|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- masato-ka/smolvla_block_instruction |
|
tags: |
|
- robotics |
|
- SmolVLA |
|
- lerobot |
|
pipeline_tag: robotics |
|
--- |
|
# Model Card for smolvla_block_instruction |
|
|
|
SmolVLA trained for the block handling with text instructions. |
|
|
|
 |
|
|
|
## How to Get Started with the Model |
|
|
|
See the [Lerobot library](https://github.com/huggingface/lerobot) |
|
|
|
We strong recommend the environment needs to be the same as the video. I use the camera of Macbook Air M2, Also The model was inference by Macbook Air M2 16GB. |
|
You can run this model with below command. Instruction set to control.single_task property. |
|
|
|
```bash |
|
python erobot/scripts/control_robot.py |
|
--robot.type=so100 |
|
--control.type=record |
|
--control.fps=30 |
|
--control.single_task="Transfer the blue block onto the yellow plate." |
|
--control.repo_id=<YOUR EVAL DATASET> |
|
--control.warmup_time_s=5 |
|
--control.episode_time_s=60 |
|
--control.reset_time_s=10 |
|
--control.num_episodes=1 |
|
--control.push_to_hub=false |
|
--control.policy.path=masato-ka/smolvla_block_instruct |
|
--control.display_data=true |
|
--control.policy.device=mps |
|
|
|
``` |
|
|
|
This model trained with below instruction. |
|
|
|
```aiignore |
|
- Transfer the blue block onto the yellow plate. |
|
- Position the blue block a top the yellow plate. |
|
- Set the blue block down on the yellow plate. |
|
- Place blue block on yellow plate. |
|
- Blue block goes on the yellow plate! |
|
- Put the blue one on the yellow thing. |
|
- Yellow plate for the blue block! |
|
- Completely remove the blue block from the yellow plate. |
|
- The blue block must be taken away from the yellow plate. |
|
- Dislodge the blue block from the yellow plate entirely." |
|
- Get that blue block off the yellow plate! |
|
- Take the blue thing away from the yellow one. |
|
- Blue's gotta go from the yellow plate! |
|
- Remove blue block from yellow plate. |
|
``` |
|
|
|
|
|
|
|
## Training Details |
|
|
|
Trained with [LeRobot@b536f47](https://github.com/huggingface/lerobot/tree/b536f47e3ff8c3b340fc5efa52f0ece0a7212a57). |
|
|
|
The model was trained using [LeRobot's training script](https://github.com/huggingface/lerobot/blob/b536f47e3ff8c3b340fc5efa52f0ece0a7212a57/lerobot/scripts/train.py) and with the [masato-ka/so100_nlact_block_instruct_v3](https://huggingface.co/datasets/masato-ka/so100_nlact_block_instruct_v3) dataset, using this command: |
|
|
|
```bash |
|
!python lerobot/scripts/train.py \ |
|
--dataset.repo_id=masato-ka/so100_nlact_block_instruct_v3 \ |
|
--policy.path=lerobot/smolvla_base \ |
|
--batch_size=8 \ |
|
--output_dir=outputs/train/smolvla \ |
|
--job_name=smolvla_exp03 \ |
|
--policy.device=cuda \ |
|
--steps=40000\ |
|
--save_freq=20000 \ |
|
--wandb.enable=true \ |
|
--wandb.project=smolvla_test |
|
``` |
|
|
|
This took about 3h to train on an Nvida A100. |