Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,731 Bytes
5177cd2 e64e7b1 4e79574 e64e7b1 8ea457b fc74a31 eee15fb 3b51590 e64e7b1 eee15fb aae1544 eee15fb e64e7b1 eee15fb e64e7b1 eee15fb 5177cd2 4e79574 eee15fb 4e79574 eee15fb aae1544 eee15fb aae1544 eee15fb aae1544 eee15fb e64e7b1 4e79574 eee15fb 4e79574 eee15fb aae1544 e64e7b1 eee15fb e64e7b1 4e79574 eee15fb 05331fd 4e79574 eee15fb 3b51590 aae1544 4e79574 eee15fb aae1544 eee15fb 4e79574 aae1544 eee15fb aae1544 aed021b eee15fb 1c17342 eee15fb e64e7b1 eee15fb aae1544 3b51590 4e79574 aae1544 4e79574 eee15fb aae1544 eee15fb aae1544 eee15fb 4e79574 aae1544 eee15fb 4e79574 3b51590 eee15fb 4e79574 eee15fb aae1544 eee15fb aae1544 eee15fb aae1544 eee15fb aae1544 566e353 aae1544 eee15fb 3b51590 eee15fb 3b51590 eee15fb aae1544 eee15fb aae1544 eee15fb 3b51590 eee15fb 4e79574 eee15fb 3b51590 aae1544 4e79574 ca30b1d 4e79574 aae1544 eee15fb 3b51590 4e79574 eee15fb 4e79574 aae1544 4e79574 3b51590 aae1544 3b51590 aae1544 3b51590 aae1544 4e79574 aae1544 eee15fb aae1544 3b51590 eee15fb aae1544 eee15fb 4e79574 3b51590 4e79574 eee15fb 4e79574 3b51590 4e79574 eee15fb 3b51590 aae1544 eee15fb 05331fd 3b51590 aae1544 eee15fb aae1544 3b51590 aae1544 cda939c 3b51590 aae1544 3b51590 aae1544 3b51590 aae1544 3b51590 aae1544 3b51590 aae1544 3b51590 4e79574 eee15fb 3b51590 ca30b1d 4e79574 566e353 aae1544 566e353 aae1544 566e353 aae1544 566e353 aae1544 566e353 aae1544 eee15fb aae1544 eee15fb aae1544 566e353 678a72a 566e353 aae1544 3b51590 aae1544 3b51590 aae1544 3b51590 aae1544 3b51590 aae1544 eee15fb 3b51590 eee15fb 3b51590 eee15fb aae1544 eee15fb 3b51590 aae1544 3b51590 eee15fb aae1544 eee15fb aae1544 eee15fb aae1544 eee15fb aae1544 eee15fb 3b51590 aae1544 eee15fb 3b51590 eee15fb aae1544 eee15fb 3b51590 eee15fb 3b51590 aae1544 eee15fb ca30b1d aae1544 eee15fb aae1544 eee15fb aae1544 eee15fb aae1544 3b51590 eee15fb aae1544 eee15fb 3b51590 eee15fb 3b51590 eee15fb 3b51590 eee15fb fc74a31 eee15fb aae1544 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
import os
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from datasets import load_dataset, get_dataset_config_names
import torch
import re
import json
import pandas as pd
import traceback
import spaces
from datetime import datetime
# --- Environment and Caching ---
# It's good practice to ensure the cache directory exists.
CACHE_DIR = "evaluation_cache"
os.makedirs(CACHE_DIR, exist_ok=True)
EVAL_FILE = os.path.join(CACHE_DIR, "evals.jsonl")
# Cache to avoid reloading models and dataset configs
model_cache = {}
benchmark_subject_cache = {}
# Use environment variable for the Hugging Face token
HF_TOKEN = os.environ.get("HF_TOKEN")
# --- Constants for Benchmarks ---
MMLU_DATASET = "cais/mmlu"
BENCHMARK_MAP = {
"MMLU": MMLU_DATASET,
}
# --- Data Loading and Preparation ---
def get_all_benchmark_options():
"""
Fetches and caches the available subjects (configs) for each benchmark dataset.
This function now populates a global cache to avoid repeated API calls.
"""
if benchmark_subject_cache:
return benchmark_subject_cache
print("Fetching benchmark configurations for the first time...")
for key, dataset_id in BENCHMARK_MAP.items():
try:
subjects = get_dataset_config_names(dataset_id, token=HF_TOKEN)
benchmark_subject_cache[key] = ["ALL"] + sorted([s for s in subjects if s != 'all'])
except Exception as e:
print(f"Warning: Could not load configs for {key} ({dataset_id}). It might be private or unavailable. Error: {e}")
benchmark_subject_cache[key] = ["ALL"]
print("Benchmark configurations cached.")
return benchmark_subject_cache
# Initialize the cache on startup
ALL_BENCHMARK_SUBJECTS = get_all_benchmark_options()
@spaces.GPU()
def load_model(model_id):
"""
Loads a Hugging Face model and tokenizer, creating a text-generation pipeline.
Uses a cache to avoid reloading models.
"""
if not model_id:
raise ValueError("Model ID cannot be empty.")
gr.Info(f"Attempting to load model: {model_id}...")
if model_id in model_cache:
gr.Info(f"Model '{model_id}' found in cache.")
return model_cache[model_id]
try:
dtype = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else torch.float32
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_id,
token=HF_TOKEN,
torch_dtype=dtype,
trust_remote_code=True,
low_cpu_mem_usage=True,
).to("cuda" if torch.cuda.is_available() else "cpu")
generator = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device=0 if torch.cuda.is_available() else -1
)
model_cache[model_id] = generator
gr.Info(f"Model '{model_id}' loaded successfully.")
return generator
except Exception as e:
raise RuntimeError(f"Failed to load model '{model_id}'. Please verify the model ID and your Hugging Face token. Error: {e}")
# --- Evaluation Logic ---
def format_prompt(item):
"""Formats the MMLU question and choices into a standardized prompt."""
prompt = f"Question: {item['question']}\n\nChoices:\nA. {item['choices'][0]}\nB. {item['choices'][1]}\nC. {item['choices'][2]}\nD. {item['choices'][3]}\n\nAnswer:"
return prompt, item['answer']
def get_choice_letter(index):
"""Converts a numerical choice index (0-3) to a letter (A-D)."""
return chr(ord('A') + index) if 0 <= index <= 3 else None
def extract_predicted_letter(output_text):
"""Extracts the predicted letter from the model's output."""
match = re.search(r"Answer:\s*([ABCD])", output_text.strip(), re.IGNORECASE)
if match:
return match.group(1).upper()
match = re.search(r"^\s*([ABCD])\b", output_text.strip())
if match:
return match.group(1).upper()
return None
def make_progress_html(text, percentage):
"""Helper function to create the HTML for the progress bar."""
return f"""
<div class="progress-container">
<div class="progress-bar" style="width: {percentage}%;">
{text}
</div>
</div>
"""
@spaces.GPU()
def run_evaluation(model_id, benchmark_category, subject_name, sample_count):
"""
Main generator function to orchestrate the evaluation, yielding progress updates.
"""
try:
# 1. Initial yield to set up the UI for loading state
yield {
progress_box: gr.update(visible=True),
progress_text_output: gr.update(value=f"Preparing evaluation for **{model_id}**..."),
progress_bar_output: gr.update(value=make_progress_html("Loading Model...", 0)),
result_summary_box: gr.update(visible=False),
details_box: gr.update(visible=False),
error_box: gr.update(visible=False),
}
generator = load_model(model_id)
dataset_id = BENCHMARK_MAP.get(benchmark_category)
if not dataset_id:
raise ValueError(f"Invalid benchmark category: {benchmark_category}")
subjects_to_run = []
if subject_name == "ALL":
subjects_to_run = [s for s in ALL_BENCHMARK_SUBJECTS.get(benchmark_category, []) if s != "ALL"]
else:
subjects_to_run = [subject_name]
if not subjects_to_run:
gr.Warning(f"No subjects found for '{benchmark_category}'.")
yield { progress_box: gr.update(visible=False) }
return
all_results_details = []
summary_lines = []
total_correct = 0
total_samples = 0
# 2. Main evaluation loop
for i, subject in enumerate(subjects_to_run):
overall_progress_text = f"**Overall Progress ({i+1}/{len(subjects_to_run)} subjects)**"
yield {
progress_text_output: gr.update(value=f"{overall_progress_text}\n\nLoading dataset for **{subject}**...")
}
try:
# Load dataset for the current subject
dataset = load_dataset(dataset_id, subject, token=HF_TOKEN, split="test")
num_samples = min(sample_count, len(dataset))
dataset = dataset.shuffle(seed=42).select(range(num_samples))
correct_predictions_subject = 0
subject_details = []
# Loop over samples within the subject
for j, item in enumerate(dataset):
prompt, correct_answer_idx = format_prompt(item)
expected_letter = get_choice_letter(correct_answer_idx)
full_prompt_text = generator.tokenizer.decode(generator.tokenizer.encode(prompt), skip_special_tokens=True)
raw_output = generator(prompt, max_new_tokens=5, do_sample=False, pad_token_id=generator.tokenizer.eos_token_id)[0]["generated_text"]
generated_text_only = raw_output[len(full_prompt_text):].strip()
predicted_letter = extract_predicted_letter(generated_text_only)
is_correct = (predicted_letter == expected_letter)
if is_correct:
correct_predictions_subject += 1
subject_details.append({
"Question": item['question'],
"Correct": "β
" if is_correct else "β",
"Expected": expected_letter,
"Predicted": predicted_letter or "N/A",
"Model Output": generated_text_only
})
# Yield progress update for each sample
percentage = ((j + 1) / num_samples) * 100
progress_bar_text = f"Evaluating: {subject} ({j+1}/{num_samples})"
yield {
progress_bar_output: gr.update(value=make_progress_html(f"{percentage:.1f}%", percentage)),
progress_text_output: gr.update(value=f"{overall_progress_text}\n\n{progress_bar_text}")
}
accuracy = (correct_predictions_subject / num_samples) * 100 if num_samples > 0 else 0
all_results_details.extend(subject_details)
total_correct += correct_predictions_subject
total_samples += num_samples
summary_lines.append(f"- **{subject}**: {accuracy:.2f}% ({correct_predictions_subject}/{num_samples})")
except Exception as e:
error_trace = traceback.format_exc()
gr.Error(f"Skipping {subject} due to an error: {e}")
summary_lines.append(f"- **{subject}**: Evaluation failed. See logs for details:\n```\n{error_trace}\n```")
continue
# 3. Final processing and result preparation
overall_accuracy = (total_correct / total_samples) * 100 if total_samples > 0 else 0
if subject_name == "ALL":
result_summary = f"### Overall Average Accuracy: {overall_accuracy:.2f}%\n"
result_summary += f"across {total_samples:,} total samples from {len(subjects_to_run)} subjects.\n\n---\n\n**Breakdown by Subject:**\n"
result_summary += "\n".join(summary_lines)
else:
result_summary = f"### Accuracy for {benchmark_category} - {subject_name}: {overall_accuracy:.2f}%\n"
result_summary += f"({total_correct:,}/{total_samples:,} correct)"
# Write final result to the JSONL file
record = {
"model_id": model_id,
"benchmark": benchmark_category,
"accuracy": overall_accuracy,
"subject": subject_name,
"sample_count": total_samples,
"timestamp": datetime.now().isoformat()
}
with open(EVAL_FILE, "a") as f:
f.write(json.dumps(record) + "\n")
gr.Info("Evaluation completed successfully!")
df_details = pd.DataFrame(all_results_details)
# 4. Final yield to show results and hide progress UI
yield {
progress_box: gr.update(visible=False),
result_summary_box: gr.update(visible=True),
result_summary_output: gr.update(value=result_summary),
details_box: gr.update(visible=True),
detailed_results_df: gr.update(value=df_details),
error_box: gr.update(visible=False)
}
except Exception as e:
error_message = f"An unexpected error occurred: {e}"
error_details = traceback.format_exc()
gr.Error(error_message)
# Yield to show error message and hide progress UI
yield {
progress_box: gr.update(visible=False),
result_summary_box: gr.update(visible=False),
details_box: gr.update(visible=False),
error_box: gr.update(visible=True),
error_output: gr.update(value=error_message),
error_details_output: gr.update(value=error_details),
}
# --- UI Helper Functions ---
def update_subject_dropdown(benchmark_category):
"""Updates the subject dropdown choices based on the selected benchmark."""
choices = ALL_BENCHMARK_SUBJECTS.get(benchmark_category, [])
default_value = "ALL" if "ALL" in choices else (choices[0] if choices else None)
return gr.update(choices=choices, value=default_value)
def load_leaderboard(benchmark_filter, progress=gr.Progress()):
"""
Loads and processes evaluation data to display on the leaderboard.
"""
progress(0, desc="Loading Leaderboard...")
try:
if not os.path.exists(EVAL_FILE):
return pd.DataFrame(columns=["Rank", "Model ID", "Avg. Accuracy (%)", "Total Samples", "Date"])
df = pd.read_json(EVAL_FILE, lines=True)
if df.empty:
return pd.DataFrame(columns=["Rank", "Model ID", "Avg. Accuracy (%)", "Total Samples", "Date"])
df['accuracy'] = pd.to_numeric(df['accuracy'], errors='coerce')
df.dropna(subset=['accuracy'], inplace=True)
# Filter for 'ALL' subject runs for the selected benchmark
df_filtered = df[(df['benchmark'] == benchmark_filter) & (df['subject'] == 'ALL')].copy()
if df_filtered.empty:
return pd.DataFrame(columns=["Rank", "Model ID", "Avg. Accuracy (%)", "Total Samples", "Date"])
df_filtered['timestamp'] = pd.to_datetime(df_filtered['timestamp'])
latest_evals = df_filtered.loc[df_filtered.groupby('model_id')['timestamp'].idxmax()].copy()
leaderboard_df = latest_evals.sort_values(by="accuracy", ascending=False).copy()
leaderboard_df.insert(0, 'Rank', range(1, len(leaderboard_df) + 1))
leaderboard_df.rename(columns={
'model_id': 'Model ID',
'accuracy': 'Avg. Accuracy (%)',
'sample_count': 'Total Samples',
'timestamp': 'Date'
}, inplace=True)
leaderboard_df['Avg. Accuracy (%)'] = leaderboard_df['Avg. Accuracy (%)'].map('{:.2f}'.format)
leaderboard_df['Date'] = leaderboard_df['Date'].dt.strftime('%Y-%m-%d')
progress(1, desc="Done.")
return leaderboard_df[['Rank', 'Model ID', 'Avg. Accuracy (%)', 'Total Samples', 'Date']]
except Exception as e:
gr.Error(f"Error loading leaderboard: {e}")
traceback.print_exc()
return pd.DataFrame(columns=["Rank", "Model ID", "Avg. Accuracy (%)", "Total Samples", "Date"])
# --- Gradio Interface Definition ---
custom_css = """
/* --- Global & Layout (Bigger to fit screen) --- */
body { font-family: 'Inter', sans-serif; background-color: #1a1a1a; color: #f0f0f0; } /* Dark background, light text */
.gradio-container { max-width: 95% !important; margin: auto; padding: 20px; } /* Wider container */
.gr-group { border-radius: 12px !important; box-shadow: 0 4px 12px rgba(0,0,0,0.3) !important; border: 1px solid #333 !important; background-color: #2a2a2a; }
.gr-panel { border-radius: 12px !important; box-shadow: 0 4px 12px rgba(0,0,0,0.3) !important; border: 1px solid #333 !important; background-color: #2a2a2a; }
/* --- Typography (Orange Hues) --- */
h1 { text-align: center; font-size: 3rem !important; font-weight: 800; color: #ff8c00; margin-bottom: 0.5rem; letter-spacing: -1.5px; } /* Orange title */
h3, h4 { color: #ffa500; } /* Orange headings */
.subtitle { text-align: center; color: #cccccc; font-size: 1.2rem; margin-bottom: 2.5rem; max-width: 900px; margin-left: auto; margin-right: auto;}
label { color: #f0f0f0 !important; } /* Label text color */
/* --- Progress Bar --- */
.progress-container { background-color: #3a3a3a; border-radius: 8px; overflow: hidden; border: 1px solid #555; height: 28px; padding: 4px; }
.progress-bar { background: linear-gradient(90deg, #ff8c00, #ffa500); height: 100%; border-radius: 5px; transition: width 0.3s ease-in-out; display: flex; align-items: center; justify-content: center; color: #1a1a1a; font-weight: 600; font-size: 0.9rem; }
/* --- Tabs --- */
.gradio-tabs { background-color: #2a2a2a; border-radius: 12px; }
.gradio-tabs button { background-color: #3a3a3a !important; color: #f0f0f0 !important; border-radius: 8px 8px 0 0 !important; transition: all 0.3s ease; }
.gradio-tabs button.selected { background-color: #ff8c00 !important; color: #1a1a1a !important; font-weight: 700; }
/* --- Inputs --- */
.gr-textbox, .gr-dropdown, .gr-slider { background-color: #3a3a3a !important; color: #f0f0f0 !important; border: 1px solid #555 !important; border-radius: 8px !important; }
/* --- Buttons --- */
.gr-button-primary { background-color: #ff8c00 !important; color: #1a1a1a !important; box-shadow: 0 4px 10px rgba(255, 140, 0, 0.3); border: none; }
.gr-button-primary:hover { transform: translateY(-2px); box-shadow: 0 6px 15px rgba(255, 140, 0, 0.5); background-color: #ffa500 !important; }
/* --- Dataframe / Table Styling --- */
.leaderboard-table .gr-dataframe thead th { background-color: #3a3a3a !important; color: #ffa500 !important; font-weight: 600 !important; text-align: left; padding: 12px 15px; border-bottom: 2px solid #555; }
.leaderboard-table .gr-dataframe tbody tr:nth-of-type(even) { background-color: #2f2f2f; }
.leaderboard-table .gr-dataframe tbody tr:hover { background-color: #4a4a4a; }
.leaderboard-table .gr-dataframe tbody td { padding: 12px 15px; border-bottom: 1px solid #3a3a3a; color: #f0f0f0; }
/* --- Error & Result Panes --- */
#error-display-box { background-color: #4a1e1e !important; border-color: #8c2f2f !important; color: #ffc9c9 !important; }
#result-summary-box { background-color: #1e3a2a !important; border-color: #2f8c4a !important; color: #c9ffc9 !important; }
.gr-markdown p { color: #f0f0f0 !important; } .gr-markdown strong { color: #ffa500 !important; }
.gradio-message { background-color: #ff8c00 !important; color: #1a1a1a !important; border: 1px solid #ff8c00 !important; }
"""
with gr.Blocks(theme=gr.themes.Base(), css=custom_css) as demo:
gr.Markdown("<h1>π SuperBench Eval: Evaluate models and view leaderboards π</h1>")
gr.Markdown("<p class='subtitle'>Benchmark leading models on MMLU. Your results contribute to a live leaderboard. Select a benchmark and run an evaluation, or view the current standings.</p>")
with gr.Tabs() as tabs:
# --- Leaderboard Tab ---
with gr.TabItem("π Leaderboard", id=0):
with gr.Column():
with gr.Row():
leaderboard_type_toggle = gr.Radio(
["MMLU"], label="Select Benchmark", value="MMLU", interactive=True
)
refresh_button = gr.Button("π Refresh", size="sm")
leaderboard_table_output = gr.DataFrame(
headers=["Rank", "Model ID", "Avg. Accuracy (%)", "Total Samples", "Date"],
interactive=False, datatype=["number", "str", "str", "number", "str"],
row_count=15, elem_classes="leaderboard-table",
)
# --- Evaluation Tab ---
with gr.TabItem("π Run Evaluation", id=1):
with gr.Row(variant='panel'):
with gr.Column(scale=2):
with gr.Group():
gr.Markdown("### 1. Configure Evaluation")
model_id_input = gr.Textbox(
label="Hugging Face Model ID", placeholder="e.g., meta-llama/Meta-Llama-3-8B-Instruct",
interactive=True, scale=2
)
benchmark_selection_radio = gr.Radio(
["MMLU"], label="Benchmark", value="MMLU", interactive=True
)
with gr.Row():
benchmark_subject_dropdown = gr.Dropdown(
label="Subject", choices=ALL_BENCHMARK_SUBJECTS.get("MMLU", []),
value="ALL", interactive=True
)
sample_count_slider = gr.Slider(
label="Samples per Subject", minimum=5, maximum=100, value=10, step=5, interactive=True
)
run_button = gr.Button("Start Evaluation", variant="primary", scale=1)
with gr.Column(scale=3):
gr.Markdown("### 2. View Results")
# NEW: Progress Bar UI
with gr.Group(visible=False) as progress_box:
progress_text_output = gr.Markdown("Starting...")
progress_bar_output = gr.HTML(make_progress_html("Waiting...", 0))
# Panel for displaying the summary of results
with gr.Group(visible=False) as result_summary_box:
result_summary_output = gr.Markdown(elem_id="result-summary-box")
# Panel for displaying errors
with gr.Group(visible=False) as error_box:
error_output = gr.Textbox(label="Error Message", interactive=False, elem_id="error-display-box")
error_details_output = gr.Textbox(label="Error Details (Traceback)", interactive=False, lines=8)
# Panel for detailed, row-by-row results
with gr.Group(visible=False) as details_box:
gr.Markdown("#### Detailed Evaluation Log")
detailed_results_df = gr.DataFrame(
headers=["Question", "Correct", "Expected", "Predicted", "Model Output"],
datatype=["str", "str", "str", "str", "str"],
interactive=False, row_count=10, wrap=True,
)
# --- Event Handlers & Logic ---
benchmark_selection_radio.change(
fn=update_subject_dropdown,
inputs=[benchmark_selection_radio],
outputs=[benchmark_subject_dropdown]
)
# Main evaluation trigger, now handles a generator for progress updates
run_button.click(
fn=run_evaluation,
inputs=[model_id_input, benchmark_selection_radio, benchmark_subject_dropdown, sample_count_slider],
outputs=[
progress_box, progress_text_output, progress_bar_output,
result_summary_box, result_summary_output,
error_box, error_output, error_details_output,
details_box, detailed_results_df
]
).then(
# After evaluation, refresh the leaderboard
load_leaderboard, inputs=[leaderboard_type_toggle], outputs=[leaderboard_table_output]
)
# --- Leaderboard Loading Logic ---
demo.load(
fn=load_leaderboard,
inputs=[leaderboard_type_toggle],
outputs=[leaderboard_table_output]
)
leaderboard_type_toggle.change(
fn=load_leaderboard,
inputs=[leaderboard_type_toggle],
outputs=[leaderboard_table_output],
show_progress='minimal'
)
refresh_button.click(
fn=load_leaderboard,
inputs=[leaderboard_type_toggle],
outputs=[leaderboard_table_output],
show_progress='full'
)
if __name__ == "__main__":
demo.launch(debug=True)
|