Enderchef commited on
Commit
e64e7b1
·
verified ·
1 Parent(s): bbb86d7

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +90 -0
app.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
3
+ from datasets import load_dataset
4
+ import torch
5
+
6
+ # Cache to avoid reloading the model
7
+ model_cache = {}
8
+
9
+ def load_model(model_id):
10
+ if model_id in model_cache:
11
+ return model_cache[model_id]
12
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
13
+ model = AutoModelForCausalLM.from_pretrained(model_id).to("cuda" if torch.cuda.is_available() else "cpu")
14
+ generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
15
+ model_cache[model_id] = generator
16
+ return generator
17
+
18
+ def format_prompt(item, source):
19
+ if source == "cais/mmlu":
20
+ prompt = f"{item['question']}\nA. {item['choices'][0]}\nB. {item['choices'][1]}\nC. {item['choices'][2]}\nD. {item['choices'][3]}\nAnswer:"
21
+ answer = item['answer']
22
+ elif source == "TIGER-Lab/MMLU-Pro":
23
+ prompt = f"{item['question']}\nA. {item['A']}\nB. {item['B']}\nC. {item['C']}\nD. {item['D']}\nAnswer:"
24
+ answer = item['answer']
25
+ elif source == "cais/hle":
26
+ prompt = f"{item['question']}\n{item['A']}\n{item['B']}\n{item['C']}\n{item['D']}\nAnswer:"
27
+ answer = item['answer']
28
+ else:
29
+ prompt, answer = "", ""
30
+ return prompt, answer
31
+
32
+ def evaluate(model_id, dataset_name, sample_count):
33
+ gen = load_model(model_id)
34
+ dataset = load_dataset(dataset_name)
35
+ if 'test' in dataset:
36
+ dataset = dataset['test']
37
+ else:
38
+ dataset = dataset[list(dataset.keys())[0]]
39
+
40
+ dataset = dataset.shuffle(seed=42).select(range(min(sample_count, len(dataset))))
41
+ correct = 0
42
+ results = []
43
+
44
+ for item in dataset:
45
+ prompt, answer = format_prompt(item, dataset_name)
46
+ output = gen(prompt, max_new_tokens=10, do_sample=False)[0]["generated_text"]
47
+ output_letter = next((char for char in output[::-1] if char in "ABCD"), None)
48
+ is_correct = output_letter == answer
49
+ correct += is_correct
50
+ results.append((prompt, output.strip(), answer, output_letter, is_correct))
51
+
52
+ accuracy = correct / len(dataset) * 100
53
+ return f"Accuracy: {accuracy:.2f}%", results
54
+
55
+ def run(model_id, benchmark, sample_count):
56
+ score, details = evaluate(model_id, benchmark, sample_count)
57
+ formatted = "\n\n".join([
58
+ f"### Question:\n{q}\n\n**Model Answer:** {o}\n**Expected:** {a}\n**Predicted:** {g}\n**Correct:** {c}"
59
+ for q, o, a, g, c in details
60
+ ])
61
+ return score, formatted
62
+
63
+ with gr.Blocks(css="body {font-family: Inter, sans-serif; padding: 1em; max-width: 900px; margin: auto;}", analytics_enabled=False, custom_code=True) as demo:
64
+ gr.Markdown("""
65
+ # 🤖 LLM Benchmark Evaluator
66
+
67
+ Easily evaluate your Hugging Face-hosted model on:
68
+ - **MMLU** (`cais/mmlu`)
69
+ - **MMLU-Pro** (`TIGER-Lab/MMLU-Pro`)
70
+ - **Humanity's Last Exam** (`cais/hle`)
71
+
72
+ Enter your model ID, pick a benchmark, and hit evaluate.
73
+ """)
74
+
75
+ with gr.Row():
76
+ model_id = gr.Textbox(label="Your Hugging Face Model ID", placeholder="e.g., your-org/your-model")
77
+ benchmark = gr.Dropdown(
78
+ label="Choose Benchmark",
79
+ choices=["cais/mmlu", "TIGER-Lab/MMLU-Pro", "cais/hle"],
80
+ value="cais/mmlu"
81
+ )
82
+ sample_count = gr.Slider(label="Number of Samples", minimum=1, maximum=100, value=10, step=1)
83
+
84
+ run_button = gr.Button("🚀 Run Evaluation")
85
+ acc_output = gr.Textbox(label="Benchmark Accuracy", interactive=False)
86
+ detail_output = gr.Textbox(label="Evaluation Details", lines=20, interactive=False)
87
+
88
+ run_button.click(run, inputs=[model_id, benchmark, sample_count], outputs=[acc_output, detail_output])
89
+
90
+ demo.launch()