Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -14,7 +14,7 @@ from datetime import datetime
|
|
14 |
# It's good practice to ensure the cache directory exists.
|
15 |
CACHE_DIR = "evaluation_cache"
|
16 |
os.makedirs(CACHE_DIR, exist_ok=True)
|
17 |
-
EVAL_FILE = os.path.join(CACHE_DIR, "
|
18 |
|
19 |
# Cache to avoid reloading models and dataset configs
|
20 |
model_cache = {}
|
@@ -25,14 +25,12 @@ HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
25 |
|
26 |
# --- Constants for Benchmarks ---
|
27 |
MMLU_DATASET = "cais/mmlu"
|
28 |
-
# Temporarily remove MMLU-Pro references
|
29 |
-
# MMLU_PRO_DATASET = "TIGER-Lab/MMLU-Pro"
|
30 |
BENCHMARK_MAP = {
|
31 |
"MMLU": MMLU_DATASET,
|
32 |
-
# "MMLU-Pro": MMLU_PRO_DATASET # Temporarily removed
|
33 |
}
|
34 |
|
35 |
# --- Data Loading and Preparation ---
|
|
|
36 |
def get_all_benchmark_options():
|
37 |
"""
|
38 |
Fetches and caches the available subjects (configs) for each benchmark dataset.
|
@@ -41,16 +39,13 @@ def get_all_benchmark_options():
|
|
41 |
if benchmark_subject_cache:
|
42 |
return benchmark_subject_cache
|
43 |
print("Fetching benchmark configurations for the first time...")
|
44 |
-
|
45 |
-
# Only iterate over the allowed benchmarks (MMLU)
|
46 |
for key, dataset_id in BENCHMARK_MAP.items():
|
47 |
try:
|
48 |
-
# Fetching dataset configurations requires authentication if the dataset is private
|
49 |
subjects = get_dataset_config_names(dataset_id, token=HF_TOKEN)
|
50 |
-
benchmark_subject_cache[key] = ["ALL"] + sorted([s for s in subjects if s != 'all'])
|
51 |
except Exception as e:
|
52 |
print(f"Warning: Could not load configs for {key} ({dataset_id}). It might be private or unavailable. Error: {e}")
|
53 |
-
benchmark_subject_cache[key] = ["ALL"]
|
54 |
print("Benchmark configurations cached.")
|
55 |
return benchmark_subject_cache
|
56 |
|
@@ -65,39 +60,34 @@ def load_model(model_id):
|
|
65 |
"""
|
66 |
if not model_id:
|
67 |
raise ValueError("Model ID cannot be empty.")
|
68 |
-
|
69 |
if model_id in model_cache:
|
70 |
gr.Info(f"Model '{model_id}' found in cache.")
|
71 |
return model_cache[model_id]
|
72 |
try:
|
73 |
-
# Use bfloat16 for better performance on modern GPUs
|
74 |
dtype = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else torch.float32
|
75 |
-
|
76 |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN, trust_remote_code=True)
|
77 |
model = AutoModelForCausalLM.from_pretrained(
|
78 |
model_id,
|
79 |
token=HF_TOKEN,
|
80 |
torch_dtype=dtype,
|
81 |
trust_remote_code=True,
|
82 |
-
low_cpu_mem_usage=True,
|
83 |
).to("cuda" if torch.cuda.is_available() else "cpu")
|
84 |
-
|
85 |
-
# Create the pipeline for text generation
|
86 |
generator = pipeline(
|
87 |
-
"text-generation",
|
88 |
-
model=model,
|
89 |
-
tokenizer=tokenizer,
|
90 |
device=0 if torch.cuda.is_available() else -1
|
91 |
)
|
92 |
-
|
93 |
model_cache[model_id] = generator
|
94 |
gr.Info(f"Model '{model_id}' loaded successfully.")
|
95 |
return generator
|
96 |
except Exception as e:
|
97 |
-
|
98 |
-
raise RuntimeError(f"Failed to load model '{model_id}'. Please verify the model ID and your Hugging Face token (if required). Error: {e}")
|
99 |
|
100 |
# --- Evaluation Logic ---
|
|
|
101 |
def format_prompt(item):
|
102 |
"""Formats the MMLU question and choices into a standardized prompt."""
|
103 |
prompt = f"Question: {item['question']}\n\nChoices:\nA. {item['choices'][0]}\nB. {item['choices'][1]}\nC. {item['choices'][2]}\nD. {item['choices'][3]}\n\nAnswer:"
|
@@ -108,125 +98,123 @@ def get_choice_letter(index):
|
|
108 |
return chr(ord('A') + index) if 0 <= index <= 3 else None
|
109 |
|
110 |
def extract_predicted_letter(output_text):
|
111 |
-
"""
|
112 |
-
Extracts the predicted letter from the model's output.
|
113 |
-
It looks for a letter (A, B, C, D) immediately following 'Answer:'.
|
114 |
-
"""
|
115 |
-
# Look for "Answer: X" and capture X
|
116 |
match = re.search(r"Answer:\s*([ABCD])", output_text.strip(), re.IGNORECASE)
|
117 |
if match:
|
118 |
return match.group(1).upper()
|
119 |
-
|
120 |
-
# Fallback: if the model just outputs a letter
|
121 |
match = re.search(r"^\s*([ABCD])\b", output_text.strip())
|
122 |
if match:
|
123 |
return match.group(1).upper()
|
124 |
return None
|
125 |
|
126 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
"""
|
128 |
-
Evaluates a model on a specific subject from a dataset.
|
129 |
-
"""
|
130 |
-
gr.Info(f"Loading dataset: {dataset_id} ({subject})...")
|
131 |
-
try:
|
132 |
-
# Load the 'test' split as it's standard for MMLU evaluation
|
133 |
-
dataset = load_dataset(dataset_id, subject, token=HF_TOKEN, split="test")
|
134 |
-
except Exception as e:
|
135 |
-
raise RuntimeError(f"Failed to load dataset '{dataset_id}' for subject '{subject}'. Error: {e}")
|
136 |
-
|
137 |
-
# Shuffle and select a subset of samples for evaluation
|
138 |
-
num_samples = min(sample_count, len(dataset))
|
139 |
-
dataset = dataset.shuffle(seed=42).select(range(num_samples))
|
140 |
-
|
141 |
-
correct_predictions = 0
|
142 |
-
results_details = []
|
143 |
-
|
144 |
-
for item in progress.tqdm(dataset, desc=f"Evaluating {subject}"):
|
145 |
-
prompt, correct_answer_idx = format_prompt(item)
|
146 |
-
expected_letter = get_choice_letter(correct_answer_idx)
|
147 |
-
|
148 |
-
# The generated text is often just after the prompt. We need to slice it.
|
149 |
-
full_prompt_text = generator.tokenizer.decode(generator.tokenizer.encode(prompt), skip_special_tokens=True)
|
150 |
-
|
151 |
-
# Generate a short response, aiming for a single letter answer.
|
152 |
-
# do_sample=False (greedy decoding) is crucial for reproducibility.
|
153 |
-
raw_output = generator(prompt, max_new_tokens=5, do_sample=False, pad_token_id=generator.tokenizer.eos_token_id)[0]["generated_text"]
|
154 |
-
|
155 |
-
# Isolate the newly generated part
|
156 |
-
generated_text_only = raw_output[len(full_prompt_text):].strip()
|
157 |
-
predicted_letter = extract_predicted_letter(generated_text_only)
|
158 |
-
is_correct = (predicted_letter == expected_letter)
|
159 |
-
|
160 |
-
if is_correct:
|
161 |
-
correct_predictions += 1
|
162 |
-
|
163 |
-
results_details.append({
|
164 |
-
"Question": item['question'],
|
165 |
-
"Correct": "β
" if is_correct else "β",
|
166 |
-
"Expected": expected_letter,
|
167 |
-
"Predicted": predicted_letter or "N/A",
|
168 |
-
"Model Output": generated_text_only
|
169 |
-
})
|
170 |
-
accuracy = (correct_predictions / num_samples) * 100 if num_samples > 0 else 0
|
171 |
-
return accuracy, results_details
|
172 |
|
173 |
@spaces.GPU()
|
174 |
-
def run_evaluation(model_id, benchmark_category, subject_name, sample_count
|
175 |
"""
|
176 |
-
Main function to orchestrate the
|
177 |
-
Handles single subject or 'ALL' subjects evaluation.
|
178 |
-
Returns a dictionary of Gradio updates.
|
179 |
"""
|
180 |
try:
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
generator = load_model(model_id)
|
183 |
-
|
184 |
dataset_id = BENCHMARK_MAP.get(benchmark_category)
|
185 |
if not dataset_id:
|
186 |
raise ValueError(f"Invalid benchmark category: {benchmark_category}")
|
187 |
|
188 |
-
all_results_details = []
|
189 |
-
summary_lines = []
|
190 |
-
total_correct = 0
|
191 |
-
total_samples = 0
|
192 |
-
|
193 |
subjects_to_run = []
|
194 |
if subject_name == "ALL":
|
195 |
-
# Exclude the "ALL" placeholder from the list of subjects to run
|
196 |
subjects_to_run = [s for s in ALL_BENCHMARK_SUBJECTS.get(benchmark_category, []) if s != "ALL"]
|
197 |
else:
|
198 |
subjects_to_run = [subject_name]
|
199 |
|
200 |
if not subjects_to_run:
|
201 |
gr.Warning(f"No subjects found for '{benchmark_category}'.")
|
202 |
-
|
203 |
-
return
|
204 |
-
result_summary_output: gr.update(value="No subjects found to evaluate.", visible=True),
|
205 |
-
error_box: gr.update(visible=False),
|
206 |
-
details_box: gr.update(visible=False),
|
207 |
-
}
|
208 |
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
for i, subject in enumerate(subjects_to_run):
|
210 |
-
|
|
|
|
|
|
|
|
|
211 |
try:
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
except Exception as e:
|
222 |
error_trace = traceback.format_exc()
|
223 |
gr.Error(f"Skipping {subject} due to an error: {e}")
|
224 |
summary_lines.append(f"- **{subject}**: Evaluation failed. See logs for details:\n```\n{error_trace}\n```")
|
225 |
continue
|
226 |
-
|
|
|
227 |
overall_accuracy = (total_correct / total_samples) * 100 if total_samples > 0 else 0
|
228 |
-
|
229 |
-
# --- Prepare Outputs ---
|
230 |
if subject_name == "ALL":
|
231 |
result_summary = f"### Overall Average Accuracy: {overall_accuracy:.2f}%\n"
|
232 |
result_summary += f"across {total_samples:,} total samples from {len(subjects_to_run)} subjects.\n\n---\n\n**Breakdown by Subject:**\n"
|
@@ -234,44 +222,49 @@ def run_evaluation(model_id, benchmark_category, subject_name, sample_count, pro
|
|
234 |
else:
|
235 |
result_summary = f"### Accuracy for {benchmark_category} - {subject_name}: {overall_accuracy:.2f}%\n"
|
236 |
result_summary += f"({total_correct:,}/{total_samples:,} correct)"
|
237 |
-
|
238 |
-
#
|
239 |
record = {
|
240 |
"model_id": model_id,
|
241 |
"benchmark": benchmark_category,
|
242 |
"accuracy": overall_accuracy,
|
243 |
-
"subject": subject_name,
|
244 |
"sample_count": total_samples,
|
245 |
"timestamp": datetime.now().isoformat()
|
246 |
}
|
247 |
with open(EVAL_FILE, "a") as f:
|
248 |
f.write(json.dumps(record) + "\n")
|
249 |
-
|
250 |
gr.Info("Evaluation completed successfully!")
|
251 |
-
|
252 |
df_details = pd.DataFrame(all_results_details)
|
253 |
-
|
254 |
-
#
|
255 |
-
|
256 |
-
|
257 |
-
|
|
|
258 |
details_box: gr.update(visible=True),
|
259 |
-
detailed_results_df: gr.update(value=df_details)
|
|
|
260 |
}
|
|
|
261 |
except Exception as e:
|
262 |
-
error_message = f"An unexpected error occurred
|
263 |
error_details = traceback.format_exc()
|
264 |
gr.Error(error_message)
|
265 |
-
|
266 |
-
|
267 |
-
|
|
|
|
|
|
|
268 |
error_box: gr.update(visible=True),
|
269 |
error_output: gr.update(value=error_message),
|
270 |
error_details_output: gr.update(value=error_details),
|
271 |
-
details_box: gr.update(visible=False)
|
272 |
}
|
273 |
|
274 |
# --- UI Helper Functions ---
|
|
|
275 |
def update_subject_dropdown(benchmark_category):
|
276 |
"""Updates the subject dropdown choices based on the selected benchmark."""
|
277 |
choices = ALL_BENCHMARK_SUBJECTS.get(benchmark_category, [])
|
@@ -281,46 +274,41 @@ def update_subject_dropdown(benchmark_category):
|
|
281 |
def load_leaderboard(benchmark_filter, progress=gr.Progress()):
|
282 |
"""
|
283 |
Loads and processes evaluation data to display on the leaderboard.
|
284 |
-
It now correctly averages scores for models that were evaluated on 'ALL' subjects.
|
285 |
"""
|
286 |
progress(0, desc="Loading Leaderboard...")
|
287 |
try:
|
288 |
if not os.path.exists(EVAL_FILE):
|
289 |
return pd.DataFrame(columns=["Rank", "Model ID", "Avg. Accuracy (%)", "Total Samples", "Date"])
|
290 |
-
|
291 |
df = pd.read_json(EVAL_FILE, lines=True)
|
292 |
if df.empty:
|
293 |
return pd.DataFrame(columns=["Rank", "Model ID", "Avg. Accuracy (%)", "Total Samples", "Date"])
|
294 |
-
|
295 |
-
# Coerce accuracy to numeric and filter valid entries
|
296 |
df['accuracy'] = pd.to_numeric(df['accuracy'], errors='coerce')
|
297 |
df.dropna(subset=['accuracy'], inplace=True)
|
298 |
-
|
299 |
-
# Filter
|
300 |
df_filtered = df[(df['benchmark'] == benchmark_filter) & (df['subject'] == 'ALL')].copy()
|
301 |
-
|
302 |
if df_filtered.empty:
|
303 |
return pd.DataFrame(columns=["Rank", "Model ID", "Avg. Accuracy (%)", "Total Samples", "Date"])
|
304 |
-
|
305 |
-
# Find the latest evaluation for each model
|
306 |
df_filtered['timestamp'] = pd.to_datetime(df_filtered['timestamp'])
|
307 |
latest_evals = df_filtered.loc[df_filtered.groupby('model_id')['timestamp'].idxmax()].copy()
|
308 |
-
|
309 |
leaderboard_df = latest_evals.sort_values(by="accuracy", ascending=False).copy()
|
310 |
-
|
311 |
-
# Add Rank
|
312 |
leaderboard_df.insert(0, 'Rank', range(1, len(leaderboard_df) + 1))
|
313 |
-
# Rename and format columns
|
314 |
leaderboard_df.rename(columns={
|
315 |
'model_id': 'Model ID',
|
316 |
'accuracy': 'Avg. Accuracy (%)',
|
317 |
'sample_count': 'Total Samples',
|
318 |
'timestamp': 'Date'
|
319 |
}, inplace=True)
|
320 |
-
|
321 |
leaderboard_df['Avg. Accuracy (%)'] = leaderboard_df['Avg. Accuracy (%)'].map('{:.2f}'.format)
|
322 |
leaderboard_df['Date'] = leaderboard_df['Date'].dt.strftime('%Y-%m-%d')
|
323 |
-
|
324 |
progress(1, desc="Done.")
|
325 |
return leaderboard_df[['Rank', 'Model ID', 'Avg. Accuracy (%)', 'Total Samples', 'Date']]
|
326 |
except Exception as e:
|
@@ -329,174 +317,60 @@ def load_leaderboard(benchmark_filter, progress=gr.Progress()):
|
|
329 |
return pd.DataFrame(columns=["Rank", "Model ID", "Avg. Accuracy (%)", "Total Samples", "Date"])
|
330 |
|
331 |
# --- Gradio Interface Definition ---
|
332 |
-
# Black/Orange Theme and bigger to fit screen
|
333 |
custom_css = """
|
334 |
/* --- Global & Layout (Bigger to fit screen) --- */
|
335 |
body { font-family: 'Inter', sans-serif; background-color: #1a1a1a; color: #f0f0f0; } /* Dark background, light text */
|
336 |
.gradio-container { max-width: 95% !important; margin: auto; padding: 20px; } /* Wider container */
|
337 |
-
.gr-group {
|
338 |
-
|
339 |
-
box-shadow: 0 4px 12px rgba(0,0,0,0.3) !important; /* Darker shadow */
|
340 |
-
border: 1px solid #333 !important; /* Darker border */
|
341 |
-
background-color: #2a2a2a; /* Darker group background */
|
342 |
-
}
|
343 |
-
.gr-panel {
|
344 |
-
border-radius: 12px !important;
|
345 |
-
box-shadow: 0 4px 12px rgba(0,0,0,0.3) !important;
|
346 |
-
border: 1px solid #333 !important;
|
347 |
-
background-color: #2a2a2a;
|
348 |
-
}
|
349 |
-
|
350 |
/* --- Typography (Orange Hues) --- */
|
351 |
h1 { text-align: center; font-size: 3rem !important; font-weight: 800; color: #ff8c00; margin-bottom: 0.5rem; letter-spacing: -1.5px; } /* Orange title */
|
352 |
h3, h4 { color: #ffa500; } /* Orange headings */
|
353 |
.subtitle { text-align: center; color: #cccccc; font-size: 1.2rem; margin-bottom: 2.5rem; max-width: 900px; margin-left: auto; margin-right: auto;}
|
354 |
label { color: #f0f0f0 !important; } /* Label text color */
|
355 |
-
|
|
|
|
|
356 |
/* --- Tabs --- */
|
357 |
.gradio-tabs { background-color: #2a2a2a; border-radius: 12px; }
|
358 |
-
.gradio-
|
359 |
-
.gradio-tabs button {
|
360 |
-
background-color: #3a3a3a !important;
|
361 |
-
color: #f0f0f0 !important;
|
362 |
-
border-radius: 8px 8px 0 0 !important;
|
363 |
-
transition: all 0.3s ease;
|
364 |
-
}
|
365 |
-
.gradio-tabs button.selected {
|
366 |
-
background-color: #ff8c00 !important; /* Orange selected tab */
|
367 |
-
color: #1a1a1a !important; /* Dark text on orange */
|
368 |
-
font-weight: 700;
|
369 |
-
}
|
370 |
-
.gradio-tabs button:hover { background-color: #555 !important; }
|
371 |
-
|
372 |
/* --- Inputs --- */
|
373 |
-
.gr-textbox, .gr-dropdown, .gr-slider {
|
374 |
-
background-color: #3a3a3a !important;
|
375 |
-
color: #f0f0f0 !important;
|
376 |
-
border: 1px solid #555 !important;
|
377 |
-
border-radius: 8px !important;
|
378 |
-
}
|
379 |
-
.gr-textbox textarea, .gr-textbox input, .gr-dropdown input {
|
380 |
-
color: #f0f0f0 !important;
|
381 |
-
}
|
382 |
-
.gr-textbox.gr-text-input:focus-within {
|
383 |
-
border-color: #ff8c00 !important; /* Orange focus border */
|
384 |
-
box-shadow: 0 0 0 2px rgba(255, 140, 0, 0.5) !important;
|
385 |
-
}
|
386 |
-
|
387 |
-
|
388 |
/* --- Buttons --- */
|
389 |
-
.gr-button {
|
390 |
-
.gr-button-primary {
|
391 |
-
background-color: #ff8c00 !important; /* Orange primary button */
|
392 |
-
color: #1a1a1a !important;
|
393 |
-
box-shadow: 0 4px 10px rgba(255, 140, 0, 0.3);
|
394 |
-
border: none;
|
395 |
-
}
|
396 |
-
.gr-button-primary:hover {
|
397 |
-
transform: translateY(-2px);
|
398 |
-
box-shadow: 0 6px 15px rgba(255, 140, 0, 0.5);
|
399 |
-
background-color: #ffa500 !important; /* Slightly lighter orange on hover */
|
400 |
-
}
|
401 |
-
.gr-button-secondary {
|
402 |
-
background-color: #444 !important;
|
403 |
-
color: #f0f0f0 !important;
|
404 |
-
border: 1px solid #555 !important;
|
405 |
-
}
|
406 |
-
.gr-button-secondary:hover {
|
407 |
-
background-color: #555 !important;
|
408 |
-
}
|
409 |
-
|
410 |
-
/* --- Custom Radio Buttons (Segmented Control) --- */
|
411 |
-
#leaderboard-toggle-group { display: flex; justify-content: center; align-items: center; gap: 1rem; margin-bottom: 1.5rem; }
|
412 |
-
#leaderboard-toggle { background-color: #3a3a3a; padding: 5px; border-radius: 10px; display: inline-flex; border: 1px solid #555; }
|
413 |
-
#leaderboard-toggle div.gr-form { display: flex; gap: 5px; }
|
414 |
-
#leaderboard-toggle input[type='radio'] { display: none; }
|
415 |
-
#leaderboard-toggle label {
|
416 |
-
padding: 8px 16px;
|
417 |
-
border-radius: 8px;
|
418 |
-
cursor: pointer;
|
419 |
-
transition: all 0.3s ease;
|
420 |
-
font-weight: 500;
|
421 |
-
color: #f0f0f0;
|
422 |
-
background: transparent;
|
423 |
-
border: none;
|
424 |
-
box-shadow: none;
|
425 |
-
}
|
426 |
-
#leaderboard-toggle input[type='radio']:checked + label {
|
427 |
-
background-color: #ff8c00; /* Orange selected */
|
428 |
-
color: #1a1a1a;
|
429 |
-
font-weight: 600;
|
430 |
-
box-shadow: 0 2px 5px rgba(255, 140, 0, 0.3);
|
431 |
-
}
|
432 |
-
#leaderboard-toggle label:hover {
|
433 |
-
background-color: #555;
|
434 |
-
}
|
435 |
-
|
436 |
/* --- Dataframe / Table Styling --- */
|
437 |
-
.leaderboard-table .gr-dataframe
|
438 |
-
.leaderboard-table .gr-dataframe
|
439 |
-
|
440 |
-
|
441 |
-
font-weight: 600 !important;
|
442 |
-
text-align: left;
|
443 |
-
padding: 12px 15px;
|
444 |
-
border-bottom: 2px solid #555;
|
445 |
-
}
|
446 |
-
.leaderboard-table .gr-dataframe tbody tr:nth-of-type(even) { background-color: #2f2f2f; } /* Alternating row color */
|
447 |
-
.leaderboard-table .gr-dataframe tbody tr:hover { background-color: #4a4a4a; } /* Hover effect */
|
448 |
-
.leaderboard-table .gr-dataframe tbody td {
|
449 |
-
padding: 12px 15px;
|
450 |
-
border-bottom: 1px solid #3a3a3a;
|
451 |
-
color: #f0f0f0;
|
452 |
-
}
|
453 |
-
.leaderboard-table .gr-dataframe tbody td:first-child { font-weight: 700; color: #ffcc99; } /* Lighter orange for rank */
|
454 |
-
|
455 |
/* --- Error & Result Panes --- */
|
456 |
-
#error-display-box {
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
}
|
461 |
-
#result-summary-box {
|
462 |
-
background-color: #1e3a2a !important; /* Dark green for success */
|
463 |
-
border-color: #2f8c4a !important;
|
464 |
-
color: #c9ffc9 !important; /* Lighter green text */
|
465 |
-
}
|
466 |
-
.gr-markdown p { color: #f0f0f0 !important; } /* Ensure markdown paragraph text is visible */
|
467 |
-
.gr-markdown strong { color: #ffa500 !important; } /* Strong text in orange */
|
468 |
-
.gradio-message { background-color: #ff8c00 !important; color: #1a1a1a !important; border: 1px solid #ff8c00 !important; } /* Gradio Info messages */
|
469 |
"""
|
470 |
|
471 |
with gr.Blocks(theme=gr.themes.Base(), css=custom_css) as demo:
|
472 |
gr.Markdown("<h1>π SuperBench Eval: Evaluate models and view leaderboards π</h1>")
|
473 |
gr.Markdown("<p class='subtitle'>Benchmark leading models on MMLU. Your results contribute to a live leaderboard. Select a benchmark and run an evaluation, or view the current standings.</p>")
|
474 |
-
|
475 |
with gr.Tabs() as tabs:
|
476 |
# --- Leaderboard Tab ---
|
477 |
with gr.TabItem("π Leaderboard", id=0):
|
478 |
with gr.Column():
|
479 |
-
with gr.Row(
|
480 |
-
# Temporarily remove MMLU-Pro from radio options
|
481 |
leaderboard_type_toggle = gr.Radio(
|
482 |
-
["MMLU"],
|
483 |
-
label="Select Benchmark",
|
484 |
-
value="MMLU",
|
485 |
-
interactive=True,
|
486 |
-
elem_id="leaderboard-toggle",
|
487 |
-
container=False,
|
488 |
-
show_label=False,
|
489 |
)
|
490 |
refresh_button = gr.Button("π Refresh", size="sm")
|
491 |
leaderboard_table_output = gr.DataFrame(
|
492 |
headers=["Rank", "Model ID", "Avg. Accuracy (%)", "Total Samples", "Date"],
|
493 |
-
interactive=False,
|
494 |
-
|
495 |
-
row_count=15, # Adjusted for more rows
|
496 |
-
elem_classes="leaderboard-table",
|
497 |
-
# Removed col_count to allow dynamic width
|
498 |
)
|
499 |
-
|
500 |
# --- Evaluation Tab ---
|
501 |
with gr.TabItem("π Run Evaluation", id=1):
|
502 |
with gr.Row(variant='panel'):
|
@@ -504,77 +378,71 @@ with gr.Blocks(theme=gr.themes.Base(), css=custom_css) as demo:
|
|
504 |
with gr.Group():
|
505 |
gr.Markdown("### 1. Configure Evaluation")
|
506 |
model_id_input = gr.Textbox(
|
507 |
-
label="Hugging Face Model ID",
|
508 |
-
|
509 |
-
interactive=True,
|
510 |
-
scale=2 # Increased scale for textbox
|
511 |
)
|
512 |
-
# Temporarily remove MMLU-Pro from radio options
|
513 |
benchmark_selection_radio = gr.Radio(
|
514 |
-
["MMLU"],
|
515 |
-
label="Benchmark",
|
516 |
-
value="MMLU",
|
517 |
-
interactive=True,
|
518 |
)
|
519 |
with gr.Row():
|
520 |
benchmark_subject_dropdown = gr.Dropdown(
|
521 |
-
label="Subject",
|
522 |
-
|
523 |
-
choices=ALL_BENCHMARK_SUBJECTS.get("MMLU", []),
|
524 |
-
value="ALL",
|
525 |
-
interactive=True
|
526 |
)
|
527 |
sample_count_slider = gr.Slider(
|
528 |
-
label="Samples per Subject",
|
529 |
-
minimum=5, maximum=100, value=25, step=5, interactive=True
|
530 |
)
|
531 |
run_button = gr.Button("Start Evaluation", variant="primary", scale=1)
|
532 |
-
|
533 |
with gr.Column(scale=3):
|
534 |
gr.Markdown("### 2. View Results")
|
535 |
-
|
|
|
|
|
|
|
|
|
|
|
536 |
# Panel for displaying the summary of results
|
537 |
with gr.Group(visible=False) as result_summary_box:
|
538 |
result_summary_output = gr.Markdown(elem_id="result-summary-box")
|
539 |
-
|
540 |
# Panel for displaying errors
|
541 |
with gr.Group(visible=False) as error_box:
|
542 |
error_output = gr.Textbox(label="Error Message", interactive=False, elem_id="error-display-box")
|
543 |
error_details_output = gr.Textbox(label="Error Details (Traceback)", interactive=False, lines=8)
|
544 |
-
|
545 |
# Panel for detailed, row-by-row results
|
546 |
with gr.Group(visible=False) as details_box:
|
547 |
gr.Markdown("#### Detailed Evaluation Log")
|
548 |
detailed_results_df = gr.DataFrame(
|
549 |
headers=["Question", "Correct", "Expected", "Predicted", "Model Output"],
|
550 |
datatype=["str", "str", "str", "str", "str"],
|
551 |
-
interactive=False,
|
552 |
-
row_count=10, # Adjusted for more rows
|
553 |
-
# Removed col_count to allow dynamic width
|
554 |
-
wrap=True,
|
555 |
)
|
556 |
|
557 |
-
# --- Event Handlers & Logic ---
|
558 |
-
# Update subject dropdown when benchmark type changes
|
559 |
benchmark_selection_radio.change(
|
560 |
fn=update_subject_dropdown,
|
561 |
inputs=[benchmark_selection_radio],
|
562 |
outputs=[benchmark_subject_dropdown]
|
563 |
)
|
564 |
-
|
565 |
-
# Main evaluation trigger
|
566 |
run_button.click(
|
567 |
fn=run_evaluation,
|
568 |
inputs=[model_id_input, benchmark_selection_radio, benchmark_subject_dropdown, sample_count_slider],
|
569 |
-
outputs=[
|
570 |
-
|
571 |
-
|
572 |
-
|
|
|
|
|
573 |
).then(
|
|
|
574 |
load_leaderboard, inputs=[leaderboard_type_toggle], outputs=[leaderboard_table_output]
|
575 |
)
|
576 |
-
|
577 |
-
# Leaderboard
|
578 |
demo.load(
|
579 |
fn=load_leaderboard,
|
580 |
inputs=[leaderboard_type_toggle],
|
@@ -593,6 +461,5 @@ with gr.Blocks(theme=gr.themes.Base(), css=custom_css) as demo:
|
|
593 |
show_progress='full'
|
594 |
)
|
595 |
|
596 |
-
# Launch the Gradio app
|
597 |
if __name__ == "__main__":
|
598 |
-
demo.launch(debug=True)
|
|
|
14 |
# It's good practice to ensure the cache directory exists.
|
15 |
CACHE_DIR = "evaluation_cache"
|
16 |
os.makedirs(CACHE_DIR, exist_ok=True)
|
17 |
+
EVAL_FILE = os.path.join(CACHE_DIR, "evals.jsonl")
|
18 |
|
19 |
# Cache to avoid reloading models and dataset configs
|
20 |
model_cache = {}
|
|
|
25 |
|
26 |
# --- Constants for Benchmarks ---
|
27 |
MMLU_DATASET = "cais/mmlu"
|
|
|
|
|
28 |
BENCHMARK_MAP = {
|
29 |
"MMLU": MMLU_DATASET,
|
|
|
30 |
}
|
31 |
|
32 |
# --- Data Loading and Preparation ---
|
33 |
+
|
34 |
def get_all_benchmark_options():
|
35 |
"""
|
36 |
Fetches and caches the available subjects (configs) for each benchmark dataset.
|
|
|
39 |
if benchmark_subject_cache:
|
40 |
return benchmark_subject_cache
|
41 |
print("Fetching benchmark configurations for the first time...")
|
|
|
|
|
42 |
for key, dataset_id in BENCHMARK_MAP.items():
|
43 |
try:
|
|
|
44 |
subjects = get_dataset_config_names(dataset_id, token=HF_TOKEN)
|
45 |
+
benchmark_subject_cache[key] = ["ALL"] + sorted([s for s in subjects if s != 'all'])
|
46 |
except Exception as e:
|
47 |
print(f"Warning: Could not load configs for {key} ({dataset_id}). It might be private or unavailable. Error: {e}")
|
48 |
+
benchmark_subject_cache[key] = ["ALL"]
|
49 |
print("Benchmark configurations cached.")
|
50 |
return benchmark_subject_cache
|
51 |
|
|
|
60 |
"""
|
61 |
if not model_id:
|
62 |
raise ValueError("Model ID cannot be empty.")
|
63 |
+
gr.Info(f"Attempting to load model: {model_id}...")
|
64 |
if model_id in model_cache:
|
65 |
gr.Info(f"Model '{model_id}' found in cache.")
|
66 |
return model_cache[model_id]
|
67 |
try:
|
|
|
68 |
dtype = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else torch.float32
|
|
|
69 |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN, trust_remote_code=True)
|
70 |
model = AutoModelForCausalLM.from_pretrained(
|
71 |
model_id,
|
72 |
token=HF_TOKEN,
|
73 |
torch_dtype=dtype,
|
74 |
trust_remote_code=True,
|
75 |
+
low_cpu_mem_usage=True,
|
76 |
).to("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
77 |
generator = pipeline(
|
78 |
+
"text-generation",
|
79 |
+
model=model,
|
80 |
+
tokenizer=tokenizer,
|
81 |
device=0 if torch.cuda.is_available() else -1
|
82 |
)
|
|
|
83 |
model_cache[model_id] = generator
|
84 |
gr.Info(f"Model '{model_id}' loaded successfully.")
|
85 |
return generator
|
86 |
except Exception as e:
|
87 |
+
raise RuntimeError(f"Failed to load model '{model_id}'. Please verify the model ID and your Hugging Face token. Error: {e}")
|
|
|
88 |
|
89 |
# --- Evaluation Logic ---
|
90 |
+
|
91 |
def format_prompt(item):
|
92 |
"""Formats the MMLU question and choices into a standardized prompt."""
|
93 |
prompt = f"Question: {item['question']}\n\nChoices:\nA. {item['choices'][0]}\nB. {item['choices'][1]}\nC. {item['choices'][2]}\nD. {item['choices'][3]}\n\nAnswer:"
|
|
|
98 |
return chr(ord('A') + index) if 0 <= index <= 3 else None
|
99 |
|
100 |
def extract_predicted_letter(output_text):
|
101 |
+
"""Extracts the predicted letter from the model's output."""
|
|
|
|
|
|
|
|
|
102 |
match = re.search(r"Answer:\s*([ABCD])", output_text.strip(), re.IGNORECASE)
|
103 |
if match:
|
104 |
return match.group(1).upper()
|
|
|
|
|
105 |
match = re.search(r"^\s*([ABCD])\b", output_text.strip())
|
106 |
if match:
|
107 |
return match.group(1).upper()
|
108 |
return None
|
109 |
|
110 |
+
def make_progress_html(text, percentage):
|
111 |
+
"""Helper function to create the HTML for the progress bar."""
|
112 |
+
return f"""
|
113 |
+
<div class="progress-container">
|
114 |
+
<div class="progress-bar" style="width: {percentage}%;">
|
115 |
+
{text}
|
116 |
+
</div>
|
117 |
+
</div>
|
118 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
@spaces.GPU()
|
121 |
+
def run_evaluation(model_id, benchmark_category, subject_name, sample_count):
|
122 |
"""
|
123 |
+
Main generator function to orchestrate the evaluation, yielding progress updates.
|
|
|
|
|
124 |
"""
|
125 |
try:
|
126 |
+
# 1. Initial yield to set up the UI for loading state
|
127 |
+
yield {
|
128 |
+
progress_box: gr.update(visible=True),
|
129 |
+
progress_text_output: gr.update(value=f"Preparing evaluation for **{model_id}**..."),
|
130 |
+
progress_bar_output: gr.update(value=make_progress_html("Loading Model...", 0)),
|
131 |
+
result_summary_box: gr.update(visible=False),
|
132 |
+
details_box: gr.update(visible=False),
|
133 |
+
error_box: gr.update(visible=False),
|
134 |
+
}
|
135 |
+
|
136 |
generator = load_model(model_id)
|
|
|
137 |
dataset_id = BENCHMARK_MAP.get(benchmark_category)
|
138 |
if not dataset_id:
|
139 |
raise ValueError(f"Invalid benchmark category: {benchmark_category}")
|
140 |
|
|
|
|
|
|
|
|
|
|
|
141 |
subjects_to_run = []
|
142 |
if subject_name == "ALL":
|
|
|
143 |
subjects_to_run = [s for s in ALL_BENCHMARK_SUBJECTS.get(benchmark_category, []) if s != "ALL"]
|
144 |
else:
|
145 |
subjects_to_run = [subject_name]
|
146 |
|
147 |
if not subjects_to_run:
|
148 |
gr.Warning(f"No subjects found for '{benchmark_category}'.")
|
149 |
+
yield { progress_box: gr.update(visible=False) }
|
150 |
+
return
|
|
|
|
|
|
|
|
|
151 |
|
152 |
+
all_results_details = []
|
153 |
+
summary_lines = []
|
154 |
+
total_correct = 0
|
155 |
+
total_samples = 0
|
156 |
+
|
157 |
+
# 2. Main evaluation loop
|
158 |
for i, subject in enumerate(subjects_to_run):
|
159 |
+
overall_progress_text = f"**Overall Progress ({i+1}/{len(subjects_to_run)} subjects)**"
|
160 |
+
yield {
|
161 |
+
progress_text_output: gr.update(value=f"{overall_progress_text}\n\nLoading dataset for **{subject}**...")
|
162 |
+
}
|
163 |
+
|
164 |
try:
|
165 |
+
# Load dataset for the current subject
|
166 |
+
dataset = load_dataset(dataset_id, subject, token=HF_TOKEN, split="test")
|
167 |
+
num_samples = min(sample_count, len(dataset))
|
168 |
+
dataset = dataset.shuffle(seed=42).select(range(num_samples))
|
169 |
+
|
170 |
+
correct_predictions_subject = 0
|
171 |
+
subject_details = []
|
172 |
+
|
173 |
+
# Loop over samples within the subject
|
174 |
+
for j, item in enumerate(dataset):
|
175 |
+
prompt, correct_answer_idx = format_prompt(item)
|
176 |
+
expected_letter = get_choice_letter(correct_answer_idx)
|
177 |
+
|
178 |
+
full_prompt_text = generator.tokenizer.decode(generator.tokenizer.encode(prompt), skip_special_tokens=True)
|
179 |
+
raw_output = generator(prompt, max_new_tokens=5, do_sample=False, pad_token_id=generator.tokenizer.eos_token_id)[0]["generated_text"]
|
180 |
+
generated_text_only = raw_output[len(full_prompt_text):].strip()
|
181 |
+
predicted_letter = extract_predicted_letter(generated_text_only)
|
182 |
+
|
183 |
+
is_correct = (predicted_letter == expected_letter)
|
184 |
+
if is_correct:
|
185 |
+
correct_predictions_subject += 1
|
186 |
|
187 |
+
subject_details.append({
|
188 |
+
"Question": item['question'],
|
189 |
+
"Correct": "β
" if is_correct else "β",
|
190 |
+
"Expected": expected_letter,
|
191 |
+
"Predicted": predicted_letter or "N/A",
|
192 |
+
"Model Output": generated_text_only
|
193 |
+
})
|
194 |
+
|
195 |
+
# Yield progress update for each sample
|
196 |
+
percentage = ((j + 1) / num_samples) * 100
|
197 |
+
progress_bar_text = f"Evaluating: {subject} ({j+1}/{num_samples})"
|
198 |
+
yield {
|
199 |
+
progress_bar_output: gr.update(value=make_progress_html(f"{percentage:.1f}%", percentage)),
|
200 |
+
progress_text_output: gr.update(value=f"{overall_progress_text}\n\n{progress_bar_text}")
|
201 |
+
}
|
202 |
+
|
203 |
+
accuracy = (correct_predictions_subject / num_samples) * 100 if num_samples > 0 else 0
|
204 |
+
all_results_details.extend(subject_details)
|
205 |
+
total_correct += correct_predictions_subject
|
206 |
+
total_samples += num_samples
|
207 |
+
summary_lines.append(f"- **{subject}**: {accuracy:.2f}% ({correct_predictions_subject}/{num_samples})")
|
208 |
+
|
209 |
except Exception as e:
|
210 |
error_trace = traceback.format_exc()
|
211 |
gr.Error(f"Skipping {subject} due to an error: {e}")
|
212 |
summary_lines.append(f"- **{subject}**: Evaluation failed. See logs for details:\n```\n{error_trace}\n```")
|
213 |
continue
|
214 |
+
|
215 |
+
# 3. Final processing and result preparation
|
216 |
overall_accuracy = (total_correct / total_samples) * 100 if total_samples > 0 else 0
|
217 |
+
|
|
|
218 |
if subject_name == "ALL":
|
219 |
result_summary = f"### Overall Average Accuracy: {overall_accuracy:.2f}%\n"
|
220 |
result_summary += f"across {total_samples:,} total samples from {len(subjects_to_run)} subjects.\n\n---\n\n**Breakdown by Subject:**\n"
|
|
|
222 |
else:
|
223 |
result_summary = f"### Accuracy for {benchmark_category} - {subject_name}: {overall_accuracy:.2f}%\n"
|
224 |
result_summary += f"({total_correct:,}/{total_samples:,} correct)"
|
225 |
+
|
226 |
+
# Write final result to the JSONL file
|
227 |
record = {
|
228 |
"model_id": model_id,
|
229 |
"benchmark": benchmark_category,
|
230 |
"accuracy": overall_accuracy,
|
231 |
+
"subject": subject_name,
|
232 |
"sample_count": total_samples,
|
233 |
"timestamp": datetime.now().isoformat()
|
234 |
}
|
235 |
with open(EVAL_FILE, "a") as f:
|
236 |
f.write(json.dumps(record) + "\n")
|
237 |
+
|
238 |
gr.Info("Evaluation completed successfully!")
|
|
|
239 |
df_details = pd.DataFrame(all_results_details)
|
240 |
+
|
241 |
+
# 4. Final yield to show results and hide progress UI
|
242 |
+
yield {
|
243 |
+
progress_box: gr.update(visible=False),
|
244 |
+
result_summary_box: gr.update(visible=True),
|
245 |
+
result_summary_output: gr.update(value=result_summary),
|
246 |
details_box: gr.update(visible=True),
|
247 |
+
detailed_results_df: gr.update(value=df_details),
|
248 |
+
error_box: gr.update(visible=False)
|
249 |
}
|
250 |
+
|
251 |
except Exception as e:
|
252 |
+
error_message = f"An unexpected error occurred: {e}"
|
253 |
error_details = traceback.format_exc()
|
254 |
gr.Error(error_message)
|
255 |
+
|
256 |
+
# Yield to show error message and hide progress UI
|
257 |
+
yield {
|
258 |
+
progress_box: gr.update(visible=False),
|
259 |
+
result_summary_box: gr.update(visible=False),
|
260 |
+
details_box: gr.update(visible=False),
|
261 |
error_box: gr.update(visible=True),
|
262 |
error_output: gr.update(value=error_message),
|
263 |
error_details_output: gr.update(value=error_details),
|
|
|
264 |
}
|
265 |
|
266 |
# --- UI Helper Functions ---
|
267 |
+
|
268 |
def update_subject_dropdown(benchmark_category):
|
269 |
"""Updates the subject dropdown choices based on the selected benchmark."""
|
270 |
choices = ALL_BENCHMARK_SUBJECTS.get(benchmark_category, [])
|
|
|
274 |
def load_leaderboard(benchmark_filter, progress=gr.Progress()):
|
275 |
"""
|
276 |
Loads and processes evaluation data to display on the leaderboard.
|
|
|
277 |
"""
|
278 |
progress(0, desc="Loading Leaderboard...")
|
279 |
try:
|
280 |
if not os.path.exists(EVAL_FILE):
|
281 |
return pd.DataFrame(columns=["Rank", "Model ID", "Avg. Accuracy (%)", "Total Samples", "Date"])
|
282 |
+
|
283 |
df = pd.read_json(EVAL_FILE, lines=True)
|
284 |
if df.empty:
|
285 |
return pd.DataFrame(columns=["Rank", "Model ID", "Avg. Accuracy (%)", "Total Samples", "Date"])
|
286 |
+
|
|
|
287 |
df['accuracy'] = pd.to_numeric(df['accuracy'], errors='coerce')
|
288 |
df.dropna(subset=['accuracy'], inplace=True)
|
289 |
+
|
290 |
+
# Filter for 'ALL' subject runs for the selected benchmark
|
291 |
df_filtered = df[(df['benchmark'] == benchmark_filter) & (df['subject'] == 'ALL')].copy()
|
292 |
+
|
293 |
if df_filtered.empty:
|
294 |
return pd.DataFrame(columns=["Rank", "Model ID", "Avg. Accuracy (%)", "Total Samples", "Date"])
|
295 |
+
|
|
|
296 |
df_filtered['timestamp'] = pd.to_datetime(df_filtered['timestamp'])
|
297 |
latest_evals = df_filtered.loc[df_filtered.groupby('model_id')['timestamp'].idxmax()].copy()
|
298 |
+
|
299 |
leaderboard_df = latest_evals.sort_values(by="accuracy", ascending=False).copy()
|
300 |
+
|
|
|
301 |
leaderboard_df.insert(0, 'Rank', range(1, len(leaderboard_df) + 1))
|
|
|
302 |
leaderboard_df.rename(columns={
|
303 |
'model_id': 'Model ID',
|
304 |
'accuracy': 'Avg. Accuracy (%)',
|
305 |
'sample_count': 'Total Samples',
|
306 |
'timestamp': 'Date'
|
307 |
}, inplace=True)
|
308 |
+
|
309 |
leaderboard_df['Avg. Accuracy (%)'] = leaderboard_df['Avg. Accuracy (%)'].map('{:.2f}'.format)
|
310 |
leaderboard_df['Date'] = leaderboard_df['Date'].dt.strftime('%Y-%m-%d')
|
311 |
+
|
312 |
progress(1, desc="Done.")
|
313 |
return leaderboard_df[['Rank', 'Model ID', 'Avg. Accuracy (%)', 'Total Samples', 'Date']]
|
314 |
except Exception as e:
|
|
|
317 |
return pd.DataFrame(columns=["Rank", "Model ID", "Avg. Accuracy (%)", "Total Samples", "Date"])
|
318 |
|
319 |
# --- Gradio Interface Definition ---
|
|
|
320 |
custom_css = """
|
321 |
/* --- Global & Layout (Bigger to fit screen) --- */
|
322 |
body { font-family: 'Inter', sans-serif; background-color: #1a1a1a; color: #f0f0f0; } /* Dark background, light text */
|
323 |
.gradio-container { max-width: 95% !important; margin: auto; padding: 20px; } /* Wider container */
|
324 |
+
.gr-group { border-radius: 12px !important; box-shadow: 0 4px 12px rgba(0,0,0,0.3) !important; border: 1px solid #333 !important; background-color: #2a2a2a; }
|
325 |
+
.gr-panel { border-radius: 12px !important; box-shadow: 0 4px 12px rgba(0,0,0,0.3) !important; border: 1px solid #333 !important; background-color: #2a2a2a; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
/* --- Typography (Orange Hues) --- */
|
327 |
h1 { text-align: center; font-size: 3rem !important; font-weight: 800; color: #ff8c00; margin-bottom: 0.5rem; letter-spacing: -1.5px; } /* Orange title */
|
328 |
h3, h4 { color: #ffa500; } /* Orange headings */
|
329 |
.subtitle { text-align: center; color: #cccccc; font-size: 1.2rem; margin-bottom: 2.5rem; max-width: 900px; margin-left: auto; margin-right: auto;}
|
330 |
label { color: #f0f0f0 !important; } /* Label text color */
|
331 |
+
/* --- Progress Bar --- */
|
332 |
+
.progress-container { background-color: #3a3a3a; border-radius: 8px; overflow: hidden; border: 1px solid #555; height: 28px; padding: 4px; }
|
333 |
+
.progress-bar { background: linear-gradient(90deg, #ff8c00, #ffa500); height: 100%; border-radius: 5px; transition: width 0.3s ease-in-out; display: flex; align-items: center; justify-content: center; color: #1a1a1a; font-weight: 600; font-size: 0.9rem; }
|
334 |
/* --- Tabs --- */
|
335 |
.gradio-tabs { background-color: #2a2a2a; border-radius: 12px; }
|
336 |
+
.gradio-tabs button { background-color: #3a3a3a !important; color: #f0f0f0 !important; border-radius: 8px 8px 0 0 !important; transition: all 0.3s ease; }
|
337 |
+
.gradio-tabs button.selected { background-color: #ff8c00 !important; color: #1a1a1a !important; font-weight: 700; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
/* --- Inputs --- */
|
339 |
+
.gr-textbox, .gr-dropdown, .gr-slider { background-color: #3a3a3a !important; color: #f0f0f0 !important; border: 1px solid #555 !important; border-radius: 8px !important; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
/* --- Buttons --- */
|
341 |
+
.gr-button-primary { background-color: #ff8c00 !important; color: #1a1a1a !important; box-shadow: 0 4px 10px rgba(255, 140, 0, 0.3); border: none; }
|
342 |
+
.gr-button-primary:hover { transform: translateY(-2px); box-shadow: 0 6px 15px rgba(255, 140, 0, 0.5); background-color: #ffa500 !important; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
343 |
/* --- Dataframe / Table Styling --- */
|
344 |
+
.leaderboard-table .gr-dataframe thead th { background-color: #3a3a3a !important; color: #ffa500 !important; font-weight: 600 !important; text-align: left; padding: 12px 15px; border-bottom: 2px solid #555; }
|
345 |
+
.leaderboard-table .gr-dataframe tbody tr:nth-of-type(even) { background-color: #2f2f2f; }
|
346 |
+
.leaderboard-table .gr-dataframe tbody tr:hover { background-color: #4a4a4a; }
|
347 |
+
.leaderboard-table .gr-dataframe tbody td { padding: 12px 15px; border-bottom: 1px solid #3a3a3a; color: #f0f0f0; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
348 |
/* --- Error & Result Panes --- */
|
349 |
+
#error-display-box { background-color: #4a1e1e !important; border-color: #8c2f2f !important; color: #ffc9c9 !important; }
|
350 |
+
#result-summary-box { background-color: #1e3a2a !important; border-color: #2f8c4a !important; color: #c9ffc9 !important; }
|
351 |
+
.gr-markdown p { color: #f0f0f0 !important; } .gr-markdown strong { color: #ffa500 !important; }
|
352 |
+
.gradio-message { background-color: #ff8c00 !important; color: #1a1a1a !important; border: 1px solid #ff8c00 !important; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
"""
|
354 |
|
355 |
with gr.Blocks(theme=gr.themes.Base(), css=custom_css) as demo:
|
356 |
gr.Markdown("<h1>π SuperBench Eval: Evaluate models and view leaderboards π</h1>")
|
357 |
gr.Markdown("<p class='subtitle'>Benchmark leading models on MMLU. Your results contribute to a live leaderboard. Select a benchmark and run an evaluation, or view the current standings.</p>")
|
358 |
+
|
359 |
with gr.Tabs() as tabs:
|
360 |
# --- Leaderboard Tab ---
|
361 |
with gr.TabItem("π Leaderboard", id=0):
|
362 |
with gr.Column():
|
363 |
+
with gr.Row():
|
|
|
364 |
leaderboard_type_toggle = gr.Radio(
|
365 |
+
["MMLU"], label="Select Benchmark", value="MMLU", interactive=True
|
|
|
|
|
|
|
|
|
|
|
|
|
366 |
)
|
367 |
refresh_button = gr.Button("π Refresh", size="sm")
|
368 |
leaderboard_table_output = gr.DataFrame(
|
369 |
headers=["Rank", "Model ID", "Avg. Accuracy (%)", "Total Samples", "Date"],
|
370 |
+
interactive=False, datatype=["number", "str", "str", "number", "str"],
|
371 |
+
row_count=15, elem_classes="leaderboard-table",
|
|
|
|
|
|
|
372 |
)
|
373 |
+
|
374 |
# --- Evaluation Tab ---
|
375 |
with gr.TabItem("π Run Evaluation", id=1):
|
376 |
with gr.Row(variant='panel'):
|
|
|
378 |
with gr.Group():
|
379 |
gr.Markdown("### 1. Configure Evaluation")
|
380 |
model_id_input = gr.Textbox(
|
381 |
+
label="Hugging Face Model ID", placeholder="e.g., meta-llama/Meta-Llama-3-8B-Instruct",
|
382 |
+
interactive=True, scale=2
|
|
|
|
|
383 |
)
|
|
|
384 |
benchmark_selection_radio = gr.Radio(
|
385 |
+
["MMLU"], label="Benchmark", value="MMLU", interactive=True
|
|
|
|
|
|
|
386 |
)
|
387 |
with gr.Row():
|
388 |
benchmark_subject_dropdown = gr.Dropdown(
|
389 |
+
label="Subject", choices=ALL_BENCHMARK_SUBJECTS.get("MMLU", []),
|
390 |
+
value="ALL", interactive=True
|
|
|
|
|
|
|
391 |
)
|
392 |
sample_count_slider = gr.Slider(
|
393 |
+
label="Samples per Subject", minimum=5, maximum=100, value=10, step=5, interactive=True
|
|
|
394 |
)
|
395 |
run_button = gr.Button("Start Evaluation", variant="primary", scale=1)
|
396 |
+
|
397 |
with gr.Column(scale=3):
|
398 |
gr.Markdown("### 2. View Results")
|
399 |
+
|
400 |
+
# NEW: Progress Bar UI
|
401 |
+
with gr.Group(visible=False) as progress_box:
|
402 |
+
progress_text_output = gr.Markdown("Starting...")
|
403 |
+
progress_bar_output = gr.HTML(make_progress_html("Waiting...", 0))
|
404 |
+
|
405 |
# Panel for displaying the summary of results
|
406 |
with gr.Group(visible=False) as result_summary_box:
|
407 |
result_summary_output = gr.Markdown(elem_id="result-summary-box")
|
408 |
+
|
409 |
# Panel for displaying errors
|
410 |
with gr.Group(visible=False) as error_box:
|
411 |
error_output = gr.Textbox(label="Error Message", interactive=False, elem_id="error-display-box")
|
412 |
error_details_output = gr.Textbox(label="Error Details (Traceback)", interactive=False, lines=8)
|
413 |
+
|
414 |
# Panel for detailed, row-by-row results
|
415 |
with gr.Group(visible=False) as details_box:
|
416 |
gr.Markdown("#### Detailed Evaluation Log")
|
417 |
detailed_results_df = gr.DataFrame(
|
418 |
headers=["Question", "Correct", "Expected", "Predicted", "Model Output"],
|
419 |
datatype=["str", "str", "str", "str", "str"],
|
420 |
+
interactive=False, row_count=10, wrap=True,
|
|
|
|
|
|
|
421 |
)
|
422 |
|
423 |
+
# --- Event Handlers & Logic ---
|
|
|
424 |
benchmark_selection_radio.change(
|
425 |
fn=update_subject_dropdown,
|
426 |
inputs=[benchmark_selection_radio],
|
427 |
outputs=[benchmark_subject_dropdown]
|
428 |
)
|
429 |
+
|
430 |
+
# Main evaluation trigger, now handles a generator for progress updates
|
431 |
run_button.click(
|
432 |
fn=run_evaluation,
|
433 |
inputs=[model_id_input, benchmark_selection_radio, benchmark_subject_dropdown, sample_count_slider],
|
434 |
+
outputs=[
|
435 |
+
progress_box, progress_text_output, progress_bar_output,
|
436 |
+
result_summary_box, result_summary_output,
|
437 |
+
error_box, error_output, error_details_output,
|
438 |
+
details_box, detailed_results_df
|
439 |
+
]
|
440 |
).then(
|
441 |
+
# After evaluation, refresh the leaderboard
|
442 |
load_leaderboard, inputs=[leaderboard_type_toggle], outputs=[leaderboard_table_output]
|
443 |
)
|
444 |
+
|
445 |
+
# --- Leaderboard Loading Logic ---
|
446 |
demo.load(
|
447 |
fn=load_leaderboard,
|
448 |
inputs=[leaderboard_type_toggle],
|
|
|
461 |
show_progress='full'
|
462 |
)
|
463 |
|
|
|
464 |
if __name__ == "__main__":
|
465 |
+
demo.launch(debug=True)
|