Enderchef commited on
Commit
aed021b
·
verified ·
1 Parent(s): 5177cd2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -41
app.py CHANGED
@@ -18,38 +18,20 @@ def load_model(model_id):
18
  model_cache[model_id] = generator
19
  return generator
20
 
21
- def format_prompt(item, source):
22
- if source == "cais/mmlu":
23
- prompt = f"{item['question']}\nA. {item['choices'][0]}\nB. {item['choices'][1]}\nC. {item['choices'][2]}\nD. {item['choices'][3]}\nAnswer:"
24
- answer = item['answer']
25
- elif source == "TIGER-Lab/MMLU-Pro":
26
- if all(opt in item for opt in ['A', 'B', 'C', 'D']):
27
- prompt = f"{item['question']}\nA. {item['A']}\nB. {item['B']}\nC. {item['C']}\nD. {item['D']}\nAnswer:"
28
- else:
29
- choices = item.get("choices", ["", "", "", ""])
30
- prompt = f"{item['question']}\nA. {choices[0]}\nB. {choices[1]}\nC. {choices[2]}\nD. {choices[3]}\nAnswer:"
31
- answer = item['answer']
32
- elif source == "cais/hle":
33
- prompt = f"{item['question']}\n{item['A']}\n{item['B']}\n{item['C']}\n{item['D']}\nAnswer:"
34
- answer = item['answer']
35
- else:
36
- prompt, answer = "", ""
37
- return prompt, answer
38
-
39
- def evaluate(model_id, dataset_name, sample_count):
40
- gen = load_model(model_id)
41
- dataset = load_dataset(dataset_name, token=HF_TOKEN)
42
- if 'test' in dataset:
43
- dataset = dataset['test']
44
- else:
45
- dataset = dataset[list(dataset.keys())[0]]
46
 
 
 
 
47
  dataset = dataset.shuffle(seed=42).select(range(min(sample_count, len(dataset))))
 
48
  correct = 0
49
  results = []
50
 
51
  for item in dataset:
52
- prompt, answer = format_prompt(item, dataset_name)
53
  output = gen(prompt, max_new_tokens=10, do_sample=False)[0]["generated_text"]
54
  output_letter = next((char for char in output[::-1] if char in "ABCD"), None)
55
  is_correct = output_letter == answer
@@ -57,19 +39,17 @@ def evaluate(model_id, dataset_name, sample_count):
57
  results.append((prompt, output.strip(), answer, output_letter, is_correct))
58
 
59
  accuracy = correct / len(dataset) * 100
60
- return accuracy, results
61
-
62
- def run(model_id, benchmark, sample_count):
63
- if benchmark != "cais/mmlu":
64
- return "Only MMLU (cais/mmlu) is available now. MMLU-Pro and Humanity's Last Exam are coming soon.", ""
65
 
66
- accuracy, details = evaluate(model_id, benchmark, sample_count)
 
 
 
67
  formatted = "\n\n".join([
68
  f"### Question:\n{q}\n\n**Model Answer:** {o}\n**Expected:** {a}\n**Predicted:** {g}\n**Correct:** {c}"
69
  for q, o, a, g, c in details
70
  ])
71
-
72
- return f"Accuracy: {accuracy:.2f}%", formatted
73
 
74
  def save_text(text):
75
  return "evaluation_results.txt", text
@@ -81,15 +61,29 @@ with gr.Blocks(css="body {font-family: Inter, sans-serif; padding: 1em; max-widt
81
  Currently, only **MMLU** (`cais/mmlu`) is available for evaluation.
82
  **MMLU-Pro** and **Humanity's Last Exam** will be coming soon.
83
 
84
- Enter your model ID, pick MMLU, and hit evaluate.
85
  """)
86
 
87
  with gr.Row():
88
  model_id = gr.Textbox(label="Your Hugging Face Model ID", placeholder="e.g., your-org/your-model")
89
- benchmark = gr.Dropdown(
90
- label="Choose Benchmark",
91
- choices=["cais/mmlu"],
92
- value="cais/mmlu"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
  )
94
  sample_count = gr.Slider(label="Number of Samples", minimum=1, maximum=100, value=10, step=1)
95
 
@@ -98,7 +92,11 @@ with gr.Blocks(css="body {font-family: Inter, sans-serif; padding: 1em; max-widt
98
  detail_output = gr.Textbox(label="Evaluation Details", lines=20, interactive=False)
99
  download_button = gr.Button("📥 Download Full Evaluation")
100
 
101
- run_button.click(run, inputs=[model_id, benchmark, sample_count], outputs=[acc_output, detail_output])
102
  download_button.click(save_text, inputs=detail_output, outputs=gr.File())
103
 
104
- demo.launch(share=True)
 
 
 
 
 
18
  model_cache[model_id] = generator
19
  return generator
20
 
21
+ def format_prompt(item):
22
+ prompt = f"{item['question']}\nA. {item['choices'][0]}\nB. {item['choices'][1]}\nC. {item['choices'][2]}\nD. {item['choices'][3]}\nAnswer:"
23
+ return prompt, item['answer']
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
+ def evaluate(model_id, sample_count, config_name):
26
+ gen = load_model(model_id)
27
+ dataset = load_dataset("cais/mmlu", config_name, token=HF_TOKEN)["test"]
28
  dataset = dataset.shuffle(seed=42).select(range(min(sample_count, len(dataset))))
29
+
30
  correct = 0
31
  results = []
32
 
33
  for item in dataset:
34
+ prompt, answer = format_prompt(item)
35
  output = gen(prompt, max_new_tokens=10, do_sample=False)[0]["generated_text"]
36
  output_letter = next((char for char in output[::-1] if char in "ABCD"), None)
37
  is_correct = output_letter == answer
 
39
  results.append((prompt, output.strip(), answer, output_letter, is_correct))
40
 
41
  accuracy = correct / len(dataset) * 100
42
+ return f"Accuracy: {accuracy:.2f}%", results
 
 
 
 
43
 
44
+ def run(model_id, sample_count, config_name):
45
+ if config_name == "coming soon":
46
+ return "Only MMLU is currently available. MMLU-Pro and HLE coming soon.", ""
47
+ score, details = evaluate(model_id, sample_count, config_name)
48
  formatted = "\n\n".join([
49
  f"### Question:\n{q}\n\n**Model Answer:** {o}\n**Expected:** {a}\n**Predicted:** {g}\n**Correct:** {c}"
50
  for q, o, a, g, c in details
51
  ])
52
+ return score, formatted
 
53
 
54
  def save_text(text):
55
  return "evaluation_results.txt", text
 
61
  Currently, only **MMLU** (`cais/mmlu`) is available for evaluation.
62
  **MMLU-Pro** and **Humanity's Last Exam** will be coming soon.
63
 
64
+ Enter your model ID, pick MMLU, choose a subject, and hit evaluate.
65
  """)
66
 
67
  with gr.Row():
68
  model_id = gr.Textbox(label="Your Hugging Face Model ID", placeholder="e.g., your-org/your-model")
69
+ config_name = gr.Dropdown(
70
+ label="Choose MMLU Subject",
71
+ choices=[
72
+ "abstract_algebra", "anatomy", "astronomy", "business_ethics", "college_biology",
73
+ "college_chemistry", "college_computer_science", "college_mathematics", "college_medicine",
74
+ "college_physics", "computer_security", "econometrics", "electrical_engineering",
75
+ "elementary_mathematics", "formal_logic", "global_facts", "high_school_biology",
76
+ "high_school_chemistry", "high_school_computer_science", "high_school_european_history",
77
+ "high_school_geography", "high_school_government_and_politics", "high_school_macroeconomics",
78
+ "high_school_microeconomics", "high_school_physics", "high_school_psychology",
79
+ "high_school_statistics", "high_school_us_history", "high_school_world_history", "human_aging",
80
+ "human_sexuality", "international_law", "jurisprudence", "logical_fallacies", "machine_learning",
81
+ "management", "marketing", "medical_genetics", "miscellaneous", "moral_disputes",
82
+ "moral_scenarios", "nutrition", "philosophy", "prehistory", "professional_accounting",
83
+ "professional_law", "professional_medicine", "professional_psychology", "public_relations",
84
+ "security_studies", "sociology", "us_foreign_policy", "virology", "world_religions"
85
+ ],
86
+ value="college_mathematics"
87
  )
88
  sample_count = gr.Slider(label="Number of Samples", minimum=1, maximum=100, value=10, step=1)
89
 
 
92
  detail_output = gr.Textbox(label="Evaluation Details", lines=20, interactive=False)
93
  download_button = gr.Button("📥 Download Full Evaluation")
94
 
95
+ run_button.click(run, inputs=[model_id, sample_count, config_name], outputs=[acc_output, detail_output])
96
  download_button.click(save_text, inputs=detail_output, outputs=gr.File())
97
 
98
+ gr.Markdown("""
99
+ MMLU-Pro and HLE support will be added soon.
100
+ """)
101
+
102
+ demo.launch()