generating a natural, helpful reply to the user.
|
66 |
|
67 |
-
You will be provided with the last user message, the conversation history, and a summary of the patient's medical reports. Use this information to give a tailored and informative response.
|
68 |
-
|
69 |
STRICT OUTPUT FORMAT (JSON ONLY):
|
70 |
Return a single JSON object with the following keys:
|
71 |
- assistant_reply: string // a natural language reply to the user (short, helpful, always present)
|
72 |
-
- patientDetails: object // keys may include name, problem, city, contact (update if user shared info)
|
73 |
- conversationSummary: string (optional) // short summary of conversation + relevant patient docs
|
74 |
|
75 |
Rules:
|
@@ -129,10 +133,30 @@ def extract_json_from_llm_response(raw_response: str) -> dict:
|
|
129 |
def serve_frontend():
|
130 |
"""Serves the frontend HTML file."""
|
131 |
try:
|
132 |
-
return app.send_static_file("
|
133 |
except Exception:
|
134 |
return "<h3>frontend2.html not found in static/ — please add your frontend2.html there.</h3>", 404
|
135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
@app.route("/chat", methods=["POST"])
|
137 |
def chat():
|
138 |
"""Handles the chat conversation with the assistant."""
|
@@ -140,36 +164,9 @@ def chat():
|
|
140 |
if not isinstance(data, dict):
|
141 |
return jsonify({"error": "invalid request body"}), 400
|
142 |
|
143 |
-
patient_id = data.get("patient_id")
|
144 |
-
if not patient_id:
|
145 |
-
return jsonify({"error": "patient_id required"}), 400
|
146 |
-
|
147 |
chat_history = data.get("chat_history") or []
|
148 |
patient_state = data.get("patient_state") or {}
|
149 |
-
|
150 |
-
# --- Read and parse patient reports ---
|
151 |
-
patient_folder = REPORTS_ROOT / f"p_{patient_id}"
|
152 |
-
combined_text_parts = []
|
153 |
-
if patient_folder.exists() and patient_folder.is_dir():
|
154 |
-
for fname in sorted(os.listdir(patient_folder)):
|
155 |
-
file_path = patient_folder / fname
|
156 |
-
page_text = ""
|
157 |
-
if partition_pdf is not None and str(file_path).lower().endswith('.pdf'):
|
158 |
-
try:
|
159 |
-
elements = partition_pdf(filename=str(file_path))
|
160 |
-
page_text = "\n".join([el.text for el in elements if hasattr(el, 'text') and el.text])
|
161 |
-
except Exception:
|
162 |
-
logger.exception("Failed to parse PDF %s", file_path)
|
163 |
-
else:
|
164 |
-
try:
|
165 |
-
page_text = file_path.read_text(encoding='utf-8', errors='ignore')
|
166 |
-
except Exception:
|
167 |
-
page_text = ""
|
168 |
-
|
169 |
-
if page_text:
|
170 |
-
cleaned = clean_notes_with_bloatectomy(page_text, style="remov")
|
171 |
-
if cleaned:
|
172 |
-
combined_text_parts.append(cleaned)
|
173 |
|
174 |
# --- Prepare the state for the LLM ---
|
175 |
state = patient_state.copy()
|
@@ -180,6 +177,49 @@ def chat():
|
|
180 |
if msg.get("role") == "user" and msg.get("content"):
|
181 |
state["lastUserMessage"] = msg["content"]
|
182 |
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
# Update the conversation summary with the parsed documents
|
185 |
base_summary = state.get("conversationSummary", "") or ""
|
@@ -238,5 +278,5 @@ def ping():
|
|
238 |
return jsonify({"status": "ok"})
|
239 |
|
240 |
if __name__ == "__main__":
|
241 |
-
port = int(os.getenv("PORT",
|
242 |
-
app.run(host="0.0.0.0", port=port, debug=True)
|
|
|
33 |
app = Flask(__name__, static_folder=str(static_folder), static_url_path="/static")
|
34 |
CORS(app)
|
35 |
|
36 |
+
# Ensure the reports directory exists
|
37 |
+
os.makedirs(REPORTS_ROOT, exist_ok=True)
|
38 |
+
|
39 |
# --- LLM setup ---
|
40 |
llm = ChatGroq(
|
41 |
model=os.getenv("LLM_MODEL", "meta-llama/llama-4-scout-17b-16e-instruct"),
|
|
|
58 |
|
59 |
# --- Agent prompt instructions ---
|
60 |
PATIENT_ASSISTANT_PROMPT = """
|
61 |
+
You are a patient assistant helping to analyze medical records and reports. Your primary task is to get the patient ID (PID) from the user at the start of the conversation.
|
62 |
+
|
63 |
+
Once you have the PID, you will be provided with a summary of the patient's medical reports. Use this information, along with the conversation history, to provide a comprehensive response.
|
64 |
|
65 |
Your tasks include:
|
66 |
+
- **First, ask for the patient ID.** Do not proceed with any other task until you have the PID.
|
67 |
- Analyzing medical records and reports to detect anomalies, redundant tests, or misleading treatments.
|
68 |
- Suggesting preventive care based on the overall patient health history.
|
69 |
+
- Optimizing healthcare costs by comparing past visits and treatments.
|
70 |
+
- Offering personalized lifestyle recommendations.
|
71 |
- Generating a natural, helpful reply to the user.
|
72 |
|
|
|
|
|
73 |
STRICT OUTPUT FORMAT (JSON ONLY):
|
74 |
Return a single JSON object with the following keys:
|
75 |
- assistant_reply: string // a natural language reply to the user (short, helpful, always present)
|
76 |
+
- patientDetails: object // keys may include name, problem, pid (patient ID), city, contact (update if user shared info)
|
77 |
- conversationSummary: string (optional) // short summary of conversation + relevant patient docs
|
78 |
|
79 |
Rules:
|
|
|
133 |
def serve_frontend():
|
134 |
"""Serves the frontend HTML file."""
|
135 |
try:
|
136 |
+
return app.send_static_file("frontend_p.html")
|
137 |
except Exception:
|
138 |
return "<h3>frontend2.html not found in static/ — please add your frontend2.html there.</h3>", 404
|
139 |
|
140 |
+
@app.route("/upload_report", methods=["POST"])
|
141 |
+
def upload_report():
|
142 |
+
"""Handles the upload of a new PDF report for a specific patient."""
|
143 |
+
if 'report' not in request.files:
|
144 |
+
return jsonify({"error": "No file part in the request"}), 400
|
145 |
+
|
146 |
+
file = request.files['report']
|
147 |
+
patient_id = request.form.get("patient_id")
|
148 |
+
|
149 |
+
if file.filename == '' or not patient_id:
|
150 |
+
return jsonify({"error": "No selected file or patient ID"}), 400
|
151 |
+
|
152 |
+
if file:
|
153 |
+
filename = secure_filename(file.filename)
|
154 |
+
patient_folder = REPORTS_ROOT / f"p_{patient_id}"
|
155 |
+
os.makedirs(patient_folder, exist_ok=True)
|
156 |
+
file_path = patient_folder / filename
|
157 |
+
file.save(file_path)
|
158 |
+
return jsonify({"message": f"File '{filename}' uploaded successfully for patient ID '{patient_id}'."}), 200
|
159 |
+
|
160 |
@app.route("/chat", methods=["POST"])
|
161 |
def chat():
|
162 |
"""Handles the chat conversation with the assistant."""
|
|
|
164 |
if not isinstance(data, dict):
|
165 |
return jsonify({"error": "invalid request body"}), 400
|
166 |
|
|
|
|
|
|
|
|
|
167 |
chat_history = data.get("chat_history") or []
|
168 |
patient_state = data.get("patient_state") or {}
|
169 |
+
patient_id = patient_state.get("patientDetails", {}).get("pid")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
# --- Prepare the state for the LLM ---
|
172 |
state = patient_state.copy()
|
|
|
177 |
if msg.get("role") == "user" and msg.get("content"):
|
178 |
state["lastUserMessage"] = msg["content"]
|
179 |
break
|
180 |
+
|
181 |
+
combined_text_parts = []
|
182 |
+
# If a PID is not yet known, prompt the agent to ask for it.
|
183 |
+
if not patient_id:
|
184 |
+
# A simple prompt to get the agent to ask for the PID.
|
185 |
+
user_prompt = "Hello. I need to get the patient's ID to proceed."
|
186 |
+
|
187 |
+
# Check if the user's last message contains a possible number for the PID
|
188 |
+
last_message = state.get("lastUserMessage", "")
|
189 |
+
# A very basic check to see if the user provided a number
|
190 |
+
if re.search(r'\d+', last_message):
|
191 |
+
inferred_pid = re.search(r'(\d+)', last_message).group(1)
|
192 |
+
state["patientDetails"] = {"pid": inferred_pid}
|
193 |
+
patient_id = inferred_pid
|
194 |
+
# Now that we have a PID, let the agent know to process the reports.
|
195 |
+
user_prompt = f"The user provided a patient ID: {inferred_pid}. Please access their reports and respond."
|
196 |
+
else:
|
197 |
+
# If no PID is found, the agent should ask for it.
|
198 |
+
user_prompt = "The patient has not provided a patient ID. Please ask them to provide it to proceed."
|
199 |
+
|
200 |
+
# If a PID is known, load the patient reports.
|
201 |
+
if patient_id:
|
202 |
+
patient_folder = REPORTS_ROOT / f"p_{patient_id}"
|
203 |
+
if patient_folder.exists() and patient_folder.is_dir():
|
204 |
+
for fname in sorted(os.listdir(patient_folder)):
|
205 |
+
file_path = patient_folder / fname
|
206 |
+
page_text = ""
|
207 |
+
if partition_pdf is not None and str(file_path).lower().endswith('.pdf'):
|
208 |
+
try:
|
209 |
+
elements = partition_pdf(filename=str(file_path))
|
210 |
+
page_text = "\n".join([el.text for el in elements if hasattr(el, 'text') and el.text])
|
211 |
+
except Exception:
|
212 |
+
logger.exception("Failed to parse PDF %s", file_path)
|
213 |
+
else:
|
214 |
+
try:
|
215 |
+
page_text = file_path.read_text(encoding='utf-8', errors='ignore')
|
216 |
+
except Exception:
|
217 |
+
page_text = ""
|
218 |
+
|
219 |
+
if page_text:
|
220 |
+
cleaned = clean_notes_with_bloatectomy(page_text, style="remov")
|
221 |
+
if cleaned:
|
222 |
+
combined_text_parts.append(cleaned)
|
223 |
|
224 |
# Update the conversation summary with the parsed documents
|
225 |
base_summary = state.get("conversationSummary", "") or ""
|
|
|
278 |
return jsonify({"status": "ok"})
|
279 |
|
280 |
if __name__ == "__main__":
|
281 |
+
port = int(os.getenv("PORT", 5000))
|
282 |
+
app.run(host="0.0.0.0", port=port, debug=True)
|