text
stringlengths 31
243k
| type
stringclasses 1
value | start
int64 36
275k
| end
int64 286
280k
| depth
int64 0
1
| filepath
stringlengths 85
188
| parent_class
stringclasses 3
values | class_index
int64 0
10.8k
|
---|---|---|---|---|---|---|---|
class Kosmos2TextModel(Kosmos2PreTrainedModel):
config_class = Kosmos2TextConfig
def __init__(self, config: Kosmos2TextConfig):
super().__init__(config)
self.model = Kosmos2TextTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(KOSMOS2_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPastAndCrossAttentions, config_class=Kosmos2TextConfig)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
image_embeds: Optional[torch.Tensor] = None,
image_embeds_position_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
r"""
Returns:
"""
return self.model(
input_ids=input_ids,
attention_mask=attention_mask,
image_embeds=image_embeds,
image_embeds_position_mask=image_embeds_position_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
position_ids=position_ids,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
|
class_definition
| 72,745 | 75,099 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/kosmos2/modeling_kosmos2.py
| null | 6,100 |
class Kosmos2TextForCausalLM(Kosmos2PreTrainedModel, GenerationMixin):
config_class = Kosmos2TextConfig
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: Kosmos2TextConfig):
super().__init__(config)
self.model = Kosmos2TextTransformer(config)
self.lm_head = nn.Linear(in_features=config.embed_dim, out_features=config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self) -> nn.Module:
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(KOSMOS2_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=Kosmos2TextConfig)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
image_embeds: Optional[torch.Tensor] = None,
image_embeds_position_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
image_embeds=image_embeds,
image_embeds_position_mask=image_embeds_position_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
position_ids=position_ids,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0])
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(lm_logits.device)
# Shift so that tokens < n predict n
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
batch_size, seq_length, vocab_size = shift_logits.shape
# Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
)
if not return_dict:
output = (lm_logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
image_embeds=None,
image_embeds_position_mask=None,
past_key_values=None,
attention_mask=None,
use_cache=None,
**model_kwargs,
):
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
input_shape = input_ids.shape
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_shape)
position_ids = None
# cut input_ids if past_key_values is used
if past_key_values is not None:
position_ids = create_position_ids_from_input_ids(
input_ids,
padding_idx=self.config.pad_token_id,
past_key_values_length=0,
)[:, -1:]
input_ids = input_ids[:, -1:]
# the image info. is already encoded into the past keys/values
image_embeds = None
image_embeds_position_mask = None
elif image_embeds_position_mask is not None:
# appending `False` to `image_embeds_position_mask` (because `input_ids` grows during generation)
batch_size, seq_len = input_ids.size()
mask_len = image_embeds_position_mask.size()[-1]
image_embeds_position_mask = torch.cat(
(
image_embeds_position_mask,
torch.zeros(size=(batch_size, seq_len - mask_len), dtype=torch.bool, device=input_ids.device),
),
dim=1,
)
return {
"input_ids": input_ids,
"image_embeds": image_embeds,
"image_embeds_position_mask": image_embeds_position_mask,
"past_key_values": past_key_values,
"attention_mask": attention_mask,
"position_ids": position_ids,
"use_cache": use_cache,
}
@staticmethod
# Copied from transformers.models.umt5.modeling_umt5.UMT5ForConditionalGeneration._reorder_cache
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
|
class_definition
| 75,305 | 82,396 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/kosmos2/modeling_kosmos2.py
| null | 6,101 |
class Kosmos2ImageToTextProjection(nn.Module):
"""The layer that transforms the image model's output to part of the text model's input (namely, image features)"""
def __init__(self, config: Kosmos2Config):
super().__init__()
self.dense = nn.Linear(config.vision_config.hidden_size, config.text_config.embed_dim)
self.latent_query = nn.Parameter(torch.randn(config.latent_query_num, config.text_config.embed_dim))
self.x_attn = KosmosTextAttention(
config.text_config,
config.text_config.embed_dim,
config.text_config.attention_heads,
dropout=config.text_config.attention_dropout,
is_decoder=False,
add_inner_attn_layernorm=False,
)
def forward(self, features):
hidden_states = self.dense(features)
# shape = [batch, latent_query_num, h_dim]
latent_query = self.latent_query.unsqueeze(0).expand(hidden_states.size(0), -1, -1)
key_value_states = torch.cat([hidden_states, latent_query], dim=1)
hidden_states, attn_weights, _ = self.x_attn(
hidden_states=latent_query,
encoder_hidden_states=key_value_states,
past_key_value=None,
attention_mask=None,
output_attentions=None,
)
return hidden_states, attn_weights
|
class_definition
| 82,399 | 83,753 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/kosmos2/modeling_kosmos2.py
| null | 6,102 |
class Kosmos2Model(Kosmos2PreTrainedModel):
config_class = Kosmos2Config
main_input_name = "pixel_values"
def __init__(self, config: Kosmos2Config):
super().__init__(config)
self.text_model = Kosmos2TextModel(config.text_config)
self.vision_model = Kosmos2VisionModel(config.vision_config)
self.image_to_text_projection = Kosmos2ImageToTextProjection(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.text_model.model.embed_tokens
def set_input_embeddings(self, value):
self.text_model.model.embed_tokens = value
@add_start_docstrings_to_model_forward(KOSMOS2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Kosmos2ModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
input_ids: Optional[torch.Tensor] = None,
image_embeds_position_mask: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
image_embeds: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Kosmos2ModelOutput]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Kosmos2Model
>>> model = Kosmos2Model.from_pretrained("microsoft/kosmos-2-patch14-224")
>>> processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224")
>>> url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> text = (
... "<grounding> An image of<phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863>"
... "</object> warming himself by<phrase> a fire</phrase><object><patch_index_0005><patch_index_0911>"
... "</object>"
... )
>>> inputs = processor(text=text, images=image, return_tensors="pt", add_eos_token=True)
>>> last_hidden_state = model(
... pixel_values=inputs["pixel_values"],
... input_ids=inputs["input_ids"],
... attention_mask=inputs["attention_mask"],
... image_embeds_position_mask=inputs["image_embeds_position_mask"],
... ).last_hidden_state
>>> list(last_hidden_state.shape)
[1, 91, 2048]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_model_output = None
projection_attentions = None
if image_embeds is None:
if pixel_values is None:
raise ValueError("You have to specify either `pixel_values` or `image_embeds`.")
vision_model_output = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
# The whole `last_hidden_state` through `post_layernorm` instead of just `pooled_output`.
image_embeds = self.vision_model.model.post_layernorm(vision_model_output[0])
# normalized features
image_embeds = nn.functional.normalize(image_embeds, dim=-1)
image_embeds, projection_attentions = self.image_to_text_projection(image_embeds)
outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
image_embeds=image_embeds,
image_embeds_position_mask=image_embeds_position_mask,
head_mask=head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
position_ids=position_ids,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
outputs = outputs + (image_embeds, projection_attentions, vision_model_output)
return tuple(output for output in outputs if output is not None)
return Kosmos2ModelOutput(
last_hidden_state=outputs.last_hidden_state,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
image_embeds=image_embeds,
projection_attentions=projection_attentions,
vision_model_output=vision_model_output,
)
|
class_definition
| 83,947 | 89,393 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/kosmos2/modeling_kosmos2.py
| null | 6,103 |
class Kosmos2ForConditionalGeneration(Kosmos2PreTrainedModel, GenerationMixin):
config_class = Kosmos2Config
main_input_name = "pixel_values"
_tied_weights_keys = ["text_model.lm_head.weight"]
def __init__(self, config: Kosmos2Config):
super().__init__(config)
self.text_model = Kosmos2TextForCausalLM(config.text_config)
self.vision_model = Kosmos2VisionModel(config.vision_config)
self.image_to_text_projection = Kosmos2ImageToTextProjection(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.text_model.model.embed_tokens
def set_input_embeddings(self, value):
self.text_model.model.embed_tokens = value
def get_output_embeddings(self) -> nn.Module:
return self.text_model.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.text_model.set_output_embeddings(new_embeddings)
@add_start_docstrings_to_model_forward(KOSMOS2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Kosmos2ForConditionalGenerationModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
input_ids: Optional[torch.Tensor] = None,
image_embeds_position_mask: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
image_embeds: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Kosmos2ForConditionalGenerationModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Kosmos2ForConditionalGeneration
>>> model = Kosmos2ForConditionalGeneration.from_pretrained("microsoft/kosmos-2-patch14-224")
>>> processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224")
>>> url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> prompt = "<grounding> An image of"
>>> inputs = processor(text=prompt, images=image, return_tensors="pt")
>>> generated_ids = model.generate(
... pixel_values=inputs["pixel_values"],
... input_ids=inputs["input_ids"],
... attention_mask=inputs["attention_mask"],
... image_embeds=None,
... image_embeds_position_mask=inputs["image_embeds_position_mask"],
... use_cache=True,
... max_new_tokens=64,
... )
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> processed_text = processor.post_process_generation(generated_text, cleanup_and_extract=False)
>>> processed_text
'<grounding> An image of<phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863></object> warming himself by<phrase> a fire</phrase><object><patch_index_0005><patch_index_0911></object>.'
>>> caption, entities = processor.post_process_generation(generated_text)
>>> caption
'An image of a snowman warming himself by a fire.'
>>> entities
[('a snowman', (12, 21), [(0.390625, 0.046875, 0.984375, 0.828125)]), ('a fire', (41, 47), [(0.171875, 0.015625, 0.484375, 0.890625)])]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_model_output = None
projection_attentions = None
if image_embeds is None:
if pixel_values is None:
raise ValueError("You have to specify either `pixel_values` or `image_embeds`.")
vision_model_output = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# The whole `last_hidden_state` through `post_layernorm` instead of just `pooled_output`.
image_embeds = self.vision_model.model.post_layernorm(vision_model_output[0])
# normalized features
image_embeds = nn.functional.normalize(image_embeds, dim=-1)
image_embeds, projection_attentions = self.image_to_text_projection(image_embeds)
lm_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
image_embeds=image_embeds,
image_embeds_position_mask=image_embeds_position_mask,
head_mask=head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
position_ids=position_ids,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
outputs = lm_outputs + (image_embeds, projection_attentions, vision_model_output)
return tuple(output for output in outputs if output is not None)
return Kosmos2ForConditionalGenerationModelOutput(
loss=lm_outputs.loss,
logits=lm_outputs.logits,
past_key_values=lm_outputs.past_key_values,
hidden_states=lm_outputs.hidden_states,
attentions=lm_outputs.attentions,
image_embeds=image_embeds,
projection_attentions=projection_attentions,
vision_model_output=vision_model_output,
)
def generate(
self,
pixel_values: Optional[torch.Tensor] = None,
image_embeds_position_mask: Optional[torch.Tensor] = None,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
image_embeds: Optional[torch.Tensor] = None,
**kwargs,
):
# in order to allow `inputs` argument (as in `GenerationMixin`)
inputs = kwargs.pop("inputs", None)
if pixel_values is not None and inputs is not None:
raise ValueError(
f"`inputs`: {inputs} were passed alongside `pixel_values` which is not allowed."
f"Make sure to either pass `inputs` or pixel_values=..."
)
if pixel_values is None and inputs is not None:
pixel_values = inputs
if image_embeds is None:
vision_model_output = self.vision_model(pixel_values)
# The whole `last_hidden_state` through `post_layernorm` instead of just `pooled_output`.
image_embeds = self.vision_model.model.post_layernorm(vision_model_output[0])
# normalized features
image_embeds = nn.functional.normalize(image_embeds, dim=-1)
image_embeds, projection_attentions = self.image_to_text_projection(image_embeds)
output = self.text_model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
image_embeds=image_embeds,
image_embeds_position_mask=image_embeds_position_mask,
**kwargs,
)
return output
|
class_definition
| 89,606 | 98,036 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/kosmos2/modeling_kosmos2.py
| null | 6,104 |
class Kosmos2TextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Kosmos2TextModel`]. It is used to instantiate a
KOSMOS-2 text decoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the text decoder of the KOSMOS-2
[microsoft/kosmos-2-patch14-224](https://huggingface.co/microsoft/kosmos-2-patch14-224) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 65037):
Vocabulary size of the Kosmos2 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Kosmos2Model`].
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
embed_dim (`int`, *optional*, defaults to 2048):
Dimensionality of the layers and the pooler layer.
layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
ffn_dim (`int`, *optional*, defaults to 8192):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
scale_embedding (`bool`, *optional*, defaults to `True`):
Scale embeddings by diving by sqrt(embed_dim).
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
pad_token_id (`int`, *optional*, defaults to 1):
Token id used for padding.
bos_token_id (`int`, *optional*, defaults to 0):
Token id used for beginning of string.
eos_token_id (`int`, *optional*, defaults to 2):
Token id used for end of string.
```"""
model_type = "kosmos_2_text_model"
base_config_key = "text_config"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"num_attention_heads": "attention_heads",
"hidden_size": "embed_dim",
"num_hidden_layers": "layers",
}
def __init__(
self,
vocab_size=65037,
max_position_embeddings=2048,
embed_dim=2048,
layers=24,
ffn_dim=8192,
attention_heads=32,
activation_function="gelu",
dropout=0.1,
attention_dropout=0.1,
activation_dropout=0.0,
layerdrop=0.0,
layer_norm_eps=1e-5,
init_std=0.02,
scale_embedding=True,
use_cache=True,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
**kwargs,
)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.embed_dim = embed_dim
self.layers = layers
self.ffn_dim = ffn_dim
self.attention_heads = attention_heads
self.activation_function = activation_function
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.layerdrop = layerdrop
self.layer_norm_eps = layer_norm_eps
self.init_std = init_std
self.scale_embedding = scale_embedding
self.use_cache = use_cache
|
class_definition
| 808 | 5,981 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/kosmos2/configuration_kosmos2.py
| null | 6,105 |
class Kosmos2VisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Kosmos2VisionModel`]. It is used to instantiate a
KOSMOS-2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the vision encoder of the KOSMOS-2
[microsoft/kosmos-2-patch14-224](https://huggingface.co/microsoft/kosmos-2-patch14-224) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 1024):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 14):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
```"""
model_type = "kosmos_2_vision_model"
base_config_key = "vision_config"
def __init__(
self,
hidden_size=1024,
intermediate_size=4096,
num_hidden_layers=24,
num_attention_heads=16,
num_channels=3,
image_size=224,
patch_size=14,
hidden_act="quick_gelu",
layer_norm_eps=1e-5,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
|
class_definition
| 5,984 | 9,575 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/kosmos2/configuration_kosmos2.py
| null | 6,106 |
class Kosmos2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Kosmos2Model`]. It is used to instantiate a
KOSMOS-2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the KOSMOS-2
[microsoft/kosmos-2-patch14-224](https://huggingface.co/microsoft/kosmos-2-patch14-224) architecture.
Args:
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`Kosmos2TextConfig`].
vision_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`Kosmos2VisionConfig`].
latent_query_num (`int`, *optional*, defaults to 64):
The number of latent query tokens that represent the image features used in the text decoder component.
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import Kosmos2Config, Kosmos2Model
>>> # Initializing a Kosmos-2 kosmos-2-patch14-224 style configuration
>>> configuration = Kosmos2Config()
>>> # Initializing a model (with random weights) from the kosmos-2-patch14-224 style configuration
>>> model = Kosmos2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "kosmos-2"
sub_configs = {"text_config": Kosmos2TextConfig, "vision_config": Kosmos2VisionConfig}
def __init__(
self,
text_config=None,
vision_config=None,
latent_query_num=64,
**kwargs,
):
super().__init__(**kwargs)
if text_config is None:
text_config = {}
logger.info("`text_config` is `None`. Initializing the `Kosmos2TextConfig` with default values.")
if vision_config is None:
vision_config = {}
logger.info("`vision_config` is `None`. Initializing the `Kosmos2VisionConfig` with default values.")
self.text_config = Kosmos2TextConfig(**text_config)
self.vision_config = Kosmos2VisionConfig(**vision_config)
self.latent_query_num = latent_query_num
|
class_definition
| 9,578 | 11,849 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/kosmos2/configuration_kosmos2.py
| null | 6,107 |
class TFBlipTextEmbeddings(keras.layers.Layer):
"""Construct the embeddings from word and position embeddings."""
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.word_embeddings = keras.layers.Embedding(
config.vocab_size,
config.hidden_size,
embeddings_initializer=get_initializer(config.initializer_range),
name="word_embeddings",
)
self.position_embeddings = keras.layers.Embedding(
config.max_position_embeddings,
config.hidden_size,
embeddings_initializer=get_initializer(config.initializer_range),
name="position_embeddings",
)
# self.LayerNorm is not snake-cased to stick with PyTorch model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob, name="dropout")
self.position_ids = tf.expand_dims(tf.range(config.max_position_embeddings), 0)
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.config = config
def call(self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0, training=None):
if input_ids is not None:
input_shape = tf.shape(input_ids)
else:
input_shape = tf.shape(inputs_embeds)[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
if inputs_embeds is None:
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
inputs_embeds = self.word_embeddings(input_ids)
embeddings = inputs_embeds
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings, training=training)
return embeddings
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "word_embeddings", None) is not None:
with tf.name_scope(self.word_embeddings.name):
self.word_embeddings.build(None)
if getattr(self, "position_embeddings", None) is not None:
with tf.name_scope(self.position_embeddings.name):
self.position_embeddings.build(None)
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
if getattr(self, "dropout", None) is not None:
with tf.name_scope(self.dropout.name):
self.dropout.build(None)
|
class_definition
| 3,100 | 6,120 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_tf_blip_text.py
| null | 6,108 |
class TFBlipTextSelfAttention(keras.layers.Layer):
def __init__(self, config, is_cross_attention, **kwargs):
super().__init__(**kwargs)
self.config = config
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention heads (%d)"
% (config.hidden_size, config.num_attention_heads)
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = keras.layers.Dense(
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
)
self.key = keras.layers.Dense(
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
)
self.value = keras.layers.Dense(
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
)
self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = keras.layers.Embedding(
2 * config.max_position_embeddings - 1, self.attention_head_size
)
self.is_cross_attention = is_cross_attention
def transpose_for_scores(self, x):
new_x_shape = tf.concat(
[tf.shape(x)[:-1], tf.constant([self.num_attention_heads, self.attention_head_size], dtype=tf.int32)],
axis=0,
)
x = tf.reshape(x, new_x_shape)
return tf.transpose(x, perm=(0, 2, 1, 3))
def call(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
training=None,
):
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = tf.concat([past_key_value[0], key_layer], axis=2)
value_layer = tf.concat([past_key_value[1], value_layer], axis=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
seq_length = shape_list(hidden_states)[1]
position_ids_l = tf.expand_dims(tf.range(seq_length, dtype=tf.int64, device=hidden_states.device), 1)
position_ids_r = tf.expand_dims(tf.range(seq_length, dtype=tf.int64, device=hidden_states.device), 0)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = tf.cast(positional_embedding, query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = tf.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = tf.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = tf.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BlipTextModel forward() function)
attention_scores = attention_scores + tf.cast(attention_mask, attention_scores.dtype)
# Normalize the attention scores to probabilities.
attention_probs = stable_softmax(attention_scores, axis=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs_dropped = self.dropout(attention_probs, training=training)
# Mask heads if we want to
if head_mask is not None:
attention_probs_dropped = attention_probs_dropped * head_mask
context_layer = attention_probs_dropped @ value_layer
context_layer = tf.transpose(context_layer, perm=(0, 2, 1, 3))
new_context_layer_shape = shape_list(context_layer)[:-2] + [self.all_head_size]
context_layer = tf.reshape(context_layer, new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
outputs = outputs + (past_key_value,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "query", None) is not None:
with tf.name_scope(self.query.name):
self.query.build([None, None, self.config.hidden_size])
if self.is_cross_attention:
if getattr(self, "key", None) is not None:
with tf.name_scope(self.key.name):
self.key.build([None, None, self.config.encoder_hidden_size])
if getattr(self, "value", None) is not None:
with tf.name_scope(self.value.name):
self.value.build([None, None, self.config.encoder_hidden_size])
else:
if getattr(self, "key", None) is not None:
with tf.name_scope(self.key.name):
self.key.build([None, None, self.config.hidden_size])
if getattr(self, "value", None) is not None:
with tf.name_scope(self.value.name):
self.value.build([None, None, self.config.hidden_size])
|
class_definition
| 6,201 | 13,642 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_tf_blip_text.py
| null | 6,109 |
class TFBlipTextSelfOutput(keras.layers.Layer):
def __init__(self, config: BlipTextConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.config = config
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: Optional[bool] = None) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
|
class_definition
| 13,645 | 14,989 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_tf_blip_text.py
| null | 6,110 |
class TFBlipTextAttention(keras.layers.Layer):
def __init__(self, config, is_cross_attention=False, **kwargs):
super().__init__(**kwargs)
self.self = TFBlipTextSelfAttention(config, is_cross_attention, name="self")
# "output" is a protected attribute on TF models
self.self_output = TFBlipTextSelfOutput(config, name="output")
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
encoder_hidden_states: tf.Tensor | None = None,
encoder_attention_mask: tf.Tensor | None = None,
past_key_value: Tuple[Tuple[tf.Tensor]] | None = None,
output_attentions: Optional[bool] = False,
training: Optional[bool] = None,
):
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
training=training,
)
attention_output = self.self_output(self_outputs[0], hidden_states, training=training)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self", None) is not None:
with tf.name_scope(self.self.name):
self.self.build(None)
if getattr(self, "self_output", None) is not None:
with tf.name_scope(self.self_output.name):
self.self_output.build(None)
|
class_definition
| 15,070 | 16,762 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_tf_blip_text.py
| null | 6,111 |
class TFBlipTextIntermediate(keras.layers.Layer):
def __init__(self, config: BlipTextConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
else:
self.intermediate_act_fn = config.hidden_act
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
|
class_definition
| 16,860 | 17,890 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_tf_blip_text.py
| null | 6,112 |
class TFBlipTextOutput(keras.layers.Layer):
def __init__(self, config: BlipTextConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.config = config
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.intermediate_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
|
class_definition
| 17,893 | 19,230 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_tf_blip_text.py
| null | 6,113 |
class TFBlipTextLayer(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.attention = TFBlipTextAttention(config, name="attention")
if self.config.is_decoder:
self.crossattention = TFBlipTextAttention(
config, is_cross_attention=self.config.is_decoder, name="crossattention"
)
self.intermediate = TFBlipTextIntermediate(config, name="intermediate")
self.self_output = TFBlipTextOutput(config, name="output")
def call(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
training=None,
):
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
training=training,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
if encoder_hidden_states is not None:
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
output_attentions=output_attentions,
training=training,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
intermediate_output = self.intermediate(attention_output)
layer_output = self.self_output(intermediate_output, attention_output, training=training)
outputs = (layer_output,) + outputs
outputs = outputs + (present_key_value,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "intermediate", None) is not None:
with tf.name_scope(self.intermediate.name):
self.intermediate.build(None)
if getattr(self, "self_output", None) is not None:
with tf.name_scope(self.self_output.name):
self.self_output.build(None)
if getattr(self, "crossattention", None) is not None:
with tf.name_scope(self.crossattention.name):
self.crossattention.build(None)
|
class_definition
| 19,233 | 22,262 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_tf_blip_text.py
| null | 6,114 |
class TFBlipTextEncoder(keras.layers.Layer):
config_class = BlipTextConfig
def __init__(self, config, name=None, **kwargs):
super().__init__(name=name, **kwargs)
self.config = config
self.layer = [TFBlipTextLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
@unpack_inputs
def call(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
training=None,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.is_decoder else None
next_decoder_cache = () if use_cache else None
for i in range(self.config.num_hidden_layers):
layer_module = self.layer[i]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
training=training,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return TFBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layer", None) is not None:
for layer in self.layer:
with tf.name_scope(layer.name):
layer.build(None)
|
class_definition
| 22,364 | 25,421 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_tf_blip_text.py
| null | 6,115 |
class TFBlipTextPooler(keras.layers.Layer):
def __init__(self, config: BlipTextConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
activation="tanh",
name="dense",
)
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(inputs=first_token_tensor)
return pooled_output
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
|
class_definition
| 25,513 | 26,490 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_tf_blip_text.py
| null | 6,116 |
class TFBlipTextPredictionHeadTransform(keras.layers.Layer):
def __init__(self, config: BlipTextConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
name="dense",
)
if isinstance(config.hidden_act, str):
self.transform_act_fn = get_tf_activation(config.hidden_act)
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(inputs=hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
|
class_definition
| 26,599 | 28,004 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_tf_blip_text.py
| null | 6,117 |
class TFBlipTextLMPredictionHead(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.transform = TFBlipTextPredictionHeadTransform(config, name="transform")
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = keras.layers.Dense(
config.vocab_size,
kernel_initializer=get_initializer(config.initializer_range),
name="decoder",
use_bias=False,
)
self.config = config
def build(self, input_shape=None):
self.bias = self.add_weight(name="bias", shape=(self.config.vocab_size,), initializer="zeros", trainable=True)
if self.built:
return
self.built = True
if getattr(self, "transform", None) is not None:
with tf.name_scope(self.transform.name):
self.transform.build(None)
if getattr(self, "decoder", None) is not None:
with tf.name_scope(self.decoder.name):
self.decoder.build([None, None, self.config.hidden_size])
def call(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states) + self.bias
return hidden_states
|
class_definition
| 28,007 | 29,336 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_tf_blip_text.py
| null | 6,118 |
class TFBlipTextOnlyMLMHead(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.predictions = TFBlipTextLMPredictionHead(config, name="predictions")
def call(self, sequence_output: tf.Tensor) -> tf.Tensor:
prediction_scores = self.predictions(sequence_output)
return prediction_scores
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "predictions", None) is not None:
with tf.name_scope(self.predictions.name):
self.predictions.build(None)
|
class_definition
| 29,339 | 29,970 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_tf_blip_text.py
| null | 6,119 |
class TFBlipTextPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BlipTextConfig
base_model_prefix = "bert"
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
class_definition
| 30,052 | 30,370 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_tf_blip_text.py
| null | 6,120 |
class TFBlipTextModel(TFBlipTextPreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. argument and `is_decoder` set to `True`; an
`encoder_hidden_states` is then expected as an input to the forward pass.
"""
def __init__(self, config, add_pooling_layer=True, name=None, **kwargs):
super().__init__(config, name=name, **kwargs)
self.config = config
self.embeddings = TFBlipTextEmbeddings(config, name="embeddings")
self.encoder = TFBlipTextEncoder(config, name="encoder")
self.pooler = TFBlipTextPooler(config, name="pooler") if add_pooling_layer else None
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
@tf.function
def get_extended_attention_mask(
self, attention_mask: tf.Tensor, input_shape: Tuple[int], is_decoder: bool
) -> tf.Tensor:
"""
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
Arguments:
attention_mask (`tf.Tensor`):
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
input_shape (`Tuple[int]`):
The shape of the input to the model.
is_decoder (`bool`):
Whether the model is used as a decoder.
Returns:
`tf.Tensor` The extended attention mask, with the same dtype as `attention_mask.dtype`.
"""
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
if not isinstance(attention_mask, tf.Tensor):
attention_mask = tf.convert_to_tensor(attention_mask) # Catches NumPy inputs that haven't been cast yet
if attention_mask.shape.rank == 3:
extended_attention_mask = attention_mask[:, None, :, :]
elif attention_mask.shape.rank == 2:
# Provided a padding mask of dimensions [batch_size, seq_length]
# - if the model is a decoder, apply a causal mask in addition to the padding mask
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
if is_decoder:
batch_size, seq_length = input_shape
seq_ids = tf.range(seq_length, dtype=attention_mask.dtype)
causal_mask = tf.broadcast_to(seq_ids, (batch_size, seq_length, seq_length)) <= seq_ids[None, :, None]
# in case past_key_values are used we need to add a prefix ones mask to the causal mask
if shape_list(causal_mask)[1] < shape_list(attention_mask)[1]:
prefix_seq_len = tf.shape(attention_mask)[1] - tf.shape(causal_mask)[1]
causal_mask = tf.concat(
[
tf.ones((batch_size, seq_length, prefix_seq_len), dtype=causal_mask.dtype),
causal_mask,
],
axis=-1,
)
extended_attention_mask = (
tf.cast(causal_mask[:, None, :, :], attention_mask.dtype) * attention_mask[:, None, None, :]
)
else:
extended_attention_mask = attention_mask[:, None, None, :]
else:
raise ValueError(
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
input_shape, attention_mask.shape
)
)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = tf.cast(extended_attention_mask, self.dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
return extended_attention_mask
@add_start_docstrings_to_model_forward(BLIP_TEXT_INPUTS_DOCSTRING)
@unpack_inputs
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: tf.Tensor | None = None,
position_ids: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
inputs_embeds: tf.Tensor | None = None,
encoder_embeds: tf.Tensor | None = None,
encoder_hidden_states: tf.Tensor | None = None,
encoder_attention_mask: tf.Tensor | None = None,
past_key_values: Tuple[Tuple[tf.Tensor]] | None = None,
use_cache: bool | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
is_decoder: bool = False,
training: bool = False,
) -> Tuple[tf.Tensor] | TFBaseModelOutputWithPoolingAndCrossAttentions:
r"""
encoder_hidden_states (`tf.Tensor`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`tf.Tensor`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(tf.Tensor))`, *optional*):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
batch_size, seq_length = input_shape
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
batch_size, seq_length = input_shape
elif encoder_embeds is not None:
input_shape = shape_list(encoder_embeds)[:-1]
batch_size, seq_length = input_shape
else:
raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = tf.ones(((batch_size, seq_length + past_key_values_length)))
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: tf.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, is_decoder)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if encoder_hidden_states is not None:
if isinstance(encoder_hidden_states, list):
encoder_batch_size, encoder_sequence_length, _ = shape_list(encoder_hidden_states[0])
else:
encoder_batch_size, encoder_sequence_length, _ = shape_list(encoder_hidden_states)
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if isinstance(encoder_attention_mask, list):
encoder_extended_attention_mask = [invert_attention_mask(mask) for mask in encoder_attention_mask]
elif encoder_attention_mask is None:
encoder_attention_mask = tf.ones(encoder_hidden_shape)
encoder_extended_attention_mask = invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
if encoder_embeds is None:
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
else:
embedding_output = encoder_embeds
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "pooler", None) is not None:
with tf.name_scope(self.pooler.name):
self.pooler.build(None)
|
class_definition
| 30,488 | 42,796 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_tf_blip_text.py
| null | 6,121 |
class TFBlipTextLMHeadModel(TFBlipTextPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
def __init__(self, config, **kwargs):
super().__init__(config, **kwargs)
self.bert = TFBlipTextModel(config, add_pooling_layer=False, name="bert")
self.cls = TFBlipTextOnlyMLMHead(config, name="cls")
self.label_smoothing = config.label_smoothing
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
@add_start_docstrings_to_model_forward(BLIP_TEXT_INPUTS_DOCSTRING)
@unpack_inputs
def call(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
labels=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
return_logits=False,
is_decoder=True,
training=None,
):
r"""
encoder_hidden_states (`tf.Tensor`, *optional*): Sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is
configured as a decoder.
encoder_attention_mask (`tf.Tensor`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
labels (`tf.Tensor`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
past_key_values (`tuple(tuple(tf.Tensor))`, *optional*):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
is_decoder=is_decoder,
training=training,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
if return_logits:
return prediction_scores[:, :-1, :]
lm_loss = None
if labels is not None:
# we are doing next-token prediction; shift prediction scores and input ids by one
shifted_prediction_scores = prediction_scores[:, :-1, :]
shifted_prediction_scores = tf.reshape(shifted_prediction_scores, (-1, self.config.vocab_size))
labels = labels[:, 1:]
labels = tf.reshape(labels, (-1,))
# Keras won't give us label smoothing for sparse CE, so we de-sparsify things here
# Use relu to clamp masked labels at 0 to avoid NaN (we will be zeroing those out later anyway)
one_hot_labels = tf.one_hot(tf.nn.relu(labels), depth=self.config.vocab_size, dtype=tf.float32)
loss_fct = keras.losses.CategoricalCrossentropy(
from_logits=True, label_smoothing=self.label_smoothing, reduction="none"
)
masked_positions = tf.cast(tf.not_equal(labels, -100), dtype=tf.float32)
lm_loss = loss_fct(one_hot_labels, shifted_prediction_scores)
lm_loss *= masked_positions
lm_loss = tf.reduce_sum(lm_loss, axis=0) / tf.math.count_nonzero(masked_positions, dtype=tf.float32)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((lm_loss,) + output) if lm_loss is not None else output
return TFCausalLMOutputWithCrossAttentions(
loss=lm_loss,
logits=prediction_scores,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
input_shape = input_ids.shape
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_shape)
# cut decoder_input_ids if past_key_values is used
if past_key_values is not None:
input_ids = input_ids[:, -1:]
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"past_key_values": past_key_values,
"encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
"encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
"is_decoder": True,
}
def _reorder_cache(self, past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
return reordered_past
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "bert", None) is not None:
with tf.name_scope(self.bert.name):
self.bert.build(None)
if getattr(self, "cls", None) is not None:
with tf.name_scope(self.cls.name):
self.cls.build(None)
|
class_definition
| 42,878 | 49,971 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_tf_blip_text.py
| null | 6,122 |
class BlipProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {
"add_special_tokens": True,
"padding": False,
"stride": 0,
"return_overflowing_tokens": False,
"return_special_tokens_mask": False,
"return_offsets_mapping": False,
"return_token_type_ids": False,
"return_length": False,
"verbose": True,
},
"images_kwargs": {},
}
|
class_definition
| 878 | 1,370 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/processing_blip.py
| null | 6,123 |
class BlipProcessor(ProcessorMixin):
r"""
Constructs a BLIP processor which wraps a BERT tokenizer and BLIP image processor into a single processor.
[`BlipProcessor`] offers all the functionalities of [`BlipImageProcessor`] and [`BertTokenizerFast`]. See the
docstring of [`~BlipProcessor.__call__`] and [`~BlipProcessor.decode`] for more information.
Args:
image_processor (`BlipImageProcessor`):
An instance of [`BlipImageProcessor`]. The image processor is a required input.
tokenizer (`BertTokenizerFast`):
An instance of ['BertTokenizerFast`]. The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = []
image_processor_class = "BlipImageProcessor"
tokenizer_class = ("BertTokenizer", "BertTokenizerFast")
def __init__(self, image_processor, tokenizer, **kwargs):
tokenizer.return_token_type_ids = False
super().__init__(image_processor, tokenizer)
self.current_processor = self.image_processor
def __call__(
self,
images: ImageInput = None,
text: Optional[Union[str, List[str], TextInput, PreTokenizedInput]] = None,
audio=None,
videos=None,
**kwargs: Unpack[BlipProcessorKwargs],
) -> BatchEncoding:
"""
This method uses [`BlipImageProcessor.__call__`] method to prepare image(s) for the model, and
[`BertTokenizerFast.__call__`] to prepare text for the model.
Please refer to the docstring of the above two methods for more information.
Args:
images (`ImageInput`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`TextInput`, `PreTokenizedInput`, `List[TextInput]`, `List[PreTokenizedInput]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
"""
if images is None and text is None:
raise ValueError("You have to specify either images or text.")
text_encoding = None
# add pixel_values encoding. If we also have text_encoding, update image encoding and return it.
# else, return the text encoding.
output_kwargs = self._merge_kwargs(
BlipProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if text is not None:
text_encoding = self.tokenizer(text, **output_kwargs["text_kwargs"])
if images is not None:
encoding_image_processor = self.image_processor(images, **output_kwargs["images_kwargs"])
if text_encoding is not None:
encoding_image_processor.update(text_encoding)
return encoding_image_processor
return text_encoding
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
class_definition
| 1,373 | 5,866 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/processing_blip.py
| null | 6,124 |
class BlipImageProcessor(BaseImageProcessor):
r"""
Constructs a BLIP image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the
`do_resize` parameter in the `preprocess` method.
size (`dict`, *optional*, defaults to `{"height": 384, "width": 384}`):
Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`. Can be
overridden by the `resample` parameter in the `preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the
`do_rescale` parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Only has an effect if `do_rescale` is set to `True`. Can be
overridden by the `rescale_factor` parameter in the `preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method. Can be overridden by the `do_normalize` parameter in the `preprocess` method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be
overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
Can be overridden by the `image_std` parameter in the `preprocess` method.
do_convert_rgb (`bool`, *optional*, defaults to `True`):
Whether to convert the image to RGB.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = True,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 384, "width": 384}
size = get_size_dict(size, default_to_square=True)
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
self.do_convert_rgb = do_convert_rgb
# Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.BICUBIC
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
Returns:
`np.ndarray`: The resized image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
output_size = (size["height"], size["width"])
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
@filter_out_non_signature_kwargs()
def preprocess(
self,
images: ImageInput,
do_resize: Optional[bool] = None,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
do_convert_rgb: bool = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Controls the size of the image after `resize`. The shortest edge of the image is resized to
`size["shortest_edge"]` whilst preserving the aspect ratio. If the longest edge of this resized image
is > `int(size["shortest_edge"] * (1333 / 800))`, then the image is resized again to make the longest
edge equal to `int(size["shortest_edge"] * (1333 / 800))`.
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to normalize the image by if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to normalize the image by if `do_normalize` is set to `True`.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
resample = resample if resample is not None else self.resample
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
size = size if size is not None else self.size
size = get_size_dict(size, default_to_square=False)
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_resize=do_resize,
size=size,
resample=resample,
)
# PIL RGBA images are converted to RGB
if do_convert_rgb:
images = [convert_to_rgb(image) for image in images]
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_rescale and is_scaled_image(images[0]):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_rescale:
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
encoded_outputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)
return encoded_outputs
|
class_definition
| 1,374 | 15,224 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/image_processing_blip.py
| null | 6,125 |
class BlipTextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`BlipTextModel`]. It is used to instantiate a BLIP
text model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the `BlipText` used by the [base
architectures](https://huggingface.co/Salesforce/blip-vqa-base).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30524):
Vocabulary size of the `Blip` text model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`BlipModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
encoder_hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers from the vision model.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
bos_token_id (`int`, *optional*, defaults to 30522):
The id of the `beginning-of-sequence` token.
eos_token_id (`int`, *optional*, defaults to 2):
The id of the `end-of-sequence` token.
pad_token_id (`int`, *optional*, defaults to 0):
The id of the `padding` token.
sep_token_id (`int`, *optional*, defaults to 102):
The id of the `separator` token.
is_decoder (`bool`, *optional*, defaults to `True`):
Whether the model is used as a decoder.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
label_smoothing (float, *optional*):
A float in [0.0, 1.0]. Specifies the amount of smoothing when computing the loss, where 0.0 means no smoothing. The targets
become a mixture of the original ground truth and a uniform distribution as described in
`Rethinking the Inception Architecture for Computer Vision <https://arxiv.org/abs/1512.00567>`__. Default: :math:`0.0`.
Example:
```python
>>> from transformers import BlipTextConfig, BlipTextModel
>>> # Initializing a BlipTextConfig with Salesforce/blip-vqa-base style configuration
>>> configuration = BlipTextConfig()
>>> # Initializing a BlipTextModel (with random weights) from the Salesforce/blip-vqa-base style configuration
>>> model = BlipTextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "blip_text_model"
base_config_key = "text_config"
def __init__(
self,
vocab_size=30524,
hidden_size=768,
encoder_hidden_size=768,
intermediate_size=3072,
projection_dim=768,
num_hidden_layers=12,
num_attention_heads=8,
max_position_embeddings=512,
hidden_act="gelu",
layer_norm_eps=1e-12,
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
bos_token_id=30522,
eos_token_id=2,
pad_token_id=0,
sep_token_id=102,
is_decoder=True,
use_cache=True,
label_smoothing=0.0,
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
sep_token_id=sep_token_id,
**kwargs,
)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.encoder_hidden_size = encoder_hidden_size
self.intermediate_size = intermediate_size
self.projection_dim = projection_dim
self.hidden_dropout_prob = hidden_dropout_prob
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.max_position_embeddings = max_position_embeddings
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.is_decoder = is_decoder
self.use_cache = use_cache
self.label_smoothing = label_smoothing
|
class_definition
| 781 | 6,816 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/configuration_blip.py
| null | 6,126 |
class BlipVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`BlipVisionModel`]. It is used to instantiate a
BLIP vision model according to the specified arguments, defining the model architecture. Instantiating a
configuration defaults will yield a similar configuration to that of the Blip-base
[Salesforce/blip-vqa-base](https://huggingface.co/Salesforce/blip-vqa-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
image_size (`int`, *optional*, defaults to 384):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 1e-10):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
Example:
```python
>>> from transformers import BlipVisionConfig, BlipVisionModel
>>> # Initializing a BlipVisionConfig with Salesforce/blip-vqa-base style configuration
>>> configuration = BlipVisionConfig()
>>> # Initializing a BlipVisionModel (with random weights) from the Salesforce/blip-vqa-base style configuration
>>> model = BlipVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "blip_vision_model"
base_config_key = "vision_config"
def __init__(
self,
hidden_size=768,
intermediate_size=3072,
projection_dim=512,
num_hidden_layers=12,
num_attention_heads=12,
image_size=384,
patch_size=16,
hidden_act="gelu",
layer_norm_eps=1e-5,
attention_dropout=0.0,
initializer_range=1e-10,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.patch_size = patch_size
self.image_size = image_size
self.initializer_range = initializer_range
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
|
class_definition
| 6,819 | 10,433 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/configuration_blip.py
| null | 6,127 |
class BlipConfig(PretrainedConfig):
r"""
[`BlipConfig`] is the configuration class to store the configuration of a [`BlipModel`]. It is used to instantiate
a BLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating
a configuration with the defaults will yield a similar configuration to that of the BLIP-base
[Salesforce/blip-vqa-base](https://huggingface.co/Salesforce/blip-vqa-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`BlipTextConfig`].
vision_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`BlipVisionConfig`].
projection_dim (`int`, *optional*, defaults to 512):
Dimensionality of text and vision projection layers.
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
The initial value of the *logit_scale* parameter. Default is used as per the original BLIP implementation.
image_text_hidden_size (`int`, *optional*, defaults to 256):
Dimensionality of the hidden state of the image-text fusion layer.
label_smoothing (float, optional, *optional*, defaults to 0.0):
A float in [0.0, 1.0]. Specifies the amount of smoothing when computing the loss, where 0.0 means no smoothing. The targets
become a mixture of the original ground truth and a uniform distribution as described in
`Rethinking the Inception Architecture for Computer Vision <https://arxiv.org/abs/1512.00567>`__. Default: :math:`0.0`.
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import BlipConfig, BlipModel
>>> # Initializing a BlipConfig with Salesforce/blip-vqa-base style configuration
>>> configuration = BlipConfig()
>>> # Initializing a BlipPModel (with random weights) from the Salesforce/blip-vqa-base style configuration
>>> model = BlipModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> # We can also initialize a BlipConfig from a BlipTextConfig and a BlipVisionConfig
>>> # Initializing a BLIPText and BLIPVision configuration
>>> config_text = BlipTextConfig()
>>> config_vision = BlipVisionConfig()
>>> config = BlipConfig.from_text_vision_configs(config_text, config_vision)
```"""
model_type = "blip"
sub_configs = {"text_config": BlipTextConfig, "vision_config": BlipVisionConfig}
def __init__(
self,
text_config=None,
vision_config=None,
projection_dim=512,
logit_scale_init_value=2.6592,
image_text_hidden_size=256,
label_smoothing=0.0,
**kwargs,
):
super().__init__(**kwargs)
if text_config is None:
text_config = {}
logger.info("`text_config` is `None`. Initializing the `BlipTextConfig` with default values.")
if vision_config is None:
vision_config = {}
logger.info("`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.")
self.text_config = BlipTextConfig(**text_config)
self.vision_config = BlipVisionConfig(**vision_config)
self.text_config.encoder_hidden_size = self.vision_config.hidden_size
self.projection_dim = projection_dim
self.logit_scale_init_value = logit_scale_init_value
self.initializer_factor = 1.0
self.initializer_range = 0.02
self.image_text_hidden_size = image_text_hidden_size
self.label_smoothing = label_smoothing
@classmethod
def from_text_vision_configs(cls, text_config: BlipTextConfig, vision_config: BlipVisionConfig, **kwargs):
r"""
Instantiate a [`BlipConfig`] (or a derived class) from blip text model configuration and blip vision model
configuration.
Returns:
[`BlipConfig`]: An instance of a configuration object
"""
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
class_definition
| 10,436 | 14,828 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/configuration_blip.py
| null | 6,128 |
class TFBlipForConditionalGenerationModelOutput(ModelOutput):
"""
Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the
last hidden states. This class also adds the loss term from the text decoder.
Args:
loss (`tf.Tensor`, *optional*, returned when `labels` is provided, `tf.Tensor` of shape `(1,)`):
Languge modeling loss from the text decoder.
logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`, *optional*):
Prediction scores of the language modeling head of the text decoder model.
image_embeds (`tf.Tensor` of shape `(batch_size, output_dim)`, *optional*):
The image embeddings obtained after applying the Vision Transformer model to the input image.
last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for
the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.`
"""
loss: Tuple[tf.Tensor] | None = None
logits: Tuple[tf.Tensor] | None = None
image_embeds: tf.Tensor | None = None
last_hidden_state: tf.Tensor = None
hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor, ...] | None = None
@property
def decoder_logits(self):
warnings.warn(
"`decoder_logits` attribute is deprecated and will be removed in version 5 of Transformers."
" Please use the `logits` attribute to retrieve the final output instead.",
FutureWarning,
)
return self.logits
|
class_definition
| 2,211 | 4,632 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_tf_blip.py
| null | 6,129 |
class TFBlipTextVisionModelOutput(ModelOutput):
"""
Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the
last hidden states. This class also adds the loss term from the text decoder.
Args:
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Languge modeling loss from the text decoder.
image_embeds (`tf.Tensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The image embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for
the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: tf.Tensor | None = None
image_embeds: tf.Tensor | None = None
last_hidden_state: tf.Tensor = None
hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor, ...] | None = None
|
class_definition
| 4,646 | 6,609 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_tf_blip.py
| null | 6,130 |
class TFBlipImageTextMatchingModelOutput(ModelOutput):
"""
Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the
last hidden states. This class also adds the loss term from the text decoder as well as the image-text similarity
scores.
Args:
itm_score (`tf.Tensor`):
The image-text similarity scores.
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Languge modeling loss from the text decoder.
image_embeds (`tf.Tensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The image embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for
the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
vision_pooler_output (`tf.Tensor` of shape `(batch_size, hidden_size)`, *optional*):
Last layer hidden-state of the vision of the vision-only branch of the model.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
question_embeds (`tf.Tensor`):
The question embeddings obtained by the text projection layer.
"""
itm_score: tf.Tensor | None = None
loss: tf.Tensor | None = None
image_embeds: tf.Tensor | None = None
last_hidden_state: tf.Tensor = None
hidden_states: Tuple[tf.Tensor, ...] | None = None
vision_pooler_output: tf.Tensor | None = None
attentions: Tuple[tf.Tensor, ...] | None = None
question_embeds: Tuple[tf.Tensor] | None = None
|
class_definition
| 6,623 | 9,158 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_tf_blip.py
| null | 6,131 |
class TFBlipOutput(ModelOutput):
"""
Args:
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for image-text similarity.
logits_per_image:(`tf.Tensor` of shape `(image_batch_size, text_batch_size)`):
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
similarity scores.
logits_per_text:(`tf.Tensor` of shape `(text_batch_size, image_batch_size)`):
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
similarity scores.
text_embeds(`tf.Tensor` of shape `(batch_size, output_dim`):
The text embeddings obtained by applying the projection layer to the pooled output of [`BlipTextModel`].
image_embeds(`tf.Tensor` of shape `(batch_size, output_dim`):
The image embeddings obtained by applying the projection layer to the pooled output of [`BlipVisionModel`].
text_model_output(`BaseModelOutputWithPooling`):
The output of the [`BlipTextModel`].
vision_model_output(`BaseModelOutputWithPooling`):
The output of the [`BlipVisionModel`].
"""
loss: tf.Tensor | None = None
logits_per_image: tf.Tensor = None
logits_per_text: tf.Tensor = None
text_embeds: tf.Tensor = None
image_embeds: tf.Tensor = None
text_model_output: TFBaseModelOutputWithPooling = None
vision_model_output: TFBaseModelOutputWithPooling = None
def to_tuple(self) -> Tuple[Any]:
return tuple(
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
for k in self.keys()
)
|
class_definition
| 9,172 | 10,953 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_tf_blip.py
| null | 6,132 |
class TFBlipVisionEmbeddings(keras.layers.Layer):
def __init__(self, config: BlipVisionConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.patch_embedding = keras.layers.Conv2D(
filters=self.embed_dim,
kernel_size=self.patch_size,
strides=self.patch_size,
kernel_initializer=get_initializer(self.config.initializer_range),
data_format="channels_last",
name="patch_embedding",
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
def build(self, input_shape=None):
self.class_embedding = self.add_weight(
shape=(1, 1, self.embed_dim),
initializer=get_initializer(self.config.initializer_range),
trainable=True,
name="class_embedding",
)
self.position_embedding = self.add_weight(
shape=(1, self.num_positions, self.embed_dim),
initializer=get_initializer(self.config.initializer_range),
trainable=True,
name="position_embedding",
)
if self.built:
return
self.built = True
if getattr(self, "patch_embedding", None) is not None:
with tf.name_scope(self.patch_embedding.name):
self.patch_embedding.build([None, None, None, 3])
def call(self, pixel_values: tf.Tensor) -> tf.Tensor:
# Input is channels-first, we transpose. PyTorch transposes after the conv because PyTorch
# likes channels-first convs.
batch_size = tf.shape(pixel_values)[0]
pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
patch_embeds = self.patch_embedding(pixel_values)
patch_embeds = tf.reshape(patch_embeds, (batch_size, self.num_patches, -1))
class_embeds = tf.broadcast_to(self.class_embedding, (batch_size, 1, self.embed_dim))
embeddings = tf.concat([class_embeds, patch_embeds], axis=1)
embeddings = embeddings + self.position_embedding[:, : tf.shape(embeddings)[1], :]
return embeddings
|
class_definition
| 10,956 | 13,242 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_tf_blip.py
| null | 6,133 |
class TFBlipTextEmbeddings(keras.layers.Layer):
def __init__(self, config: BlipTextConfig, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.hidden_size
self.config = config
def build(self, input_shape: tf.TensorShape = None):
with tf.name_scope("token_embedding"):
self.weight = self.add_weight(
shape=(self.config.vocab_size, self.embed_dim),
initializer=get_initializer(self.config.initializer_factor * self.config.initializer_range),
trainable=True,
name="weight",
)
with tf.name_scope("position_embedding"):
self.position_embedding = self.add_weight(
shape=(self.config.max_position_embeddings, self.embed_dim),
initializer=get_initializer(self.config.initializer_factor * self.config.initializer_range),
trainable=True,
name="embeddings",
)
super().build(input_shape)
def call(
self,
input_ids: tf.Tensor = None,
position_ids: tf.Tensor = None,
inputs_embeds: tf.Tensor = None,
) -> tf.Tensor:
"""
Applies embedding based on inputs tensor.
Returns:
final_embeddings (`tf.Tensor`): output embedding tensor.
"""
if input_ids is None and inputs_embeds is None:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
input_shape = shape_list(inputs_embeds)[:-1]
if position_ids is None:
position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0)
position_embeds = tf.gather(params=self.position_embedding, indices=position_ids)
position_embeds = tf.tile(input=position_embeds, multiples=(input_shape[0], 1, 1))
final_embeddings = inputs_embeds + position_embeds
return final_embeddings
|
class_definition
| 13,338 | 15,474 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_tf_blip.py
| null | 6,134 |
class TFBlipAttention(keras.layers.Layer):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = keras.layers.Dropout(config.attention_dropout, name="dropout")
self.qkv = keras.layers.Dense(
3 * self.embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="qkv"
)
self.projection = keras.layers.Dense(
self.embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="projection"
)
def call(
self,
hidden_states: tf.Tensor,
head_mask: tf.Tensor | None = None,
output_attentions: Optional[bool] = False,
training: Optional[bool] = None,
) -> Tuple[tf.Tensor, tf.Tensor | None, Tuple[tf.Tensor] | None]:
"""Input shape: Batch x Time x Channel"""
bsz, tgt_len, embed_dim = shape_list(hidden_states)
mixed_qkv = self.qkv(hidden_states)
mixed_qkv = tf.reshape(mixed_qkv, (bsz, tgt_len, 3, self.num_heads, self.head_dim))
mixed_qkv = tf.transpose(mixed_qkv, perm=(2, 0, 3, 1, 4))
query_states, key_states, value_states = mixed_qkv[0], mixed_qkv[1], mixed_qkv[2]
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = query_states @ tf.transpose(key_states, (0, 1, 3, 2))
attention_scores = attention_scores * self.scale
# Normalize the attention scores to probabilities.
attention_probs = stable_softmax(attention_scores, axis=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs, training=training)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = tf.transpose(attention_probs @ value_states, perm=(0, 2, 1, 3))
new_context_layer_shape = shape_list(context_layer)[:-2] + [self.embed_dim]
context_layer = tf.reshape(context_layer, new_context_layer_shape)
output = self.projection(context_layer)
outputs = (output, attention_probs) if output_attentions else (output, None)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dropout", None) is not None:
with tf.name_scope(self.dropout.name):
self.dropout.build(None)
if getattr(self, "qkv", None) is not None:
with tf.name_scope(self.qkv.name):
self.qkv.build([None, None, self.embed_dim])
if getattr(self, "projection", None) is not None:
with tf.name_scope(self.projection.name):
self.projection.build([None, None, self.embed_dim])
|
class_definition
| 15,477 | 18,952 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_tf_blip.py
| null | 6,135 |
class TFBlipMLP(keras.layers.Layer):
def __init__(self, config: BlipConfig, **kwargs):
super().__init__(**kwargs)
self.activation_fn = get_tf_activation(config.hidden_act)
in_proj_std = (config.hidden_size**-0.5) * ((2 * config.num_hidden_layers) ** -0.5)
fc_std = (2 * config.hidden_size) ** -0.5
self.fc1 = keras.layers.Dense(
units=config.intermediate_size, kernel_initializer=get_initializer(fc_std), name="fc1"
)
self.fc2 = keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(in_proj_std), name="fc2"
)
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.fc1(inputs=hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(inputs=hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "fc1", None) is not None:
with tf.name_scope(self.fc1.name):
self.fc1.build([None, None, self.config.hidden_size])
if getattr(self, "fc2", None) is not None:
with tf.name_scope(self.fc2.name):
self.fc2.build([None, None, self.config.intermediate_size])
|
class_definition
| 18,955 | 20,322 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_tf_blip.py
| null | 6,136 |
class TFBlipEncoderLayer(keras.layers.Layer):
def __init__(self, config: BlipConfig, **kwargs):
super().__init__(**kwargs)
self.embed_dim = config.hidden_size
self.self_attn = TFBlipAttention(config, name="self_attn")
self.layer_norm1 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm1")
self.mlp = TFBlipMLP(config, name="mlp")
self.layer_norm2 = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm2")
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
output_attentions: Optional[bool] = False,
training: Optional[bool] = None,
) -> Tuple[tf.Tensor]:
"""
Args:
hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`tf.Tensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
head_mask=attention_mask,
output_attentions=output_attentions,
training=training,
)
hidden_states = hidden_states + residual
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = hidden_states + residual
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self_attn", None) is not None:
with tf.name_scope(self.self_attn.name):
self.self_attn.build(None)
if getattr(self, "layer_norm1", None) is not None:
with tf.name_scope(self.layer_norm1.name):
self.layer_norm1.build([None, None, self.embed_dim])
if getattr(self, "mlp", None) is not None:
with tf.name_scope(self.mlp.name):
self.mlp.build(None)
if getattr(self, "layer_norm2", None) is not None:
with tf.name_scope(self.layer_norm2.name):
self.layer_norm2.build([None, None, self.embed_dim])
|
class_definition
| 20,325 | 23,081 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_tf_blip.py
| null | 6,137 |
class TFBlipPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BlipConfig
base_model_prefix = "blip"
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
class_definition
| 23,084 | 23,394 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_tf_blip.py
| null | 6,138 |
class TFBlipEncoder(keras.layers.Layer):
config_class = BlipConfig
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`BlipEncoderLayer`].
Args:
config (`BlipConfig`):
The corresponding vision configuration for the `BlipEncoder`.
"""
def __init__(self, config: BlipConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.layers = [TFBlipEncoderLayer(config, name=f"layers_._{i}") for i in range(config.num_hidden_layers)]
@unpack_inputs
def call(
self,
inputs_embeds,
attention_mask: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = None,
) -> Union[Tuple, TFBaseModelOutput]:
r"""
Args:
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
Embedded representation of the inputs. Should be float, not int tokens.
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
output_attentions=output_attentions,
training=training,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
|
class_definition
| 27,169 | 30,950 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_tf_blip.py
| null | 6,139 |
class TFBlipVisionModel(TFBlipPreTrainedModel):
main_input_name = "pixel_values"
config_class = BlipVisionConfig
def __init__(self, config: BlipVisionConfig, *args, **kwargs):
super().__init__(config, *args, **kwargs)
self.config = config
self.embeddings = TFBlipVisionEmbeddings(config, name="embeddings")
self.encoder = TFBlipEncoder(config, name="encoder")
self.post_layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="post_layernorm")
self.embed_dim = config.hidden_size
def serving_output(self, output: TFBaseModelOutputWithPooling) -> TFBaseModelOutputWithPooling:
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFBaseModelOutputWithPooling(
last_hidden_state=output.last_hidden_state,
pooler_output=output.pooler_output,
hidden_states=hs,
attentions=attns,
)
@unpack_inputs
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=BlipVisionConfig)
def call(
self,
pixel_values: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = None,
) -> Union[Tuple, TFBaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
hidden_states = self.embeddings(pixel_values)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
last_hidden_state = encoder_outputs[0]
last_hidden_state = self.post_layernorm(last_hidden_state)
pooled_output = last_hidden_state[:, 0, :]
# TF gets confused if we call the layer with inputs of different ranks, so insert a singleton dimension
pooled_output = self.post_layernorm(tf.expand_dims(pooled_output, 1))
pooled_output = tf.squeeze(pooled_output, 1)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def get_input_embeddings(self):
return self.embeddings
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "post_layernorm", None) is not None:
with tf.name_scope(self.post_layernorm.name):
self.post_layernorm.build([None, None, self.embed_dim])
|
class_definition
| 30,953 | 34,812 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_tf_blip.py
| null | 6,140 |
class TFBlipMainLayer(keras.layers.Layer):
config_class = BlipConfig
def __init__(self, config: BlipConfig, *args, **kwargs):
super().__init__(*args, **kwargs)
if not isinstance(config.text_config, BlipTextConfig):
raise TypeError(
"config.text_config is expected to be of type BlipTextConfig but is of type"
f" {type(config.text_config)}."
)
if not isinstance(config.vision_config, BlipVisionConfig):
raise TypeError(
"config.vision_config is expected to be of type BlipVisionConfig but is of type"
f" {type(config.vision_config)}."
)
text_config = config.text_config
vision_config = config.vision_config
self.projection_dim = config.projection_dim
self.text_embed_dim = text_config.hidden_size
self.vision_embed_dim = vision_config.hidden_size
self.text_model = TFBlipTextModel(text_config, name="text_model")
self.vision_model = TFBlipVisionModel(vision_config, name="vision_model")
self.visual_projection = keras.layers.Dense(
self.projection_dim,
use_bias=False,
kernel_initializer=get_initializer(config.initializer_range),
name="visual_projection",
)
self.text_projection = keras.layers.Dense(
self.projection_dim,
use_bias=False,
kernel_initializer=get_initializer(config.initializer_range),
name="text_projection",
)
self.config = config
def build(self, input_shape=None):
self.logit_scale = self.add_weight(
name="logit_scale",
shape=[],
initializer=keras.initializers.Constant(self.config.logit_scale_init_value),
trainable=True,
)
if self.built:
return
self.built = True
if getattr(self, "text_model", None) is not None:
with tf.name_scope(self.text_model.name):
self.text_model.build(None)
if getattr(self, "vision_model", None) is not None:
with tf.name_scope(self.vision_model.name):
self.vision_model.build(None)
if getattr(self, "visual_projection", None) is not None:
with tf.name_scope(self.visual_projection.name):
self.visual_projection.build([None, None, self.vision_embed_dim])
if getattr(self, "text_projection", None) is not None:
with tf.name_scope(self.text_projection.name):
self.text_projection.build([None, None, self.text_embed_dim])
@unpack_inputs
def call(
self,
input_ids: tf.Tensor | None = None,
pixel_values: tf.Tensor | None = None,
attention_mask: tf.Tensor | None = None,
position_ids: tf.Tensor | None = None,
return_loss: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = None,
) -> Union[Tuple, TFBlipOutput]:
# Use BLIP model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
image_embeds = vision_outputs[1]
image_embeds = self.visual_projection(image_embeds)
text_embeds = text_outputs[1]
text_embeds = self.text_projection(text_embeds)
# normalized features
image_embeds = image_embeds / tf.norm(image_embeds, ord=2, axis=-1, keepdims=True)
text_embeds = text_embeds / tf.norm(text_embeds, ord=2, axis=-1, keepdims=True)
# cosine similarity as logits
logit_scale = tf.exp(self.logit_scale)
logits_per_text = tf.matmul(text_embeds, image_embeds, transpose_b=True) * logit_scale
logits_per_image = tf.transpose(logits_per_text)
loss = None
if return_loss:
loss = blip_loss(logits_per_text)
loss = tf.reshape(loss, (1,))
if not return_dict:
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
return ((loss,) + output) if loss is not None else output
return TFBlipOutput(
loss=loss,
logits_per_image=logits_per_image,
logits_per_text=logits_per_text,
text_embeds=text_embeds,
image_embeds=image_embeds,
text_model_output=text_outputs,
vision_model_output=vision_outputs,
)
|
class_definition
| 34,815 | 40,356 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_tf_blip.py
| null | 6,141 |
class TFBlipModel(TFBlipPreTrainedModel):
config_class = BlipConfig
_keys_to_ignore_on_load_missing = [r"text_decoder.cls.predictions.decoder.bias"]
main_input_name = "input_ids"
def __init__(self, config: BlipConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.blip = TFBlipMainLayer(config, name="blip")
def serving_output(self, output: TFBlipOutput) -> TFBlipOutput:
return TFBlipOutput(
logits_per_image=output.logits_per_image,
logits_per_text=output.logits_per_text,
text_embeds=output.text_embeds,
image_embeds=output.image_embeds,
)
@unpack_inputs
@add_start_docstrings_to_model_forward(BLIP_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFBlipOutput, config_class=BlipConfig)
def call(
self,
input_ids: tf.Tensor | None = None,
pixel_values: tf.Tensor | None = None,
attention_mask: tf.Tensor | None = None,
position_ids: tf.Tensor | None = None,
return_loss: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = None,
) -> Union[Tuple, TFBlipOutput]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, TFBlipModel
>>> model = TFBlipModel.from_pretrained("Salesforce/blip-image-captioning-base")
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="tf", padding=True
... )
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = tf.nn.softmax(logits_per_image, axis=1) # we can take the softmax to get the label probabilities
```"""
outputs = self.blip(
input_ids=input_ids,
pixel_values=pixel_values,
attention_mask=attention_mask,
position_ids=position_ids,
return_loss=return_loss,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
@add_start_docstrings_to_model_forward(BLIP_TEXT_INPUTS_DOCSTRING)
def get_text_features(
self,
input_ids: tf.Tensor | None = None,
attention_mask: tf.Tensor | None = None,
position_ids: tf.Tensor | None = None,
return_dict: Optional[bool] = None,
) -> tf.Tensor:
r"""
Returns:
text_features (`tf.Tensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying
the projection layer to the pooled output of [`TFBlipTextModel`].
Examples:
```python
>>> from transformers import AutoProcessor, TFBlipModel
>>> model = TFBlipModel.from_pretrained("Salesforce/blip-image-captioning-base")
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
>>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="tf")
>>> text_features = model.get_text_features(**inputs)
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
text_outputs = self.blip.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
return_dict=return_dict,
)
pooled_output = text_outputs[1]
text_features = self.blip.text_projection(pooled_output)
return text_features
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
def get_image_features(
self,
pixel_values: tf.Tensor | None = None,
return_dict: Optional[bool] = None,
) -> tf.Tensor:
r"""
Returns:
image_features (`tf.Tensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying
the projection layer to the pooled output of [`TFBlipVisionModel`].
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, TFBlipModel
>>> model = TFBlipModel.from_pretrained("Salesforce/blip-image-captioning-base")
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="tf")
>>> image_features = model.get_image_features(**inputs)
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_outputs = self.blip.vision_model(pixel_values=pixel_values, return_dict=return_dict)
pooled_output = vision_outputs[1] # pooled_output
image_features = self.blip.visual_projection(pooled_output)
return image_features
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "blip", None) is not None:
with tf.name_scope(self.blip.name):
self.blip.build(None)
|
class_definition
| 40,359 | 46,208 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_tf_blip.py
| null | 6,142 |
class TFBlipForConditionalGeneration(TFBlipPreTrainedModel):
config_class = BlipConfig
_keys_to_ignore_on_load_missing = [r"text_decoder.cls.predictions.decoder.bias"]
main_input_name = "pixel_values"
def __init__(self, config: BlipConfig, *args, **kwargs):
super().__init__(config, *args, **kwargs)
self.vision_model = TFBlipVisionModel(config.vision_config, name="vision_model")
self.text_decoder = TFBlipTextLMHeadModel(config.text_config, name="text_decoder")
self.decoder_input_ids = config.text_config.bos_token_id
self.decoder_pad_token_id = config.text_config.pad_token_id
def get_input_embeddings(self) -> keras.layers.Layer:
return self.vision_model.embeddings.patch_embedding
@unpack_inputs
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFBlipForConditionalGenerationModelOutput, config_class=BlipConfig)
def call(
self,
pixel_values: tf.Tensor,
input_ids: tf.Tensor | None = None,
attention_mask: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: tf.Tensor | None = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = None,
) -> Union[Tuple, TFBlipForConditionalGenerationModelOutput]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, TFBlipForConditionalGeneration
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
>>> model = TFBlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> text = "A picture of"
>>> inputs = processor(images=image, text=text, return_tensors="tf")
>>> outputs = model(**inputs)
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
image_embeds = vision_outputs[0]
outputs = self.text_decoder(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=image_embeds,
labels=labels,
return_dict=False,
training=training,
)
if not return_dict:
outputs = (outputs[0], outputs[1], image_embeds, vision_outputs[0]) + vision_outputs[2:]
return tuple(output for output in outputs if output is not None)
if labels is not None:
loss = outputs[0]
logits = outputs[1]
else:
loss = None
logits = outputs[0]
if loss is not None and loss.shape.rank == 0:
loss = tf.reshape(loss, (1,))
return TFBlipForConditionalGenerationModelOutput(
loss=loss,
logits=logits,
image_embeds=image_embeds,
last_hidden_state=vision_outputs.last_hidden_state,
hidden_states=vision_outputs.hidden_states,
attentions=vision_outputs.attentions,
)
def generate(
self,
pixel_values: tf.Tensor,
input_ids: tf.Tensor | None = None,
attention_mask: tf.Tensor | None = None,
**generate_kwargs,
) -> tf.Tensor:
r"""
Overrides *generate* function to be able to use the model as a conditional generator
Parameters:
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, image_height, image_width)`:
Input image to be processed
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
The sequence used as a prompt for the generation.
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, TFBlipForConditionalGeneration
>>> model = TFBlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="tf")
>>> outputs = model.generate(**inputs)
>>> print(processor.decode(outputs[0], skip_special_tokens=True))
two cats sleeping on a couch
```
"""
batch_size = pixel_values.shape[0]
vision_outputs = self.vision_model(pixel_values=pixel_values)
image_embeds = vision_outputs[0]
image_attention_mask = tf.ones(shape_list(image_embeds)[:-1], dtype=tf.int32)
if isinstance(input_ids, list):
input_ids = tf.convert_to_tensor(input_ids, dtype=tf.int32)
elif input_ids is None:
input_ids = tf.convert_to_tensor(
[[self.decoder_input_ids, self.config.text_config.eos_token_id]], dtype=tf.int32
)
input_ids = tf.tile(input_ids, (batch_size, 1))
# PyTorch: input_ids[:, 0] = self.config.text_config.bos_token_id
input_ids = tf.concat(
[tf.ones((batch_size, 1), dtype=tf.int32) * self.config.text_config.bos_token_id, input_ids[:, 1:]], axis=1
)
attention_mask = attention_mask[:, :-1] if attention_mask is not None else None
outputs = self.text_decoder.generate(
input_ids=input_ids[:, :-1],
eos_token_id=self.config.text_config.sep_token_id,
pad_token_id=self.config.text_config.pad_token_id,
attention_mask=attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_attention_mask,
**generate_kwargs,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "vision_model", None) is not None:
with tf.name_scope(self.vision_model.name):
self.vision_model.build(None)
if getattr(self, "text_decoder", None) is not None:
with tf.name_scope(self.text_decoder.name):
self.text_decoder.build(None)
|
class_definition
| 46,740 | 53,749 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_tf_blip.py
| null | 6,143 |
class TFBlipForQuestionAnswering(TFBlipPreTrainedModel):
config_class = BlipConfig
_keys_to_ignore_on_load_missing = [r"text_decoder.cls.predictions.decoder.bias"]
def __init__(self, config: BlipConfig, *args, **kwargs):
super().__init__(config, *args, **kwargs)
self.vision_model = TFBlipVisionModel(config.vision_config, name="vision_model")
self.text_encoder = TFBlipTextModel(config.text_config, name="text_encoder", add_pooling_layer=False)
self.text_decoder = TFBlipTextLMHeadModel(config.text_config, name="text_decoder")
self.decoder_pad_token_id = config.text_config.pad_token_id
self.decoder_start_token_id = config.text_config.bos_token_id
def get_input_embeddings(self) -> keras.layers.Layer:
return self.vision_model.embeddings.patch_embedding
# Adapted from transformers.models.t5.modeling_tf_t5.TFT5PreTrainedModel._shift_right
def _shift_right(self, input_ids):
decoder_start_token_id = self.decoder_start_token_id
pad_token_id = self.decoder_pad_token_id
if decoder_start_token_id is None or pad_token_id is None:
raise ValueError("decoder_start_token_id and pad_token_id must be defined!")
start_tokens = tf.fill((shape_list(input_ids)[0], 1), decoder_start_token_id)
start_tokens = tf.cast(start_tokens, input_ids.dtype) # Ensure compatible dtypes for concatenation
shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1)
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids = tf.where(
shifted_input_ids == -100,
tf.cast(tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids.dtype),
shifted_input_ids,
)
# "Verify that `labels` has only positive values and -100"
tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=shifted_input_ids.dtype))
return shifted_input_ids
@unpack_inputs
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFBlipTextVisionModelOutput, config_class=BlipVisionConfig)
def call(
self,
input_ids: tf.Tensor,
pixel_values: tf.Tensor | None = None,
decoder_input_ids: tf.Tensor | None = None,
decoder_attention_mask: tf.Tensor | None = None,
attention_mask: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: tf.Tensor | None = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = None,
) -> Union[Tuple, TFBlipTextVisionModelOutput]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, TFBlipForQuestionAnswering
>>> model = TFBlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> # training
>>> text = "How many cats are in the picture?"
>>> label = "2"
>>> inputs = processor(images=image, text=text, return_tensors="tf")
>>> labels = processor(text=label, return_tensors="tf").input_ids
>>> inputs["labels"] = labels
>>> outputs = model(**inputs)
>>> loss = outputs.loss
>>> # inference
>>> text = "How many cats are in the picture?"
>>> inputs = processor(images=image, text=text, return_tensors="tf")
>>> outputs = model.generate(**inputs)
>>> print(processor.decode(outputs[0], skip_special_tokens=True))
2
```"""
if labels is None and decoder_input_ids is None:
raise ValueError(
"Either `decoder_input_ids` or `labels` should be passed when calling"
" `TFBlipForQuestionAnswering`. if you are training the model make sure that `labels` is passed, if you"
" are using the model for inference make sure that `decoder_input_ids` is passed or call `generate`"
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
image_embeds = vision_outputs[0]
image_attention_mask = tf.ones(shape_list(image_embeds)[:-1], dtype=tf.int64)
question_embeds = self.text_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_attention_mask,
return_dict=return_dict,
training=training,
)
question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state
if labels is not None and decoder_input_ids is None:
# labels are already shifted right, see: https://github.com/huggingface/transformers/pull/23153
decoder_input_ids = labels
answer_output = self.text_decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=question_embeds,
encoder_attention_mask=attention_mask,
labels=labels,
return_dict=return_dict,
training=training,
)
if labels is not None:
decoder_loss = tf.reduce_mean(answer_output.loss) if return_dict else tf.reduce_mean(answer_output[0])
else:
decoder_loss = None
if not return_dict:
outputs = (decoder_loss, image_embeds, vision_outputs[0]) + vision_outputs[2:]
return tuple(output for output in outputs if output is not None)
return TFBlipTextVisionModelOutput(
loss=decoder_loss,
image_embeds=image_embeds,
last_hidden_state=vision_outputs.last_hidden_state,
hidden_states=vision_outputs.hidden_states,
attentions=vision_outputs.attentions,
)
def generate(
self,
input_ids: tf.Tensor,
pixel_values: tf.Tensor,
attention_mask: tf.Tensor | None = None,
**generate_kwargs,
) -> tf.Tensor:
r"""
Overrides *generate* function to be able to use the model as a conditional generator
Parameters:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
The sequence used as a prompt for the generation.
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, image_height, image_width)`:
Input image to be processed
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`. `1` for
tokens that are NOT MASKED, `0` for MASKED tokens.
generate_kwargs (dict, *optional*):
Additional arguments passed to the `generate` function of the decoder
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, TFBlipForQuestionAnswering
>>> model = TFBlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> text = "How many cats are in the picture?"
>>> inputs = processor(images=image, text=text, return_tensors="tf")
>>> outputs = model.generate(**inputs)
>>> print(processor.decode(outputs[0], skip_special_tokens=True))
2
```
"""
vision_outputs = self.vision_model(pixel_values=pixel_values)
image_embeds = vision_outputs[0]
image_attention_mask = tf.ones(shape_list(image_embeds)[:-1], dtype=tf.int32)
if isinstance(input_ids, list):
input_ids = tf.Tensor(input_ids)
question_outputs = self.text_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_attention_mask,
return_dict=False,
)
question_embeds = question_outputs[0]
question_attention_mask = tf.ones(shape_list(question_embeds)[:-1], dtype=tf.int32)
bos_ids = tf.fill(
(tf.shape(question_embeds)[0], 1), value=tf.cast(self.decoder_start_token_id, input_ids.dtype)
)
outputs = self.text_decoder.generate(
input_ids=bos_ids,
eos_token_id=self.config.text_config.sep_token_id,
pad_token_id=self.config.text_config.pad_token_id,
encoder_hidden_states=question_embeds,
encoder_attention_mask=question_attention_mask,
**generate_kwargs,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "vision_model", None) is not None:
with tf.name_scope(self.vision_model.name):
self.vision_model.build(None)
if getattr(self, "text_encoder", None) is not None:
with tf.name_scope(self.text_encoder.name):
self.text_encoder.build(None)
if getattr(self, "text_decoder", None) is not None:
with tf.name_scope(self.text_decoder.name):
self.text_decoder.build(None)
|
class_definition
| 54,154 | 64,270 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_tf_blip.py
| null | 6,144 |
class TFBlipForImageTextRetrieval(TFBlipPreTrainedModel):
config_class = BlipConfig
def __init__(self, config: BlipConfig, *args, **kwargs):
super().__init__(config, *args, **kwargs)
self.vision_model = TFBlipVisionModel(config.vision_config, name="vision_model")
self.text_encoder = TFBlipTextModel(config.text_config, name="text_encoder", add_pooling_layer=False)
# vision projection layer
self.vision_proj = keras.layers.Dense(
config.image_text_hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
name="vision_proj",
)
# text projection layer
self.text_proj = keras.layers.Dense(
config.image_text_hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
name="text_proj",
)
# image text matching head
self.itm_head = keras.layers.Dense(
2, kernel_initializer=get_initializer(config.initializer_range), name="itm_head"
)
self.decoder_pad_token_id = (
config.text_config.pad_token_id
if not hasattr(config, "decoder_pad_token_id")
else config.decoder_pad_token_id
)
self.decoder_start_token_id = (
config.text_config.bos_token_id
if not hasattr(config, "decoder_start_token_id")
else config.decoder_start_token_id
)
self.config = config
def get_input_embeddings(self) -> keras.layers.Layer:
return self.vision_model.embeddings.patch_embedding
@unpack_inputs
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFBlipImageTextMatchingModelOutput, config_class=BlipVisionConfig)
def call(
self,
input_ids: tf.Tensor,
pixel_values: tf.Tensor | None = None,
use_itm_head: Optional[bool] = True,
attention_mask: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = None,
) -> Union[Tuple, TFBlipImageTextMatchingModelOutput]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, TFBlipForImageTextRetrieval
>>> model = TFBlipForImageTextRetrieval.from_pretrained("Salesforce/blip-itm-base-coco")
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-itm-base-coco")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> text = "an image of a cat"
>>> inputs = processor(images=image, text=text, return_tensors="tf")
>>> outputs = model(**inputs)
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
image_embeds = vision_outputs[0]
image_atts = tf.ones(shape_list(image_embeds)[:-1], dtype=tf.int64)
# Matt: In PyTorch, only one path (itm/non-itm) is taken. However, in TensorFlow this can result in
# some layers not being built! To avoid this, we always call both paths, then use an if statement to select
# which output to pass to the final output. The unnecessary nodes will be pruned from the final graph, but
# not before the layers have all been built correctly.
itm_question_embeds = self.text_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=return_dict,
training=training,
)
itm_question_embeds = itm_question_embeds[0] if not return_dict else itm_question_embeds.last_hidden_state
itm_output = self.itm_head(itm_question_embeds[:, 0, :])
no_itm_question_embeds = self.text_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
return_dict=return_dict,
training=training,
)
no_itm_question_embeds = (
no_itm_question_embeds[0] if not return_dict else no_itm_question_embeds.last_hidden_state
)
image_feat, _ = tf.linalg.normalize(self.vision_proj(image_embeds[:, 0, :]), ord=2, axis=-1)
text_feat, _ = tf.linalg.normalize(self.text_proj(no_itm_question_embeds[:, 0, :]), ord=2, axis=-1)
no_itm_output = tf.matmul(image_feat, text_feat, transpose_b=True)
if use_itm_head:
output = itm_output
question_embeds = itm_question_embeds
else:
output = no_itm_output
question_embeds = no_itm_question_embeds
if not return_dict:
outputs = (output, vision_outputs[0]) + vision_outputs[2:] + (question_embeds,)
return tuple(output for output in outputs if output is not None)
return TFBlipImageTextMatchingModelOutput(
itm_score=output,
last_hidden_state=vision_outputs.last_hidden_state,
hidden_states=vision_outputs.hidden_states,
attentions=vision_outputs.attentions,
question_embeds=question_embeds,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "vision_model", None) is not None:
with tf.name_scope(self.vision_model.name):
self.vision_model.build(None)
if getattr(self, "text_encoder", None) is not None:
with tf.name_scope(self.text_encoder.name):
self.text_encoder.build(None)
if getattr(self, "vision_proj", None) is not None:
with tf.name_scope(self.vision_proj.name):
self.vision_proj.build([None, None, self.config.vision_config.hidden_size])
if getattr(self, "text_proj", None) is not None:
with tf.name_scope(self.text_proj.name):
self.text_proj.build([None, None, self.config.text_config.hidden_size])
if getattr(self, "itm_head", None) is not None:
with tf.name_scope(self.itm_head.name):
self.itm_head.build([None, None, self.config.text_config.hidden_size])
|
class_definition
| 64,592 | 71,311 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_tf_blip.py
| null | 6,145 |
class BlipTextEmbeddings(nn.Module):
"""Construct the embeddings from word and position embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.config = config
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values_length: int = 0,
) -> torch.Tensor:
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
embeddings = inputs_embeds
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
|
class_definition
| 1,422 | 3,488 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_blip_text.py
| null | 6,146 |
class BlipTextSelfAttention(nn.Module):
def __init__(self, config, is_cross_attention):
super().__init__()
self.config = config
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention heads (%d)"
% (config.hidden_size, config.num_attention_heads)
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
if is_cross_attention:
self.key = nn.Linear(config.encoder_hidden_size, self.all_head_size)
self.value = nn.Linear(config.encoder_hidden_size, self.all_head_size)
else:
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
def save_attn_gradients(self, attn_gradients):
self.attn_gradients = attn_gradients
def get_attn_gradients(self):
return self.attn_gradients
def save_attention_map(self, attention_map):
self.attention_map = attention_map
def get_attention_map(self):
return self.attention_map
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
seq_length = hidden_states.size()[1]
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BlipTextModel forward() function)
attention_scores = attention_scores + attention_mask.to(attention_scores.device)
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs_dropped = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs_dropped = attention_probs_dropped * head_mask
context_layer = torch.matmul(attention_probs_dropped, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
outputs = outputs + (past_key_value,)
return outputs
|
class_definition
| 3,569 | 10,159 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_blip_text.py
| null | 6,147 |
class BlipTextSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
|
class_definition
| 10,252 | 10,862 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_blip_text.py
| null | 6,148 |
class BlipTextAttention(nn.Module):
def __init__(self, config, is_cross_attention=False):
super().__init__()
self.self = BlipTextSelfAttention(config, is_cross_attention)
self.output = BlipTextSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
|
class_definition
| 10,943 | 12,983 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_blip_text.py
| null | 6,149 |
class BlipTextIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
|
class_definition
| 13,078 | 13,647 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_blip_text.py
| null | 6,150 |
class BlipTextOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
|
class_definition
| 13,736 | 14,348 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_blip_text.py
| null | 6,151 |
class BlipTextLayer(nn.Module):
def __init__(self, config, layer_num):
super().__init__()
self.config = config
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = BlipTextAttention(config)
self.layer_num = layer_num
if self.config.is_decoder:
self.crossattention = BlipTextAttention(config, is_cross_attention=self.config.is_decoder)
self.intermediate = BlipTextIntermediate(config)
self.output = BlipTextOutput(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
if encoder_hidden_states is not None:
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
output_attentions=output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
|
class_definition
| 14,351 | 16,983 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_blip_text.py
| null | 6,152 |
class BlipTextEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([BlipTextLayer(config, i) for i in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.is_decoder else None
next_decoder_cache = () if use_cache else None
for i in range(self.config.num_hidden_layers):
layer_module = self.layer[i]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
|
class_definition
| 17,065 | 20,838 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_blip_text.py
| null | 6,153 |
class BlipTextPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
|
class_definition
| 20,925 | 21,488 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_blip_text.py
| null | 6,154 |
class BlipTextPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
|
class_definition
| 21,592 | 22,296 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_blip_text.py
| null | 6,155 |
class BlipTextLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = BlipTextPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def _tie_weights(self):
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
|
class_definition
| 22,393 | 23,233 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_blip_text.py
| null | 6,156 |
class BlipTextOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = BlipTextLMPredictionHead(config)
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
prediction_scores = self.predictions(sequence_output)
return prediction_scores
|
class_definition
| 23,325 | 23,647 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_blip_text.py
| null | 6,157 |
class BlipTextPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BlipTextConfig
base_model_prefix = "bert"
_no_split_modules = []
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
|
class_definition
| 23,729 | 24,626 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_blip_text.py
| null | 6,158 |
class BlipTextModel(BlipTextPreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. argument and `is_decoder` set to `True`; an
`encoder_hidden_states` is then expected as an input to the forward pass.
"""
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embeddings = BlipTextEmbeddings(config)
self.encoder = BlipTextEncoder(config)
self.pooler = BlipTextPooler(config) if add_pooling_layer else None
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
# Copied from transformers.models.bert.modeling_bert.BertModel._prune_heads
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
def get_extended_attention_mask(
self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool
) -> Tensor:
"""
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
Arguments:
attention_mask (`torch.Tensor`):
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
input_shape (`Tuple[int]`):
The shape of the input to the model.
device (`torch.device`):
The device of the input to the model.
Returns:
`torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
"""
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
if attention_mask.dim() == 3:
extended_attention_mask = attention_mask[:, None, :, :]
elif attention_mask.dim() == 2:
# Provided a padding mask of dimensions [batch_size, seq_length]
# - if the model is a decoder, apply a causal mask in addition to the padding mask
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
if is_decoder:
batch_size, seq_length = input_shape
seq_ids = torch.arange(seq_length, device=device)
causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
# in case past_key_values are used we need to add a prefix ones mask to the causal mask
# causal and attention masks must have same type with pytorch version < 1.3
causal_mask = causal_mask.to(attention_mask.dtype)
if causal_mask.shape[1] < attention_mask.shape[1]:
prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
causal_mask = torch.cat(
[
torch.ones(
(batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype
),
causal_mask,
],
axis=-1,
)
extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
else:
extended_attention_mask = attention_mask[:, None, None, :]
else:
raise ValueError(
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
input_shape, attention_mask.shape
)
)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
return extended_attention_mask
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
is_decoder: Optional[bool] = False,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
batch_size, seq_length = input_shape
device = input_ids.device
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size, seq_length = input_shape
device = inputs_embeds.device
elif encoder_embeds is not None:
input_shape = encoder_embeds.size()[:-1]
batch_size, seq_length = input_shape
device = encoder_embeds.device
else:
raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length))).to(device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
attention_mask, input_shape, device, is_decoder
)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if encoder_hidden_states is not None:
if isinstance(encoder_hidden_states, list):
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
else:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if isinstance(encoder_attention_mask, list):
encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
elif encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
if encoder_embeds is None:
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
else:
embedding_output = encoder_embeds
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
|
class_definition
| 24,744 | 36,998 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_blip_text.py
| null | 6,159 |
class BlipTextLMHeadModel(BlipTextPreTrainedModel, GenerationMixin):
def __init__(self, config):
super().__init__(config)
self.bert = BlipTextModel(config, add_pooling_layer=False)
self.cls = BlipTextOnlyMLMHead(config)
self.label_smoothing = config.label_smoothing
def get_input_embeddings(self):
return self.bert.get_input_embeddings()
def set_input_embeddings(self, new_embeddings):
self.bert.set_input_embeddings(new_embeddings)
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
self.cls.predictions.bias = new_embeddings.bias
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.Tensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
return_logits: Optional[bool] = False,
is_decoder: Optional[bool] = True,
reduction: Optional[str] = "mean",
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor`, *optional*): Sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is
configured as a decoder.
encoder_attention_mask (`torch.FloatTensor`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
labels (`torch.LongTensor`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
is_decoder=is_decoder,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
if return_logits:
return prediction_scores[:, :-1, :].contiguous()
lm_loss = None
if labels is not None:
# we are doing next-token prediction; shift prediction scores and input ids by one
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous().to(shifted_prediction_scores.device)
loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=self.label_smoothing)
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if reduction == "none":
lm_loss = lm_loss.view(prediction_scores.size(0), -1).sum(1)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=lm_loss,
logits=prediction_scores,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
# Overwrite -- hardcoded key return (`is_decoder=True`)
input_shape = input_ids.shape
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_shape)
# cut decoder_input_ids if past_key_values is used
if past_key_values is not None:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"past_key_values": past_key_values,
"encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
"encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
"is_decoder": True,
}
def _reorder_cache(self, past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
|
class_definition
| 37,080 | 44,174 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_blip_text.py
| null | 6,160 |
class BlipForConditionalGenerationModelOutput(ModelOutput):
"""
Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the
last hidden states. This class also adds the loss term from the text decoder.
Args:
loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Languge modeling loss from the text decoder.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`, *optional*):
Prediction scores of the language modeling head of the text decoder model.
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*):
The image embeddings obtained after applying the Vision Transformer model to the input image.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[Tuple[torch.FloatTensor]] = None
logits: Optional[Tuple[torch.FloatTensor]] = None
image_embeds: Optional[torch.FloatTensor] = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@property
def decoder_logits(self):
warnings.warn(
"`decoder_logits` attribute is deprecated and will be removed in version 5 of Transformers."
" Please use the `logits` attribute to retrieve the final output instead.",
FutureWarning,
)
return self.logits
|
class_definition
| 2,009 | 4,562 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_blip.py
| null | 6,161 |
class BlipTextVisionModelOutput(ModelOutput):
"""
Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the
last hidden states. This class also adds the loss term from the text decoder.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Languge modeling loss from the text decoder.
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The image embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
image_embeds: Optional[torch.FloatTensor] = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
class_definition
| 4,576 | 6,645 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_blip.py
| null | 6,162 |
class BlipImageTextMatchingModelOutput(ModelOutput):
"""
Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the
last hidden states. This class also adds the loss term from the text decoder as well as the image-text similarity
scores.
Args:
itm_score (`torch.FloatTensor`):
The image-text similarity scores.
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Languge modeling loss from the text decoder.
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The image embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
vision_pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*):
Last layer hidden-state of the vision of the vision-only branch of the model.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
question_embeds (`torch.FloatTensor`):
The question embeddings obtained by the text projection layer.
"""
itm_score: Optional[torch.FloatTensor] = None
loss: Optional[torch.FloatTensor] = None
image_embeds: Optional[torch.FloatTensor] = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
vision_pooler_output: Optional[torch.FloatTensor] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
question_embeds: Optional[Tuple[torch.FloatTensor]] = None
|
class_definition
| 6,659 | 9,357 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_blip.py
| null | 6,163 |
class BlipOutput(ModelOutput):
"""
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for image-text similarity.
logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
similarity scores.
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
similarity scores.
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
The text embeddings obtained by applying the projection layer to the pooled output of [`BlipTextModel`].
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
The image embeddings obtained by applying the projection layer to the pooled output of [`BlipVisionModel`].
text_model_output(`BaseModelOutputWithPooling`):
The output of the [`BlipTextModel`].
vision_model_output(`BaseModelOutputWithPooling`):
The output of the [`BlipVisionModel`].
"""
loss: Optional[torch.FloatTensor] = None
logits_per_image: torch.FloatTensor = None
logits_per_text: torch.FloatTensor = None
text_embeds: torch.FloatTensor = None
image_embeds: torch.FloatTensor = None
text_model_output: BaseModelOutputWithPooling = None
vision_model_output: BaseModelOutputWithPooling = None
def to_tuple(self) -> Tuple[Any]:
return tuple(
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
for k in self.keys()
)
|
class_definition
| 9,371 | 11,229 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_blip.py
| null | 6,164 |
class BlipVisionEmbeddings(nn.Module):
def __init__(self, config: BlipVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.class_embedding = nn.Parameter(torch.randn(1, 1, self.embed_dim))
self.patch_embedding = nn.Conv2d(
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
images. This method is also adapted to support torch.jit tracing.
Adapted from:
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
- https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
"""
num_patches = embeddings.shape[1] - 1
num_positions = self.position_embedding.shape[1] - 1
# always interpolate when tracing to ensure the exported model works for dynamic input shapes
if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
return self.position_embedding
class_pos_embed = self.position_embedding[:, :1]
patch_pos_embed = self.position_embedding[:, 1:]
dim = embeddings.shape[-1]
new_height = height // self.patch_size
new_width = width // self.patch_size
sqrt_num_positions = torch_int(num_positions**0.5)
patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed,
size=(new_height, new_width),
mode="bicubic",
align_corners=False,
)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed, patch_pos_embed), dim=1)
def forward(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding: bool = False) -> torch.Tensor:
batch_size, _, height, width = pixel_values.shape
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
if interpolate_pos_encoding:
position_embedding = self.interpolate_pos_encoding(embeddings, height, width)
else:
position_embedding = self.position_embedding
embeddings = embeddings + position_embedding[:, : embeddings.size(1), :].to(target_dtype)
return embeddings
|
class_definition
| 11,232 | 14,642 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_blip.py
| null | 6,165 |
class BlipTextEmbeddings(nn.Module):
def __init__(self, config: BlipTextConfig):
super().__init__()
embed_dim = config.hidden_size
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
) -> torch.Tensor:
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
max_position_embedding = self.position_embedding.weight.shape[0]
if seq_length > max_position_embedding:
raise ValueError(
f"Sequence length must be less than max_position_embeddings (got `sequence length`: "
f"{seq_length} and max_position_embeddings: {max_position_embedding}"
)
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if inputs_embeds is None:
inputs_embeds = self.token_embedding(input_ids)
position_embeddings = self.position_embedding(position_ids)
embeddings = inputs_embeds + position_embeddings
return embeddings
|
class_definition
| 14,733 | 16,311 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_blip.py
| null | 6,166 |
class BlipAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = nn.Dropout(config.attention_dropout)
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim)
self.projection = nn.Linear(self.embed_dim, self.embed_dim)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
bsz, tgt_len, embed_dim = hidden_states.size()
mixed_qkv = (
self.qkv(hidden_states)
.reshape(bsz, tgt_len, 3, self.num_heads, embed_dim // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
query_states, key_states, value_states = mixed_qkv[0], mixed_qkv[1], mixed_qkv[2]
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
attention_scores = attention_scores * self.scale
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3)
new_context_layer_shape = context_layer.size()[:-2] + (self.embed_dim,)
context_layer = context_layer.reshape(new_context_layer_shape)
output = self.projection(context_layer)
outputs = (output, attention_probs) if output_attentions else (output, None)
return outputs
|
class_definition
| 16,314 | 19,072 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_blip.py
| null | 6,167 |
class BlipMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
|
class_definition
| 19,152 | 19,722 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_blip.py
| null | 6,168 |
class BlipEncoderLayer(nn.Module):
def __init__(self, config: BlipConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = BlipAttention(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = BlipMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
head_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = hidden_states + residual
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = hidden_states + residual
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
|
class_definition
| 19,725 | 21,563 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_blip.py
| null | 6,169 |
class BlipPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BlipConfig
base_model_prefix = "blip"
supports_gradient_checkpointing = True
_no_split_modules = ["BlipEncoderLayer", "BlipTextEmbeddings"]
_skip_keys_device_placement = ["past_key_value"]
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_range
if isinstance(module, nn.Conv2d) or isinstance(module, nn.Embedding) or isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=factor)
if hasattr(module, "bias") and module.bias is not None:
module.bias.data.zero_()
if isinstance(module, BlipVisionEmbeddings):
if hasattr(self.config, "vision_config"):
factor = self.config.vision_config.initializer_range
nn.init.trunc_normal_(
module.position_embedding,
mean=0.0,
std=factor,
)
nn.init.trunc_normal_(
module.class_embedding,
mean=0.0,
std=factor,
)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
|
class_definition
| 21,566 | 23,085 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_blip.py
| null | 6,170 |
class BlipEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`BlipEncoderLayer`].
Args:
config (`BlipConfig`):
The corresponding vision configuration for the `BlipEncoder`.
"""
def __init__(self, config: BlipConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList([BlipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Embedded representation of the inputs. Should be float, not int tokens.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
|
class_definition
| 28,822 | 32,553 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_blip.py
| null | 6,171 |
class BlipVisionModel(BlipPreTrainedModel):
main_input_name = "pixel_values"
config_class = BlipVisionConfig
def __init__(self, config: BlipVisionConfig):
super().__init__(config)
self.config = config
embed_dim = config.hidden_size
self.embeddings = BlipVisionEmbeddings(config)
self.encoder = BlipEncoder(config)
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.post_init()
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=BlipVisionConfig)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
last_hidden_state = self.post_layernorm(last_hidden_state)
pooled_output = last_hidden_state[:, 0, :]
pooled_output = self.post_layernorm(pooled_output)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def get_input_embeddings(self):
return self.embeddings
|
class_definition
| 32,556 | 35,031 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_blip.py
| null | 6,172 |
class BlipModel(BlipPreTrainedModel):
config_class = BlipConfig
def __init__(self, config: BlipConfig):
super().__init__(config)
if not isinstance(config.text_config, BlipTextConfig):
raise TypeError(
"config.text_config is expected to be of type BlipTextConfig but is of type"
f" {type(config.text_config)}."
)
if not isinstance(config.vision_config, BlipVisionConfig):
raise TypeError(
"config.vision_config is expected to be of type BlipVisionConfig but is of type"
f" {type(config.vision_config)}."
)
text_config = config.text_config
vision_config = config.vision_config
self.projection_dim = config.projection_dim
self.text_embed_dim = text_config.hidden_size
self.vision_embed_dim = vision_config.hidden_size
self.text_model = BlipTextModel(text_config)
self.vision_model = BlipVisionModel(vision_config)
self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
logger.warning(
"`BlipModel` is going to be deprecated in future release, please use `BlipForConditionalGeneration`, `BlipForQuestionAnswering` or `BlipForImageTextRetrieval` depending on your usecase."
)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.text_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.text_model.set_input_embeddings(value)
@add_start_docstrings_to_model_forward(BLIP_TEXT_INPUTS_DOCSTRING)
def get_text_features(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
applying the projection layer to the pooled output of [`BlipTextModel`].
Examples:
```python
>>> from transformers import AutoProcessor, BlipModel
>>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base")
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
>>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
>>> text_features = model.get_text_features(**inputs)
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
return_dict=return_dict,
)
pooled_output = text_outputs[1]
text_features = self.text_projection(pooled_output)
return text_features
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
def get_image_features(
self,
pixel_values: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
) -> torch.FloatTensor:
r"""
Returns:
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
applying the projection layer to the pooled output of [`BlipVisionModel`].
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, BlipModel
>>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base")
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> image_features = model.get_image_features(**inputs)
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
return_dict=return_dict,
interpolate_pos_encoding=interpolate_pos_encoding,
)
pooled_output = vision_outputs[1] # pooled_output
image_features = self.visual_projection(pooled_output)
return image_features
@add_start_docstrings_to_model_forward(BLIP_INPUTS_DOCSTRING)
def get_multimodal_features(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
) -> torch.FloatTensor:
r"""
Returns:
multimodal_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The multimodal embeddings
obtained by applying the image embeddings to the text encoder using the cross-attention mechanism.
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, BlipModel
>>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base")
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> texts = ["a photo of a cat", "a photo of a dog"]
>>> inputs = processor(images=image, text=texts, padding=True, return_tensors="pt")
>>> multimodal_features = model.get_multimodal_features(**inputs)
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=True,
output_hidden_states=True,
return_dict=return_dict,
interpolate_pos_encoding=interpolate_pos_encoding,
)
image_embeds = vision_outputs[0]
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long)
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=return_dict,
)
pooled_output = text_outputs[1] # pooled_output
multimodal_features = self.text_projection(pooled_output)
return multimodal_features
@add_start_docstrings_to_model_forward(BLIP_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BlipOutput, config_class=BlipConfig)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
return_loss: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
) -> Union[Tuple, BlipOutput]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, BlipModel
>>> model = BlipModel.from_pretrained("Salesforce/blip-image-captioning-base")
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
... )
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
```"""
# Use BLIP model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
interpolate_pos_encoding=interpolate_pos_encoding,
)
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
image_embeds = vision_outputs[1]
image_embeds = self.visual_projection(image_embeds)
text_embeds = text_outputs[1]
text_embeds = self.text_projection(text_embeds)
# normalized features
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
# cosine similarity as logits
logit_scale = self.logit_scale.exp().to(device=text_embeds.device)
image_embeds = image_embeds.to(device=text_embeds.device, dtype=text_embeds.dtype)
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
logits_per_image = logits_per_text.t()
loss = None
if return_loss:
loss = blip_loss(logits_per_text)
if not return_dict:
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
return ((loss,) + output) if loss is not None else output
return BlipOutput(
loss=loss,
logits_per_image=logits_per_image,
logits_per_text=logits_per_text,
text_embeds=text_embeds,
image_embeds=image_embeds,
text_model_output=text_outputs,
vision_model_output=vision_outputs,
)
|
class_definition
| 35,291 | 46,505 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_blip.py
| null | 6,173 |
class BlipForConditionalGeneration(BlipPreTrainedModel, GenerationMixin):
config_class = BlipConfig
_tied_weights_keys = ["text_decoder.cls.predictions.decoder.bias"]
main_input_name = "pixel_values"
def __init__(self, config: BlipConfig):
super().__init__(config)
self.vision_model = BlipVisionModel(config.vision_config)
self.text_decoder = BlipTextLMHeadModel(config.text_config)
self.decoder_input_ids = config.text_config.bos_token_id
self.decoder_pad_token_id = config.text_config.pad_token_id
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.text_decoder.get_input_embeddings()
def set_input_embeddings(self, value):
self.text_decoder.set_input_embeddings(value)
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BlipForConditionalGenerationModelOutput, config_class=BlipVisionConfig)
def forward(
self,
pixel_values: torch.FloatTensor,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.LongTensor] = None,
return_dict: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
) -> Union[Tuple, BlipForConditionalGenerationModelOutput]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, BlipForConditionalGeneration
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
>>> model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> text = "A picture of"
>>> inputs = processor(images=image, text=text, return_tensors="pt")
>>> outputs = model(**inputs)
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
interpolate_pos_encoding=interpolate_pos_encoding,
)
image_embeds = vision_outputs[0]
outputs = self.text_decoder(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=image_embeds,
labels=labels,
return_dict=return_dict,
reduction="mean",
)
if not return_dict:
outputs = (outputs[0], outputs[1]) if labels is not None else (outputs[0],)
outputs += (image_embeds, vision_outputs[0]) + vision_outputs[2:]
return tuple(output for output in outputs if output is not None)
return BlipForConditionalGenerationModelOutput(
loss=outputs.loss,
logits=outputs.logits,
image_embeds=image_embeds,
last_hidden_state=vision_outputs.last_hidden_state,
hidden_states=vision_outputs.hidden_states,
attentions=vision_outputs.attentions,
)
@torch.no_grad()
def generate(
self,
pixel_values: torch.FloatTensor,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
interpolate_pos_encoding: bool = False,
**generate_kwargs,
) -> torch.LongTensor:
r"""
Overrides *generate* function to be able to use the model as a conditional generator
Parameters:
pixel_values (*torch.FloatTensor* of shape *(batch_size, num_channels, image_height, image_width)*:
Input image to be processed
input_ids (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*):
The sequence used as a prompt for the generation.
attention_mask (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, BlipForConditionalGeneration
>>> model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> outputs = model.generate(**inputs)
>>> print(processor.decode(outputs[0], skip_special_tokens=True))
two cats sleeping on a couch
```
"""
batch_size = pixel_values.shape[0]
vision_outputs = self.vision_model(
pixel_values=pixel_values,
interpolate_pos_encoding=interpolate_pos_encoding,
)
image_embeds = vision_outputs[0]
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image_embeds.device)
if isinstance(input_ids, list):
input_ids = torch.LongTensor(input_ids)
elif input_ids is None:
input_ids = (
torch.LongTensor([[self.decoder_input_ids, self.config.text_config.eos_token_id]])
.repeat(batch_size, 1)
.to(image_embeds.device)
)
input_ids[:, 0] = self.config.text_config.bos_token_id
attention_mask = attention_mask[:, :-1] if attention_mask is not None else None
outputs = self.text_decoder.generate(
input_ids=input_ids[:, :-1],
eos_token_id=self.config.text_config.sep_token_id,
pad_token_id=self.config.text_config.pad_token_id,
attention_mask=attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_attention_mask,
**generate_kwargs,
)
return outputs
|
class_definition
| 47,037 | 53,875 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_blip.py
| null | 6,174 |
class BlipForQuestionAnswering(BlipPreTrainedModel):
config_class = BlipConfig
_tied_weights_keys = ["text_decoder.cls.predictions.decoder.bias"]
def __init__(self, config: BlipConfig):
super().__init__(config)
self.vision_model = BlipVisionModel(config.vision_config)
self.text_encoder = BlipTextModel(config.text_config, add_pooling_layer=False)
self.text_decoder = BlipTextLMHeadModel(config.text_config)
self.decoder_pad_token_id = config.text_config.pad_token_id
self.decoder_start_token_id = config.text_config.bos_token_id
# Initialize weights and apply final processing
self.post_init()
def set_input_embeddings(self, value):
self.text_encoder.set_input_embeddings(value)
def get_input_embeddings(self):
# This will return shared embeddings if they are shared else specific to encoder.
return self.text_encoder.get_input_embeddings()
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BlipTextVisionModelOutput, config_class=BlipVisionConfig)
def forward(
self,
input_ids: torch.LongTensor,
pixel_values: torch.FloatTensor,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.LongTensor] = None,
return_dict: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
) -> Union[Tuple, BlipTextVisionModelOutput]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, BlipForQuestionAnswering
>>> model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> # training
>>> text = "How many cats are in the picture?"
>>> label = "2"
>>> inputs = processor(images=image, text=text, return_tensors="pt")
>>> labels = processor(text=label, return_tensors="pt").input_ids
>>> inputs["labels"] = labels
>>> outputs = model(**inputs)
>>> loss = outputs.loss
>>> loss.backward()
>>> # inference
>>> text = "How many cats are in the picture?"
>>> inputs = processor(images=image, text=text, return_tensors="pt")
>>> outputs = model.generate(**inputs)
>>> print(processor.decode(outputs[0], skip_special_tokens=True))
2
```"""
if labels is None and decoder_input_ids is None:
raise ValueError(
"Either `decoder_input_ids` or `labels` should be passed when calling `forward` with"
" `BlipForQuestionAnswering`. if you are training the model make sure that `labels` is passed, if you"
" are using the model for inference make sure that `decoder_input_ids` is passed or call `generate`"
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
interpolate_pos_encoding=interpolate_pos_encoding,
)
image_embeds = vision_outputs[0]
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long)
question_embeds = self.text_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_attention_mask,
return_dict=return_dict,
)
if labels is not None and decoder_input_ids is None:
# labels are already shifted right, see: https://github.com/huggingface/transformers/pull/23153
decoder_input_ids = labels
question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state
answer_output = self.text_decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=question_embeds,
encoder_attention_mask=attention_mask,
labels=labels,
return_dict=return_dict,
reduction="mean",
)
if labels is not None:
decoder_loss = answer_output.loss.mean() if return_dict else answer_output[0].mean()
else:
decoder_loss = None
if not return_dict:
outputs = (decoder_loss, image_embeds, vision_outputs[0]) + vision_outputs[2:]
return tuple(output for output in outputs if output is not None)
return BlipTextVisionModelOutput(
loss=decoder_loss,
image_embeds=image_embeds,
last_hidden_state=vision_outputs.last_hidden_state,
hidden_states=vision_outputs.hidden_states,
attentions=vision_outputs.attentions,
)
@torch.no_grad()
def generate(
self,
input_ids: torch.LongTensor,
pixel_values: torch.FloatTensor,
attention_mask: Optional[torch.LongTensor] = None,
interpolate_pos_encoding: bool = False,
**generate_kwargs,
) -> torch.LongTensor:
r"""
Overrides *generate* function to be able to use the model as a conditional generator
Parameters:
input_ids (*torch.LongTensor* of shape *(batch_size, sequence_length)*):
The sequence used as a prompt for the generation.
pixel_values (*torch.FloatTensor* of shape *(batch_size, num_channels, image_height, image_width)*:
Input image to be processed
attention_mask (*torch.LongTensor* of shape *(batch_size, sequence_length)*, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`. `1` for
tokens that are NOT MASKED, `0` for MASKED tokens.
**generate_kwargs:
Additional arguments passed to the *generate* function of the decoder
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, BlipForQuestionAnswering
>>> model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> text = "How many cats are in the picture?"
>>> inputs = processor(images=image, text=text, return_tensors="pt")
>>> outputs = model.generate(**inputs)
>>> print(processor.decode(outputs[0], skip_special_tokens=True))
2
```
"""
vision_outputs = self.vision_model(
pixel_values=pixel_values,
interpolate_pos_encoding=interpolate_pos_encoding,
)
image_embeds = vision_outputs[0]
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image_embeds.device)
if isinstance(input_ids, list):
input_ids = torch.LongTensor(input_ids)
question_outputs = self.text_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_attention_mask,
return_dict=False,
)
question_embeds = question_outputs[0]
question_attention_mask = torch.ones(question_embeds.size()[:-1], dtype=torch.long).to(question_embeds.device)
bos_ids = torch.full(
(question_embeds.size(0), 1), fill_value=self.decoder_start_token_id, device=question_embeds.device
)
outputs = self.text_decoder.generate(
input_ids=bos_ids,
eos_token_id=self.config.text_config.sep_token_id,
pad_token_id=self.config.text_config.pad_token_id,
encoder_hidden_states=question_embeds,
encoder_attention_mask=question_attention_mask,
**generate_kwargs,
)
return outputs
|
class_definition
| 54,280 | 63,323 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_blip.py
| null | 6,175 |
class BlipForImageTextRetrieval(BlipPreTrainedModel):
config_class = BlipConfig
def __init__(self, config: BlipConfig):
super().__init__(config)
self.vision_model = BlipVisionModel(config.vision_config)
self.text_encoder = BlipTextModel(config.text_config, add_pooling_layer=False)
# vision projection layer
self.vision_proj = nn.Linear(config.vision_config.hidden_size, config.image_text_hidden_size)
# text projection layer
self.text_proj = nn.Linear(config.text_config.hidden_size, config.image_text_hidden_size)
# image text matching head
self.itm_head = nn.Linear(config.text_config.hidden_size, 2)
self.decoder_pad_token_id = (
config.text_config.pad_token_id
if not hasattr(config, "decoder_pad_token_id")
else config.decoder_pad_token_id
)
self.decoder_start_token_id = (
config.text_config.bos_token_id
if not hasattr(config, "decoder_start_token_id")
else config.decoder_start_token_id
)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.text_encoder.get_input_embeddings()
def set_input_embeddings(self, value):
self.text_encoder.set_input_embeddings(value)
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BlipTextVisionModelOutput, config_class=BlipVisionConfig)
def forward(
self,
input_ids: torch.LongTensor,
pixel_values: torch.FloatTensor,
use_itm_head: Optional[bool] = True,
attention_mask: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
) -> Union[Tuple, BlipTextVisionModelOutput]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, BlipForImageTextRetrieval
>>> model = BlipForImageTextRetrieval.from_pretrained("Salesforce/blip-itm-base-coco")
>>> processor = AutoProcessor.from_pretrained("Salesforce/blip-itm-base-coco")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> text = "an image of a cat"
>>> inputs = processor(images=image, text=text, return_tensors="pt")
>>> outputs = model(**inputs)
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
interpolate_pos_encoding=interpolate_pos_encoding,
)
image_embeds = vision_outputs[0]
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long)
if use_itm_head:
question_embeds = self.text_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=return_dict,
)
question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state
output = self.itm_head(question_embeds[:, 0, :])
else:
question_embeds = self.text_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
return_dict=return_dict,
)
question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state
image_feat = normalize(self.vision_proj(image_embeds[:, 0, :]), dim=-1)
text_feat = normalize(self.text_proj(question_embeds[:, 0, :]), dim=-1)
output = image_feat @ text_feat.t()
if not return_dict:
outputs = (output, vision_outputs[0]) + vision_outputs[2:] + (question_embeds,)
return tuple(output for output in outputs if output is not None)
return BlipImageTextMatchingModelOutput(
itm_score=output,
last_hidden_state=vision_outputs.last_hidden_state,
hidden_states=vision_outputs.hidden_states,
attentions=vision_outputs.attentions,
question_embeds=question_embeds,
)
|
class_definition
| 63,645 | 68,642 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/blip/modeling_blip.py
| null | 6,176 |
class RetrievAugLMMarginOutput(ModelOutput):
"""
Base class for retriever augmented marginalized models outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head. The score is possibly marginalized over all documents for
each vocabulary token.
doc_scores (`torch.FloatTensor` of shape `(batch_size, config.n_docs)`):
Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
`question_encoder_last_hidden_state`.
past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size,
num_heads, sequence_length, embed_size_per_head)`).
Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used
(see `past_key_values` input) to speed up sequential decoding.
retrieved_doc_embeds (`torch.FloatTensor` of shape `(batch_size, config.n_docs, hidden_size)`, *optional*, returned when *output_retrieved=True*):
Embedded documents retrieved by the retriever. Is used with `question_encoder_last_hidden_state` to compute
the `doc_scores`.
retrieved_doc_ids (`torch.LongTensor` of shape `(batch_size, config.n_docs)`, *optional*, returned when *output_retrieved=True*):
The indexes of the embedded documents retrieved by the retriever.
context_input_ids (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever.
context_attention_mask (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the
retriever.
question_encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden states at the output of the last layer of the question encoder pooled output of the
model.
question_enc_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden states of the question encoder at the output of each layer plus the initial embedding outputs.
question_enc_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the question encoder, after the attention softmax, used to compute the weighted
average in the self-attention heads.
generator_enc_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the generator encoder of the model.
generator_enc_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs.
generator_enc_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted
average in the self-attention heads.
generator_dec_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs.
generator_dec_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted
average in the self-attention heads.
generator_cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Cross-attentions weights of the generator decoder, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
doc_scores: torch.FloatTensor = None
past_key_values: Optional[List[torch.FloatTensor]] = None
retrieved_doc_embeds: Optional[torch.FloatTensor] = None
retrieved_doc_ids: Optional[torch.LongTensor] = None
context_input_ids: Optional[torch.LongTensor] = None
context_attention_mask: Optional[torch.LongTensor] = None
question_encoder_last_hidden_state: Optional[torch.FloatTensor] = None
question_enc_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
question_enc_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
generator_enc_last_hidden_state: Optional[torch.FloatTensor] = None
generator_enc_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
generator_enc_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
generator_dec_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
generator_dec_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
generator_cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
class_definition
| 1,305 | 8,630 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rag/modeling_rag.py
| null | 6,177 |
class RetrievAugLMOutput(ModelOutput):
"""
Args:
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head. The score is possibly marginalized over all documents for
each vocabulary token.
doc_scores (`torch.FloatTensor` of shape `(batch_size, config.n_docs)`):
Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
`question_encoder_last_hidden_state`.
past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size,
num_heads, sequence_length, embed_size_per_head)`).
Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used
(see `past_key_values` input) to speed up sequential decoding.
retrieved_doc_embeds (`torch.FloatTensor` of shape `(batch_size, config.n_docs, hidden_size)`, *optional*, returned when *output_retrieved=True*):
Embedded documents retrieved by the retriever. Is used with `question_encoder_last_hidden_state` to compute
the `doc_scores`.
retrieved_doc_ids (`torch.LongTensor` of shape `(batch_size, config.n_docs)`, *optional*, returned when *output_retrieved=True*):
The indexes of the embedded documents retrieved by the retriever.
context_input_ids (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever.
context_attention_mask (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the
retriever.
question_encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden states at the output of the last layer of the question encoder pooled output of the
model.
question_enc_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden states of the question encoder at the output of each layer plus the initial embedding outputs.
question_enc_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the question encoder, after the attention softmax, used to compute the weighted
average in the self-attention heads.
generator_enc_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the generator encoder of the model.
generator_enc_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs.
generator_enc_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted
average in the self-attention heads.
generator_dec_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs.
generator_dec_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted
average in the self-attention heads.
generator_cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Cross-attentions weights of the generator decoder, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
"""
logits: torch.FloatTensor = None
doc_scores: torch.FloatTensor = None
past_key_values: Optional[List[torch.FloatTensor]] = None
retrieved_doc_embeds: Optional[torch.FloatTensor] = None
retrieved_doc_ids: Optional[torch.LongTensor] = None
context_input_ids: Optional[torch.LongTensor] = None
context_attention_mask: Optional[torch.LongTensor] = None
question_encoder_last_hidden_state: Optional[torch.FloatTensor] = None
question_enc_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
question_enc_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
generator_enc_last_hidden_state: Optional[torch.FloatTensor] = None
generator_enc_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
generator_enc_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
generator_dec_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
generator_dec_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
generator_cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
class_definition
| 8,644 | 15,713 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rag/modeling_rag.py
| null | 6,178 |
class RagPreTrainedModel(PreTrainedModel):
r"""
RAG models were released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP
Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandra Piktus et al.
RAG is a retriever augmented model and encapsulate three components: a question encoder, a dataset retriever and a
generator, the encoder and generator are trainable while the retriever is just an indexed dataset.
"""
config_class = RagConfig
base_model_prefix = "rag"
_supports_flash_attn_2 = True
_supports_sdpa = True
@classmethod
def from_pretrained(cls, *args, **kwargs):
# At the moment fast initialization is not supported
# for composite models
kwargs["_fast_init"] = False
return super().from_pretrained(*args, **kwargs)
@classmethod
def from_pretrained_question_encoder_generator(
cls,
question_encoder_pretrained_model_name_or_path: str = None,
generator_pretrained_model_name_or_path: str = None,
retriever: RagRetriever = None,
**kwargs,
) -> PreTrainedModel:
r"""
Instantiates an question encoder and a generator from one or two base classes of the library from pretrained
model checkpoints.
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
the model, you need to first set it back in training mode with `model.train()`.
Params:
question_encoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`):
Information necessary to initiate the question encoder. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
this case, `from_tf` should be set to `True` and a configuration object should be provided as
`config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
generator_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`):
Information necessary to initiate the generator. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
this case, `from_tf` should be set to `True` and a configuration object should be provided as
`config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
model_args (remaining positional arguments, *optional*):
All remaining positional arguments will be passed to the underlying model's `__init__` method.
retriever ([`RagRetriever`], *optional*):
The retriever to use.
kwwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
`output_attentions=True`).
- To update the question_encoder configuration, use the prefix *question_encoder_* for each
configuration parameter.
- To update the generator configuration, use the prefix *generator_* for each configuration parameter.
- To update the parent model configuration, do not use a prefix for each configuration parameter.
Behaves differently depending on whether a `config` is provided or automatically loaded.
Example:
```python
>>> from transformers import RagModel
>>> # initialize a RAG from two pretrained models.
>>> model = RagModel.from_pretrained_question_encoder_generator(
... "facebook/dpr-question_encoder-single-nq-base", "google-t5/t5-small"
... )
>>> # saving model after fine-tuning
>>> model.save_pretrained("./rag")
>>> # load fine-tuned model
>>> model = RagModel.from_pretrained("./rag")
```"""
kwargs_question_encoder = {
argument[len("question_encoder_") :]: value
for argument, value in kwargs.items()
if argument.startswith("question_encoder_")
}
kwargs_generator = {
argument[len("generator_") :]: value
for argument, value in kwargs.items()
if argument.startswith("generator_")
}
# remove question_encoder, generator kwargs from kwargs
for key in kwargs_question_encoder.keys():
del kwargs["question_encoder_" + key]
for key in kwargs_generator.keys():
del kwargs["generator_" + key]
# Load and initialize the question_encoder and generator
# The distinction between question_encoder and generator at the model level is made
# by the value of the flag `is_generator` that we need to set correctly.
question_encoder = kwargs_question_encoder.pop("model", None)
if question_encoder is None:
assert question_encoder_pretrained_model_name_or_path is not None, (
"If `model` is not defined as an argument, a `question_encoder_pretrained_model_name_or_path` has to"
" be defined"
)
from ..auto.modeling_auto import AutoModel
if "config" not in kwargs_question_encoder:
from ..auto.configuration_auto import AutoConfig
question_encoder_config, kwargs_question_encoder = AutoConfig.from_pretrained(
question_encoder_pretrained_model_name_or_path,
**kwargs_question_encoder,
return_unused_kwargs=True,
)
kwargs_question_encoder["config"] = question_encoder_config
question_encoder = AutoModel.from_pretrained(
question_encoder_pretrained_model_name_or_path, **kwargs_question_encoder
)
generator = kwargs_generator.pop("model", None)
if generator is None:
assert generator_pretrained_model_name_or_path is not None, (
"If `generator_model` is not defined as an argument, a `generator_pretrained_model_name_or_path` has"
" to be defined"
)
from ..auto.modeling_auto import AutoModelForSeq2SeqLM
if "config" not in kwargs_generator:
from ..auto.configuration_auto import AutoConfig
generator_config, kwargs_generator = AutoConfig.from_pretrained(
generator_pretrained_model_name_or_path, **kwargs_generator, return_unused_kwargs=True
)
kwargs_generator["config"] = generator_config
generator = AutoModelForSeq2SeqLM.from_pretrained(
generator_pretrained_model_name_or_path, **kwargs_generator
)
# instantiate config with corresponding kwargs
config = kwargs.get("config", None)
if config is None:
config = RagConfig.from_question_encoder_generator_configs(
question_encoder.config, generator.config, **kwargs
)
return cls(question_encoder=question_encoder, generator=generator, config=config, retriever=retriever)
|
class_definition
| 15,716 | 23,889 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rag/modeling_rag.py
| null | 6,179 |
class RagModel(RagPreTrainedModel):
def __init__(
self,
config: Optional[PretrainedConfig] = None,
question_encoder: Optional[PreTrainedModel] = None,
generator: Optional[PreTrainedModel] = None,
retriever: Optional[RagRetriever] = None, # or maybe just use a `set_retriever(...)` method
**kwargs,
):
assert config is not None or (
question_encoder is not None and generator is not None
), "Either a configuration or an question_encoder and a generator has to be provided."
if config is None:
config = RagConfig.from_question_encoder_generator_configs(
question_encoder.config, generator.config, **kwargs
)
else:
assert isinstance(config, self.config_class), f"config: {config} has to be of type {self.config_class}"
super().__init__(config)
if question_encoder is None:
from ..auto.modeling_auto import AutoModel
question_encoder = AutoModel.from_config(config.question_encoder)
if generator is None:
from ..auto.modeling_auto import AutoModelForSeq2SeqLM
generator = AutoModelForSeq2SeqLM.from_config(config.generator)
self.retriever = retriever
if self.retriever is not None:
assert isinstance(
retriever, RagRetriever
), f"`self.retriever` is of type {type(self.retriever)}, but should be of type `RagRetriever`"
self.retriever = retriever
self.question_encoder = question_encoder
self.generator = generator
self.ctx_encoder = None
self.context_encoder_training = False
@add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=RetrievAugLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
doc_scores: Optional[torch.FloatTensor] = None,
context_input_ids: Optional[torch.LongTensor] = None,
context_attention_mask: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_retrieved: Optional[bool] = None,
n_docs: Optional[int] = None,
) -> Union[Tuple[torch.Tensor], RetrievAugLMOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, RagRetriever, RagModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-token-base")
>>> retriever = RagRetriever.from_pretrained(
... "facebook/rag-token-base", index_name="exact", use_dummy_dataset=True
... )
>>> # initialize with RagRetriever to do everything in one forward call
>>> model = RagModel.from_pretrained("facebook/rag-token-base", retriever=retriever)
>>> inputs = tokenizer("How many people live in Paris?", return_tensors="pt")
>>> outputs = model(input_ids=inputs["input_ids"])
```"""
n_docs = n_docs if n_docs is not None else self.config.n_docs
use_cache = use_cache if use_cache is not None else self.config.use_cache
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
output_retrieved = output_retrieved if output_retrieved is not None else self.config.output_retrieved
# whether retriever has to be used
has_to_retrieve = (
self.retriever is not None
and (context_input_ids is None or context_attention_mask is None or doc_scores is None)
and encoder_outputs is None
)
# encoder_outputs are pre-computed during RAG-token generation
if encoder_outputs is None:
if has_to_retrieve:
question_enc_outputs = self.question_encoder(
input_ids, attention_mask=attention_mask, return_dict=True
)
question_encoder_last_hidden_state = question_enc_outputs[0] # hidden states of question encoder
retriever_outputs = self.retriever(
input_ids,
question_encoder_last_hidden_state.cpu().detach().to(torch.float32).numpy(),
prefix=self.generator.config.prefix,
n_docs=n_docs,
return_tensors="pt",
)
if self.context_encoder_training:
(
context_input_ids,
context_attention_mask,
retrieved_doc_embeds,
retrived_doc_input_ids,
retrived_doc_attention_mask,
retrieved_doc_ids,
) = (
retriever_outputs["context_input_ids"],
retriever_outputs["context_attention_mask"],
retriever_outputs["retrieved_doc_embeds"],
retriever_outputs["tokenized_doc_ids"],
retriever_outputs["tokenized_doc_attention_mask"],
retriever_outputs["doc_ids"],
)
context_input_ids = context_input_ids.to(input_ids)
context_attention_mask = context_attention_mask.to(input_ids)
retrived_doc_input_ids = retrived_doc_input_ids.to(input_ids)
retrived_doc_attention_mask = retrived_doc_attention_mask.to(input_ids)
retrieved_doc_embeds = self.ctx_encoder(
retrived_doc_input_ids, attention_mask=retrived_doc_attention_mask, return_dict=True
).pooler_output
retrieved_doc_embeds = retrieved_doc_embeds.view(
-1, n_docs, question_encoder_last_hidden_state.shape[1]
) # reshaping
# compute doc_scores involving ctx_encoder
doc_scores = torch.bmm(
question_encoder_last_hidden_state.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)
).squeeze(1)
else:
context_input_ids, context_attention_mask, retrieved_doc_embeds, retrieved_doc_ids = (
retriever_outputs["context_input_ids"],
retriever_outputs["context_attention_mask"],
retriever_outputs["retrieved_doc_embeds"],
retriever_outputs["doc_ids"],
)
# set to correct device
retrieved_doc_embeds = retrieved_doc_embeds.to(question_encoder_last_hidden_state)
context_input_ids = context_input_ids.to(input_ids)
context_attention_mask = context_attention_mask.to(input_ids)
# compute doc_scores
doc_scores = torch.bmm(
question_encoder_last_hidden_state.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)
).squeeze(1)
else:
assert context_input_ids is not None, (
"Make sure that `context_input_ids` are passed, if no `retriever` is set. Alternatively, you can"
" set a retriever using the `set_retriever(...)` function."
)
assert context_attention_mask is not None, (
"Make sure that `context_attention_mask` are passed, if no `retriever` is set. Alternatively, you"
" can set a retriever using the `set_retriever(...)` function."
)
assert doc_scores is not None, (
"Make sure that `doc_scores` are passed, if no `retriever` is set. Alternatively, you can set a"
" retriever using the `set_retriever(...)` function."
)
assert (
doc_scores is not None
), "Make sure that `doc_scores` are passed when passing `encoder_outputs` to the forward function."
assert (doc_scores.shape[1] % n_docs) == 0, (
f" The first dimension of `context_input_ids` should be a multiple of `n_docs`={n_docs}, but is"
f" {context_input_ids.shape[0]}."
)
# Decoder input without context documents
if decoder_input_ids is not None:
decoder_input_ids = decoder_input_ids.repeat_interleave(n_docs, dim=0)
if decoder_attention_mask is not None:
decoder_attention_mask = decoder_attention_mask.repeat_interleave(n_docs, dim=0)
gen_outputs = self.generator(
input_ids=context_input_ids,
attention_mask=context_attention_mask,
encoder_outputs=encoder_outputs,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
return_dict=True,
)
if not has_to_retrieve:
question_encoder_last_hidden_state = None
question_enc_hidden_states = None
question_enc_attentions = None
retrieved_doc_embeds = None
retrieved_doc_ids = None
else:
question_enc_hidden_states = question_enc_outputs.hidden_states
question_enc_attentions = question_enc_outputs.attentions
if not has_to_retrieve or not output_retrieved:
# don't output retrieved docs
context_input_ids = (None,)
context_attention_mask = None
retrieved_doc_embeds = None
retrieved_doc_ids = None
return RetrievAugLMOutput(
logits=gen_outputs.logits,
doc_scores=doc_scores,
past_key_values=gen_outputs.past_key_values,
context_input_ids=context_input_ids,
context_attention_mask=context_attention_mask,
retrieved_doc_embeds=retrieved_doc_embeds,
retrieved_doc_ids=retrieved_doc_ids,
question_encoder_last_hidden_state=question_encoder_last_hidden_state,
question_enc_hidden_states=question_enc_hidden_states,
question_enc_attentions=question_enc_attentions,
generator_enc_last_hidden_state=gen_outputs.encoder_last_hidden_state,
generator_enc_hidden_states=gen_outputs.encoder_hidden_states,
generator_enc_attentions=gen_outputs.encoder_attentions,
generator_dec_hidden_states=gen_outputs.decoder_hidden_states,
generator_dec_attentions=gen_outputs.decoder_attentions,
generator_cross_attentions=gen_outputs.cross_attentions,
)
|
class_definition
| 31,012 | 42,438 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rag/modeling_rag.py
| null | 6,180 |
class RagSequenceForGeneration(RagPreTrainedModel):
def __init__(
self,
config: Optional[PretrainedConfig] = None,
question_encoder: Optional[PreTrainedModel] = None,
generator: Optional[PreTrainedModel] = None,
retriever: Optional[RagRetriever] = None,
**kwargs,
):
assert config is not None or (
question_encoder is not None and generator is not None
), "Either a configuration or an encoder and a generator has to be provided."
if config is None:
config = RagConfig.from_question_encoder_generator_configs(
question_encoder.config, generator.config, **kwargs
)
super().__init__(config)
# instantiate model
self.rag = RagModel(config=config, question_encoder=question_encoder, generator=generator, retriever=retriever)
def set_retriever(self, retriever: RagRetriever):
self.rag.retriever = retriever
def set_context_encoder_for_training(self, ctx_encoder: PreTrainedModel):
self.rag.context_encoder_training = True
self.rag.ctx_encoder = ctx_encoder
@add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=RetrievAugLMMarginOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
context_input_ids: Optional[torch.LongTensor] = None,
context_attention_mask: Optional[torch.LongTensor] = None,
doc_scores: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_retrieved: Optional[bool] = None,
exclude_bos_score: Optional[bool] = None,
reduce_loss: Optional[bool] = None,
labels: Optional[torch.LongTensor] = None,
n_docs: Optional[int] = None,
**kwargs, # needs kwargs for generation
) -> RetrievAugLMMarginOutput:
r"""
exclude_bos_score (`bool`, *optional*):
Only relevant if `labels` is passed. If `True`, the score of the BOS token is disregarded when computing
the loss.
reduce_loss (`bool`, *optional*):
Only relevant if `labels` is passed. If `True`, the NLL loss is reduced using the `torch.Tensor.sum`
operation.
kwargs (`Dict[str, any]`, *optional*, defaults to `{}`):
Legacy dictionary, which is required so that model can use *generate()* function.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, RagRetriever, RagSequenceForGeneration
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-sequence-nq")
>>> retriever = RagRetriever.from_pretrained(
... "facebook/rag-sequence-nq", index_name="exact", use_dummy_dataset=True
... )
>>> # initialize with RagRetriever to do everything in one forward call
>>> model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever)
>>> inputs = tokenizer("How many people live in Paris?", return_tensors="pt")
>>> targets = tokenizer(text_target="In Paris, there are 10 million people.", return_tensors="pt")
>>> input_ids = inputs["input_ids"]
>>> labels = targets["input_ids"]
>>> outputs = model(input_ids=input_ids, labels=labels)
>>> # or use retriever separately
>>> model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", use_dummy_dataset=True)
>>> # 1. Encode
>>> question_hidden_states = model.question_encoder(input_ids)[0]
>>> # 2. Retrieve
>>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.detach().numpy(), return_tensors="pt")
>>> doc_scores = torch.bmm(
... question_hidden_states.unsqueeze(1), docs_dict["retrieved_doc_embeds"].float().transpose(1, 2)
... ).squeeze(1)
>>> # 3. Forward to generator
>>> outputs = model(
... context_input_ids=docs_dict["context_input_ids"],
... context_attention_mask=docs_dict["context_attention_mask"],
... doc_scores=doc_scores,
... decoder_input_ids=labels,
... )
```"""
n_docs = n_docs if n_docs is not None else self.config.n_docs
exclude_bos_score = exclude_bos_score if exclude_bos_score is not None else self.config.exclude_bos_score
reduce_loss = reduce_loss if reduce_loss is not None else self.config.reduce_loss
if labels is not None:
if decoder_input_ids is None:
decoder_input_ids = labels
use_cache = False
outputs = self.rag(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_outputs=encoder_outputs,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
context_input_ids=context_input_ids,
context_attention_mask=context_attention_mask,
doc_scores=doc_scores,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_retrieved=output_retrieved,
n_docs=n_docs,
)
loss = None
if labels is not None:
loss = self.get_nll(
outputs.logits,
outputs.doc_scores,
decoder_input_ids,
reduce_loss=reduce_loss,
epsilon=self.config.label_smoothing,
exclude_bos_score=exclude_bos_score,
n_docs=n_docs,
)
return RetrievAugLMMarginOutput(
loss=loss,
logits=outputs.logits,
doc_scores=outputs.doc_scores,
past_key_values=outputs.past_key_values,
context_input_ids=outputs.context_input_ids,
context_attention_mask=outputs.context_attention_mask,
retrieved_doc_embeds=outputs.retrieved_doc_embeds,
retrieved_doc_ids=outputs.retrieved_doc_ids,
question_encoder_last_hidden_state=outputs.question_encoder_last_hidden_state,
question_enc_hidden_states=outputs.question_enc_hidden_states,
question_enc_attentions=outputs.question_enc_attentions,
generator_enc_last_hidden_state=outputs.generator_enc_last_hidden_state,
generator_enc_hidden_states=outputs.generator_enc_hidden_states,
generator_enc_attentions=outputs.generator_enc_attentions,
generator_dec_hidden_states=outputs.generator_dec_hidden_states,
generator_dec_attentions=outputs.generator_dec_attentions,
generator_cross_attentions=outputs.generator_cross_attentions,
)
@property
def retriever(self):
return self.rag.retriever
@property
def generator(self):
return self.rag.generator
@property
def question_encoder(self):
return self.rag.question_encoder
@torch.no_grad()
def generate(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
context_input_ids: Optional[torch.LongTensor] = None,
context_attention_mask: Optional[torch.LongTensor] = None,
doc_scores: Optional[torch.FloatTensor] = None,
do_deduplication: Optional[bool] = None, # defaults to True
num_return_sequences: Optional[int] = None, # defaults to 1
num_beams: Optional[int] = None, # defaults to 1
n_docs: Optional[int] = None,
**model_kwargs,
) -> torch.LongTensor:
"""
Implements RAG sequence "thorough" decoding. Read the [`~generation.GenerationMixin.generate`]` documentation
for more information on how to set other generate input parameters.
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
The sequence used as a prompt for the generation. If `input_ids` is not passed, then
`context_input_ids` has to be provided.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
context_input_ids (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Input IDs post-processed from the retrieved documents and the question encoder input_ids by the
retriever.
context_attention_mask (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the
retriever.
If the model is not initialized with a `retriever` or `input_ids` is not given, `context_input_ids` and
`context_attention_mask` have to be provided to the forward pass. They are returned by
[`~RagRetriever.__call__`].
doc_scores (`torch.FloatTensor` of shape `(batch_size, config.n_docs)`):
Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
`question_encoder_last_hidden_state`.
If the model is not initialized with a `retriever` or `input_ids` is not given, `doc_scores` has to be
provided to the forward pass. `doc_scores` are returned by [`~RagRetriever.__call__`].
do_deduplication (`bool`, *optional*):
Whether or not to deduplicate the generations from different context documents for a given input. Has
to be set to `False` if used while training with distributed backend.
num_return_sequences(`int`, *optional*, defaults to 1):
The number of independently computed returned sequences for each element in the batch. Note that this
is not the value we pass to the `generator`'s `[`~generation.GenerationMixin.generate`]` function,
where we set `num_return_sequences` to `num_beams`.
num_beams (`int`, *optional*, defaults to 1):
Number of beams for beam search. 1 means no beam search.
n_docs (`int`, *optional*, defaults to `config.n_docs`)
Number of documents to retrieve and/or number of documents for which to generate an answer.
kwargs (`Dict[str, Any]`, *optional*):
Additional kwargs will be passed to [`~generation.GenerationMixin.generate`].
Return:
`torch.LongTensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated
sequences. The second dimension (sequence length) is either equal to `max_length` or shorter if all batches
finished early due to the `eos_token_id`.
"""
n_docs = n_docs if n_docs is not None else self.config.n_docs
do_deduplication = do_deduplication if do_deduplication is not None else self.config.do_deduplication
num_doc_return_sequences = (
num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences
)
num_beams = num_beams if num_beams is not None else self.config.num_beams
assert (
input_ids is not None or context_input_ids is not None
), " At least one of input_ids or context_input_ids must be given"
if self.retriever is not None and context_input_ids is None:
question_hidden_states = self.question_encoder(input_ids, attention_mask=attention_mask)[0]
context_input_ids = self.retriever(
input_ids,
question_hidden_states.cpu().detach().to(torch.float32).numpy(),
prefix=self.generator.config.prefix,
n_docs=n_docs,
return_tensors="pt",
)["context_input_ids"]
# set to correct device
context_input_ids = context_input_ids.to(input_ids)
hypos = []
model_kwargs["num_beams"] = num_beams
model_kwargs["num_return_sequences"] = num_beams
model_kwargs["attention_mask"] = None
batch_size = input_ids.shape[0] if input_ids is not None else context_input_ids.shape[0] // n_docs
for index in range(batch_size):
# first, generate beams from documents:
generator_input_ids = context_input_ids[index * n_docs : (index + 1) * n_docs] # (n_docs, max_len)
output_sequences = self.generator.generate(
generator_input_ids,
**model_kwargs,
) # n_docs * n_beam, tgt_len
if do_deduplication:
# do_deduplication, max_output_len
output_sequences = torch.stack(list({str(k.tolist()): k for k in output_sequences}.values()))
num_candidates = output_sequences.shape[
0
] # after deduplication, this number can be less than n_docs*n_beam
# then, run model forwards to get nll scores:
if input_ids is not None:
new_input_ids = input_ids[index : index + 1].repeat(num_candidates, 1)
outputs = self(new_input_ids, labels=output_sequences, exclude_bos_score=True)
else: # input_ids is None, need context_input_ids/mask and doc_scores
assert context_attention_mask is not None, (
"Make sure that `context_attention_mask` are passed, if no `input_ids` is set. Alternatively, you"
" can set a retriever using the `set_retriever(...)` function."
)
assert doc_scores is not None, (
"Make sure that `doc_scores` are passed, if no `input_ids` is set. Alternatively, you can set a"
" retriever using the `set_retriever(...)` function."
)
individual_input_ids = generator_input_ids.repeat(
num_candidates, 1
) # (num_candidates*n_docs, max_len)
individual_attention_mask = context_attention_mask[index * n_docs : (index + 1) * n_docs]
individual_attention_mask = individual_attention_mask.repeat(num_candidates, 1)
individual_doc_scores = doc_scores[index : (index + 1), :] # doc_scores.shape = [batch, n_docs]
individual_doc_scores = individual_doc_scores.repeat(num_candidates, 1) # [num_candidates, n_docs]
outputs = self(
context_input_ids=individual_input_ids,
context_attention_mask=individual_attention_mask,
doc_scores=individual_doc_scores,
labels=output_sequences,
exclude_bos_score=True,
)
top_cand_inds = (-outputs["loss"]).topk(num_doc_return_sequences)[1]
# add hypothesis
hypos.append(output_sequences[top_cand_inds])
return self._cat_and_pad(hypos, pad_token_id=self.config.generator.pad_token_id)
def get_nll(
self, seq_logits, doc_scores, target, reduce_loss=False, epsilon=0.0, exclude_bos_score=False, n_docs=None
):
# shift tokens left
target = torch.cat(
[target[:, 1:], target.new(target.shape[0], 1).fill_(self.config.generator.pad_token_id)], 1
)
n_docs = n_docs if n_docs is not None else self.config.n_docs
# bos_token_id is None for T5
bos_token_id = self.config.bos_token_id or self.config.generator.bos_token_id
use_bos = bos_token_id is not None and target[:, 0].eq(bos_token_id).all()
def _mask_pads(ll, smooth_obj):
pad_mask = target.eq(self.config.generator.pad_token_id)
if pad_mask.any():
ll.masked_fill_(pad_mask, 0.0)
smooth_obj.masked_fill_(pad_mask, 0.0)
return ll.squeeze(-1), smooth_obj.squeeze(-1)
# seq_logits dim = (batch*n_docs, tgt_len , #vocabs)
seq_logprobs = nn.functional.log_softmax(seq_logits, dim=-1).view(
seq_logits.shape[0] // n_docs, n_docs, -1, seq_logits.size(-1)
) # batch_size x n_docs x tgt_len x #vocab_size
doc_logprobs = nn.functional.log_softmax(doc_scores, dim=1).unsqueeze(-1).unsqueeze(-1)
# RAG-sequence marginalization
first_token_scores = seq_logprobs[:, :, :1, :]
second_token_scores = seq_logprobs[:, :, 1:2, :]
remainder = seq_logprobs[:, :, 2:, :]
rag_logprobs = torch.cat([first_token_scores, second_token_scores + doc_logprobs, remainder], dim=2)
# calculate loss
target = target.unsqueeze(1).unsqueeze(-1).repeat(1, n_docs, 1, 1)
assert target.dim() == rag_logprobs.dim()
ll = rag_logprobs.gather(dim=-1, index=target)
smooth_obj = rag_logprobs.sum(dim=-1, keepdim=True) # total sum of all (normalised) logits
ll, smooth_obj = _mask_pads(ll, smooth_obj)
# sum over tokens, exclude bos while scoring
ll = ll[:, :, 1:].sum(2) if exclude_bos_score and use_bos else ll.sum(2)
smooth_obj = smooth_obj.sum(2)
ll = ll.logsumexp(1) # logsumexp over docs
smooth_obj = smooth_obj.logsumexp(1)
nll_loss = -ll
smooth_loss = -smooth_obj
if reduce_loss:
nll_loss = nll_loss.sum()
smooth_loss = smooth_loss.sum()
eps_i = epsilon / rag_logprobs.size(-1)
loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss
return loss
@staticmethod
def _cat_and_pad(tensors, pad_token_id):
output = (
tensors[0].new(sum([t.shape[0] for t in tensors]), max([t.shape[1] for t in tensors])).fill_(pad_token_id)
)
ind = 0
for t in tensors:
output[ind : ind + t.shape[0], : t.shape[1]] = t
ind += t.shape[0]
return output
|
class_definition
| 42,637 | 61,568 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rag/modeling_rag.py
| null | 6,181 |
class RagTokenForGeneration(RagPreTrainedModel):
def __init__(
self,
config: Optional[PretrainedConfig] = None,
question_encoder: Optional[PreTrainedModel] = None,
generator: Optional[PreTrainedModel] = None,
retriever: Optional[RagRetriever] = None,
**kwargs,
):
assert config is not None or (
question_encoder is not None and generator is not None
), "Either a configuration or an encoder and a generator has to be provided."
if config is None:
config = RagConfig.from_question_encoder_generator_configs(
question_encoder.config, generator.config, **kwargs
)
super().__init__(config)
# instantiate model
self.rag = RagModel(config=config, question_encoder=question_encoder, generator=generator, retriever=retriever)
def set_retriever(self, retriever: RagRetriever):
self.rag.retriever = retriever
def set_context_encoder_for_training(self, ctx_encoder: PreTrainedModel):
self.rag.context_encoder_training = True
self.rag.ctx_encoder = ctx_encoder
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past_key_values=None,
attention_mask=None,
use_cache=None,
encoder_outputs=None,
doc_scores=None,
n_docs=None,
**kwargs,
):
# Overwritten -- `do_marginalize` is explicitly set in the output
if past_key_values is not None:
# if past is defined use only last decoder_input_ids
decoder_input_ids = decoder_input_ids[:, -1:]
return {
"input_ids": None,
"encoder_outputs": encoder_outputs,
"doc_scores": doc_scores,
"context_attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"past_key_values": past_key_values,
"use_cache": use_cache,
"do_marginalize": True,
"n_docs": n_docs,
}
@property
def retriever(self):
return self.rag.retriever
@property
def generator(self):
return self.rag.generator
@property
def question_encoder(self):
return self.rag.question_encoder
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
"""Reorders cache for generation. BART-inspired but we need to take care of the extra dimension for docs"""
def _reorder_stacked(hidden_states, new_order):
n_docs = hidden_states.shape[0] // new_order.shape[0]
hidden_states = hidden_states.view(-1, n_docs, *hidden_states.shape[1:])
hidden_states = hidden_states.index_select(0, new_order)
result = hidden_states.view(-1, *hidden_states.shape[2:])
return result
reordered_past = ()
for layer_past in past_key_values:
# get the correct batch idx from decoder layer's batch dim for cross and self-attn
reordered_past += (
tuple(_reorder_stacked(past_state, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
def marginalize(self, seq_logits, doc_scores, n_docs=None):
n_docs = n_docs if n_docs is not None else self.config.n_docs
# RAG-token marginalization
seq_logprobs = nn.functional.log_softmax(seq_logits, dim=-1).view(
seq_logits.shape[0] // n_docs, n_docs, -1, seq_logits.size(-1)
)
doc_logprobs = torch.log_softmax(doc_scores, dim=1)
log_prob_sum = seq_logprobs + doc_logprobs.unsqueeze(-1).unsqueeze(-1)
return torch.logsumexp(log_prob_sum, dim=1)
@add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=RetrievAugLMMarginOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
context_input_ids: Optional[torch.LongTensor] = None,
context_attention_mask: Optional[torch.LongTensor] = None,
doc_scores: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_retrieved: Optional[bool] = None,
do_marginalize: Optional[bool] = None,
reduce_loss: Optional[bool] = None,
labels: Optional[torch.LongTensor] = None,
n_docs: Optional[int] = None,
**kwargs, # needs kwargs for generation
) -> RetrievAugLMMarginOutput:
r"""
do_marginalize (`bool`, *optional*):
If `True`, the logits are marginalized over all documents by making use of
`torch.nn.functional.log_softmax`.
reduce_loss (`bool`, *optional*):
Only relevant if `labels` is passed. If `True`, the NLL loss is reduced using the `torch.Tensor.sum`
operation.
kwargs (`Dict[str, any]`, *optional*, defaults to `{}`):
Legacy dictionary, which is required so that model can use *generate()* function.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, RagRetriever, RagTokenForGeneration
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-token-nq")
>>> retriever = RagRetriever.from_pretrained(
... "facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True
... )
>>> # initialize with RagRetriever to do everything in one forward call
>>> model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever)
>>> inputs = tokenizer("How many people live in Paris?", return_tensors="pt")
>>> targets = tokenizer(text_target="In Paris, there are 10 million people.", return_tensors="pt")
>>> input_ids = inputs["input_ids"]
>>> labels = targets["input_ids"]
>>> outputs = model(input_ids=input_ids, labels=labels)
>>> # or use retriever separately
>>> model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq", use_dummy_dataset=True)
>>> # 1. Encode
>>> question_hidden_states = model.question_encoder(input_ids)[0]
>>> # 2. Retrieve
>>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.detach().numpy(), return_tensors="pt")
>>> doc_scores = torch.bmm(
... question_hidden_states.unsqueeze(1), docs_dict["retrieved_doc_embeds"].float().transpose(1, 2)
... ).squeeze(1)
>>> # 3. Forward to generator
>>> outputs = model(
... context_input_ids=docs_dict["context_input_ids"],
... context_attention_mask=docs_dict["context_attention_mask"],
... doc_scores=doc_scores,
... decoder_input_ids=labels,
... )
>>> # or directly generate
>>> generated = model.generate(
... context_input_ids=docs_dict["context_input_ids"],
... context_attention_mask=docs_dict["context_attention_mask"],
... doc_scores=doc_scores,
... )
>>> generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True)
```"""
n_docs = n_docs if n_docs is not None else self.config.n_docs
do_marginalize = do_marginalize if do_marginalize is not None else self.config.do_marginalize
reduce_loss = reduce_loss if reduce_loss is not None else self.config.reduce_loss
if labels is not None:
if decoder_input_ids is None:
decoder_input_ids = labels
use_cache = False
outputs = self.rag(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_outputs=encoder_outputs,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
context_input_ids=context_input_ids,
context_attention_mask=context_attention_mask,
doc_scores=doc_scores,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_retrieved=output_retrieved,
n_docs=n_docs,
)
loss = None
logits = outputs.logits
if labels is not None:
assert decoder_input_ids is not None
loss = self.get_nll(
outputs.logits,
outputs.doc_scores,
labels,
reduce_loss=reduce_loss,
epsilon=self.config.label_smoothing,
n_docs=n_docs,
)
if do_marginalize:
logits = self.marginalize(logits, outputs.doc_scores, n_docs)
return RetrievAugLMMarginOutput(
loss=loss,
logits=logits,
doc_scores=outputs.doc_scores,
past_key_values=outputs.past_key_values,
context_input_ids=outputs.context_input_ids,
context_attention_mask=outputs.context_attention_mask,
retrieved_doc_embeds=outputs.retrieved_doc_embeds,
retrieved_doc_ids=outputs.retrieved_doc_ids,
question_encoder_last_hidden_state=outputs.question_encoder_last_hidden_state,
question_enc_hidden_states=outputs.question_enc_hidden_states,
question_enc_attentions=outputs.question_enc_attentions,
generator_enc_last_hidden_state=outputs.generator_enc_last_hidden_state,
generator_enc_hidden_states=outputs.generator_enc_hidden_states,
generator_enc_attentions=outputs.generator_enc_attentions,
generator_dec_hidden_states=outputs.generator_dec_hidden_states,
generator_dec_attentions=outputs.generator_dec_attentions,
generator_cross_attentions=outputs.generator_cross_attentions,
)
@torch.no_grad()
def generate(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
context_input_ids: Optional[torch.LongTensor] = None,
context_attention_mask: Optional[torch.LongTensor] = None,
doc_scores: Optional[torch.FloatTensor] = None,
n_docs: Optional[int] = None,
generation_config: Optional[GenerationConfig] = None,
prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]] = None,
logits_processor: Optional[LogitsProcessorList] = LogitsProcessorList(),
stopping_criteria: Optional[StoppingCriteriaList] = StoppingCriteriaList(),
**kwargs,
) -> torch.LongTensor:
"""
Implements RAG token decoding.
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
The sequence used as a prompt for the generation. If `input_ids` is not passed, then
`context_input_ids` has to be provided.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
context_input_ids (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Input IDs post-processed from the retrieved documents and the question encoder `input_ids` by the
retriever.
If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the
forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`].
context_attention_mask (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the
retriever.
If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the
forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`].
doc_scores (`torch.FloatTensor` of shape `(batch_size, config.n_docs)`):
Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
`question_encoder_last_hidden_state`.
If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the
forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`].
n_docs (`int`, *optional*, defaults to `config.n_docs`)
Number of documents to retrieve and/or number of documents for which to generate an answer.
generation_config (`~generation.GenerationConfig`, *optional*):
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
passed to generate matching the attributes of `generation_config` will override them. If
`generation_config` is not provided, the default will be used, which has the following loading
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
default values, whose documentation should be checked to parameterize generation.
prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*):
If provided, this function constraints the beam search to allowed tokens only at each step. If not
provided no constraint is applied. This function takes 2 arguments `inputs_ids` and the batch ID
`batch_id`. It has to return a list with the allowed tokens for the next generation step conditioned on
the previously generated tokens `inputs_ids` and the batch ID `batch_id`. This argument is useful for
constrained generation conditioned on the prefix, as described in [Autoregressive Entity
Retrieval](https://arxiv.org/abs/2010.00904).
logits_processor (`LogitsProcessorList`, *optional*):
Custom logits processors that complement the default logits processors built from arguments and a
model's config. If a logit processor is passed that is already created with the arguments or a model's
config an error is thrown.
stopping_criteria (`StoppingCriteriaList`, *optional*):
Custom stopping criteria that complement the default stopping criteria built from arguments and a
model's config. If a stopping criteria is passed that is already created with the arguments or a
model's config an error is thrown.
kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model.
Return:
`torch.LongTensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated
sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches
finished early due to the `eos_token_id`.
"""
# Handle `generation_config` and kwargs that might update it
if generation_config is None:
generation_config = self.generation_config
generation_config = copy.deepcopy(generation_config)
model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs
kwargs_has_attention_mask = model_kwargs.get("attention_mask", None) is not None
self._prepare_special_tokens(generation_config, kwargs_has_attention_mask)
# set default parameters
n_docs = n_docs if n_docs is not None else self.config.n_docs
# retrieve docs
if self.retriever is not None and context_input_ids is None:
question_hidden_states = self.question_encoder(input_ids, attention_mask=attention_mask)[0]
out = self.retriever(
input_ids,
question_hidden_states.cpu().detach().to(torch.float32).numpy(),
prefix=self.generator.config.prefix,
n_docs=n_docs,
return_tensors="pt",
)
context_input_ids, context_attention_mask, retrieved_doc_embeds = (
out["context_input_ids"],
out["context_attention_mask"],
out["retrieved_doc_embeds"],
)
# set to correct device
retrieved_doc_embeds = retrieved_doc_embeds.to(question_hidden_states)
context_input_ids = context_input_ids.to(input_ids)
context_attention_mask = context_attention_mask.to(input_ids)
# compute doc_scores
doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)).squeeze(
1
)
assert (context_input_ids.shape[0] % n_docs) == 0, (
f" The first dimension of `context_input_ids` should be a multiple of `n_docs`={n_docs}, but is"
f" {context_input_ids.shape[0]}."
)
# batch_size
batch_size = context_input_ids.shape[0] // n_docs
encoder = self.rag.generator.get_encoder()
encoder_outputs = encoder(input_ids=context_input_ids, attention_mask=context_attention_mask, return_dict=True)
input_ids = torch.full(
(batch_size * generation_config.num_beams, 1),
generation_config.decoder_start_token_id,
dtype=torch.long,
device=next(self.parameters()).device,
)
input_ids_seq_length = input_ids.shape[-1]
last_hidden_state = encoder_outputs["last_hidden_state"]
def extend_enc_output(tensor, num_beams=None):
# split into `batch_size`, `num_beams`, `num_docs`
tensor = tensor[None, None, :].reshape((batch_size, 1, n_docs) + tensor.shape[1:])
# repeat same last hidden states over `num_beams` dimension
tensor = tensor.expand((batch_size, num_beams, n_docs) + tensor.shape[3:])
# merge `batch_size`, `num_beams`, `num_docs` dims again
return tensor.reshape((batch_size * num_beams * n_docs,) + tensor.shape[3:])
# correctly extend last_hidden_state and attention mask
context_attention_mask = extend_enc_output(context_attention_mask, num_beams=generation_config.num_beams)
encoder_outputs["last_hidden_state"] = extend_enc_output(
last_hidden_state, num_beams=generation_config.num_beams
)
doc_scores = doc_scores.repeat_interleave(generation_config.num_beams, dim=0)
# define start_len & additional parameters
model_kwargs["doc_scores"] = doc_scores
model_kwargs["encoder_outputs"] = encoder_outputs
model_kwargs["attention_mask"] = context_attention_mask
model_kwargs["n_docs"] = n_docs
pre_processor = self._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=input_ids_seq_length,
encoder_input_ids=context_input_ids,
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
logits_processor=logits_processor,
device=input_ids.device,
)
prepared_stopping_criteria = self._get_stopping_criteria(
generation_config=generation_config, stopping_criteria=stopping_criteria
)
if generation_config.num_beams == 1:
if generation_config.num_return_sequences > 1:
raise ValueError(
f"num_return_sequences has to be 1, but is {generation_config.num_return_sequences} when doing"
" greedy search."
)
return self._sample(
input_ids,
logits_processor=pre_processor,
stopping_criteria=prepared_stopping_criteria,
generation_config=generation_config,
synced_gpus=False,
streamer=None,
**model_kwargs,
)
elif generation_config.num_beams > 1:
if generation_config.num_return_sequences > generation_config.num_beams:
raise ValueError("`num_return_sequences` has to be smaller or equal to `num_beams`.")
beam_scorer = BeamSearchScorer(
batch_size=batch_size,
num_beams=generation_config.num_beams,
device=self.device,
length_penalty=generation_config.length_penalty,
do_early_stopping=generation_config.early_stopping,
num_beam_hyps_to_keep=generation_config.num_return_sequences,
max_length=generation_config.max_length,
)
return self._beam_search(
input_ids,
beam_scorer,
logits_processor=pre_processor,
stopping_criteria=prepared_stopping_criteria,
generation_config=generation_config,
synced_gpus=False,
**model_kwargs,
)
else:
raise ValueError(
f"`num_beams` has to be an integer strictly superior to 0 (≥ 1), but is {generation_config.num_beams}"
)
def get_input_embeddings(self):
return self.rag.generator.get_input_embeddings()
def get_output_embeddings(self):
return self.rag.generator.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
return self.rag.generator.set_output_embeddings(new_embeddings)
def shift_tokens_right(self, input_ids, start_token_id=None):
"""Shift input ids one token to the right, and pad with start_token_id"""
if start_token_id is None:
start_token_id = self.config.decoder_start_token_id
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = start_token_id
return shifted_input_ids
def get_nll(self, seq_logits, doc_scores, target, reduce_loss=False, epsilon=0.0, n_docs=None):
n_docs = n_docs if n_docs is not None else self.config.n_docs
# shift tokens left
target = torch.cat(
[target[:, 1:], target.new(target.shape[0], 1).fill_(self.config.generator.pad_token_id)], 1
)
def _mask_pads(ll, smooth_obj):
pad_mask = target.eq(self.config.generator.pad_token_id)
if pad_mask.any():
ll.masked_fill_(pad_mask, 0.0)
smooth_obj.masked_fill_(pad_mask, 0.0)
return ll.squeeze(-1), smooth_obj.squeeze(-1)
rag_logprobs = self.marginalize(seq_logits, doc_scores, n_docs)
target = target.unsqueeze(-1)
assert target.dim() == rag_logprobs.dim()
ll = rag_logprobs.gather(dim=-1, index=target)
smooth_obj = rag_logprobs.sum(dim=-1, keepdim=True) # total sum of all (normalised) logits
ll, smooth_obj = _mask_pads(ll, smooth_obj)
ll = ll.sum(1) # sum over tokens
smooth_obj = smooth_obj.sum(1)
nll_loss = -ll
smooth_loss = -smooth_obj
if reduce_loss:
nll_loss = nll_loss.sum()
smooth_loss = smooth_loss.sum()
eps_i = epsilon / rag_logprobs.size(-1)
loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss
return loss
|
class_definition
| 61,761 | 86,275 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rag/modeling_rag.py
| null | 6,182 |
class RagConfig(PretrainedConfig):
model_type = "rag"
is_composition = True
def __init__(
self,
vocab_size=None,
is_encoder_decoder=True,
prefix=None,
bos_token_id=None,
pad_token_id=None,
eos_token_id=None,
decoder_start_token_id=None,
title_sep=" / ",
doc_sep=" // ",
n_docs=5,
max_combined_length=300,
retrieval_vector_size=768,
retrieval_batch_size=8,
dataset="wiki_dpr",
dataset_split="train",
index_name="compressed",
index_path=None,
passages_path=None,
use_dummy_dataset=False,
reduce_loss=False,
label_smoothing=0.0,
do_deduplication=True,
exclude_bos_score=False,
do_marginalize=False,
output_retrieved=False,
use_cache=True,
forced_eos_token_id=None,
dataset_revision=None,
**kwargs,
):
super().__init__(
bos_token_id=bos_token_id,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
decoder_start_token_id=decoder_start_token_id,
forced_eos_token_id=forced_eos_token_id,
is_encoder_decoder=is_encoder_decoder,
prefix=prefix,
vocab_size=vocab_size,
**kwargs,
)
if "question_encoder" not in kwargs or "generator" not in kwargs:
raise ValueError(
f"A configuraton of type {self.model_type} cannot be instantiated because "
f"both `question_encoder` and `generator` sub-configurations were not passed, only {kwargs}"
)
question_encoder_config = kwargs.pop("question_encoder")
question_encoder_model_type = question_encoder_config.pop("model_type")
decoder_config = kwargs.pop("generator")
decoder_model_type = decoder_config.pop("model_type")
from ..auto.configuration_auto import AutoConfig
self.question_encoder = AutoConfig.for_model(question_encoder_model_type, **question_encoder_config)
self.generator = AutoConfig.for_model(decoder_model_type, **decoder_config)
self.reduce_loss = reduce_loss
self.label_smoothing = label_smoothing
self.exclude_bos_score = exclude_bos_score
self.do_marginalize = do_marginalize
self.title_sep = title_sep
self.doc_sep = doc_sep
self.n_docs = n_docs
self.max_combined_length = max_combined_length
self.dataset = dataset
self.dataset_split = dataset_split
self.index_name = index_name
self.retrieval_vector_size = retrieval_vector_size
self.retrieval_batch_size = retrieval_batch_size
self.passages_path = passages_path
self.index_path = index_path
self.use_dummy_dataset = use_dummy_dataset
self.dataset_revision = dataset_revision
self.output_retrieved = output_retrieved
self.do_deduplication = do_deduplication
self.use_cache = use_cache
if self.forced_eos_token_id is None:
self.forced_eos_token_id = getattr(self.generator, "forced_eos_token_id", None)
@classmethod
def from_question_encoder_generator_configs(
cls, question_encoder_config: PretrainedConfig, generator_config: PretrainedConfig, **kwargs
) -> PretrainedConfig:
r"""
Instantiate a [`EncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model configuration and
decoder model configuration.
Returns:
[`EncoderDecoderConfig`]: An instance of a configuration object
"""
return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **kwargs)
|
class_definition
| 4,699 | 8,486 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rag/configuration_rag.py
| null | 6,183 |
class TFRetrievAugLMMarginOutput(ModelOutput):
"""
Base class for retriever augmented marginalized models outputs.
Args:
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss.
logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head. The score is possibly marginalized over all documents for
each vocabulary token.
past_key_values (`List[tf.Tensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
List of `tf.Tensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_heads,
sequence_length, embed_size_per_head)`).
Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used
(see `past_key_values` input) to speed up sequential decoding.
doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`):
Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
`question_encoder_last_hidden_state`.
retrieved_doc_embeds (`tf.Tensor` of shape `(batch_size, config.n_docs, hidden_size)`, *optional*, returned when *output_retrieved=True*):
Embedded documents retrieved by the retriever. Is used with `question_encoder_last_hidden_state` to compute
the `doc_scores`.
retrieved_doc_ids (`tf.Tensor` (int32) of shape `(batch_size, config.n_docs)`, *optional*, returned when *output_retrieved=True*):
The indexes of the embedded documents retrieved by the retriever.
context_input_ids (`tf.Tensor`(int32) of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever.
context_attention_mask (`tf.Tensor` (int32) of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the
retriever.
question_encoder_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden states at the output of the last layer of the question encoder pooled output of the
model.
question_enc_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden states of the question encoder at the output of each layer plus the initial embedding outputs.
question_enc_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the question encoder, after the attention softmax, used to compute the weighted
average in the self-attention heads.
generator_enc_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the generator encoder of the model.
generator_enc_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs.
generator_enc_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted
average in the self-attention heads.
generator_dec_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs.
generator_dec_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted
average in the self-attention heads.
"""
loss: tf.Tensor | None = None
logits: tf.Tensor = None
past_key_values: List[tf.Tensor] | None = None
doc_scores: tf.Tensor | None = None
retrieved_doc_embeds: tf.Tensor | None = None
retrieved_doc_ids: tf.Tensor | None = None
context_input_ids: tf.Tensor | None = None
context_attention_mask: tf.Tensor | None = None
question_encoder_last_hidden_state: tf.Tensor | None = None
question_enc_hidden_states: Tuple[tf.Tensor, ...] | None = None
question_enc_attentions: Tuple[tf.Tensor, ...] | None = None
generator_enc_last_hidden_state: tf.Tensor | None = None
generator_enc_hidden_states: Tuple[tf.Tensor, ...] | None = None
generator_enc_attentions: Tuple[tf.Tensor, ...] | None = None
generator_dec_hidden_states: Tuple[tf.Tensor, ...] | None = None
generator_dec_attentions: Tuple[tf.Tensor, ...] | None = None
|
class_definition
| 1,372 | 7,819 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rag/modeling_tf_rag.py
| null | 6,184 |
class TFRetrievAugLMOutput(ModelOutput):
"""
Args:
logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head. The score is possibly marginalized over all documents for
each vocabulary token.
past_key_values (`List[tf.Tensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
List of `tf.Tensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_heads,
sequence_length, embed_size_per_head)`).
Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used
(see `past_key_values` input) to speed up sequential decoding.
doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`):
Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
`question_encoder_last_hidden_state`.
retrieved_doc_embeds (`tf.Tensor` of shape `(batch_size, config.n_docs, hidden_size)`, *optional*, returned when *output_retrieved=True*):
Embedded documents retrieved by the retriever. Is used with `question_encoder_last_hidden_state` to compute
the `doc_scores`.
retrieved_doc_ids (`tf.Tensor` of shape `(batch_size, config.n_docs)`, *optional*, returned when *output_retrieved=True*):
The indexes of the embedded documents retrieved by the retriever.
context_input_ids (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever.
context_attention_mask (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the
retriever.
question_encoder_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden states at the output of the last layer of the question encoder pooled output of the
model.
question_enc_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden states of the question encoder at the output of each layer plus the initial embedding outputs.
question_enc_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the question encoder, after the attention softmax, used to compute the weighted
average in the self-attention heads.
generator_enc_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the generator encoder of the model.
generator_enc_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs.
generator_enc_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted
average in the self-attention heads.
generator_dec_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs.
generator_dec_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted
average in the self-attention heads.
"""
logits: tf.Tensor = None
past_key_values: List[tf.Tensor] | None = None
doc_scores: tf.Tensor | None = None
retrieved_doc_embeds: tf.Tensor | None = None
retrieved_doc_ids: tf.Tensor | None = None
context_input_ids: tf.Tensor | None = None
context_attention_mask: tf.Tensor | None = None
question_encoder_last_hidden_state: tf.Tensor | None = None
question_enc_hidden_states: Tuple[tf.Tensor, ...] | None = None
question_enc_attentions: Tuple[tf.Tensor, ...] | None = None
generator_enc_last_hidden_state: tf.Tensor | None = None
generator_enc_hidden_states: Tuple[tf.Tensor, ...] | None = None
generator_enc_attentions: Tuple[tf.Tensor, ...] | None = None
generator_dec_hidden_states: Tuple[tf.Tensor, ...] | None = None
generator_dec_attentions: Tuple[tf.Tensor, ...] | None = None
|
class_definition
| 7,833 | 14,020 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rag/modeling_tf_rag.py
| null | 6,185 |
class TFRagPreTrainedModel(TFPreTrainedModel):
r"""
RAG models were released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP
Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandra Piktus et al.
RAG is a retriever augmented model and encapsulate three components: a question encoder, a dataset retriever and a
generator, the encoder and generator are trainable while the retriever is just an indexed dataset.
"""
config_class = RagConfig
base_model_prefix = "rag"
_keys_to_ignore_on_load_missing = [r"position_ids"]
@classmethod
def from_pretrained_question_encoder_generator(
cls,
question_encoder_pretrained_model_name_or_path: str = None,
generator_pretrained_model_name_or_path: str = None,
retriever: RagRetriever = None,
*model_args,
**kwargs,
) -> TFPreTrainedModel:
r"""
Instantiates an question encoder and a generator from one or two base classes of the library from pretrained
model checkpoints.
Params:
question_encoder_pretrained_model_name_or_path (`str`, *optional*):
Information necessary to initiate the question encoder. Can be either:
- A string with the *shortcut name* of a pretrained model to load from cache or download, e.g.,
`google-bert/bert-base-uncased`.
- A string with the *identifier name* of a pretrained model that was user-uploaded to our S3, e.g.,
`dbmdz/bert-base-german-cased`.
- A path to a *directory* containing model weights saved using
[`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *pytorch index checkpoint file* (e.g, `./pt_model/`). In this case,
`question_encoder_from_pt` should be set to `True`.
generator_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`):
Information necessary to initiate the generator. Can be either:
- A string with the *shortcut name* of a pretrained model to load from cache or download, e.g.,
`google-t5/t5-small`.
- A string with the *identifier name* of a pretrained model that was user-uploaded to our S3, e.g.,
`facebook/bart-base`.
- A path to a *directory* containing model weights saved using
[`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *pytorch checkpoint file* (e.g, `./pt_model/`). In this case,
`generator_from_pt` should be set to `True`.
model_args (remaining positional arguments, *optional*):
All remaining positional arguments will be passed to the underlying model's `__init__` method.
retriever ([`RagRetriever`], *optional*):
The retriever to use.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
`output_attentions=True`).
- To update the question_encoder configuration, use the prefix *question_encoder_* for each
configuration parameter.
- To update the generator configuration, use the prefix *generator_* for each configuration parameter.
- To update the parent model configuration, do not use a prefix for each configuration parameter.
Behaves differently depending on whether a `config` is provided or automatically loaded.
Example:
```python
>>> from transformers import RagRetriever, TFRagModel
>>> # initialize a RAG from two pretrained models.
>>> model = TFRagModel.from_pretrained_question_encoder_generator(
... "facebook/dpr-question_encoder-single-nq-base", "google-t5/t5-small"
... )
>>> # alternatively, initialize from pytorch pretrained models can also be done
>>> model = TFRagModel.from_pretrained_question_encoder_generator(
... "facebook/dpr-question_encoder-single-nq-base",
... "facebook/bart-base",
... generator_from_pt=True,
... question_encoder_from_pt=True,
... )
>>> # saving model after fine-tuning
>>> model.save_pretrained("./rag")
>>> # load retriever
>>> retriever = RagRetriever.from_pretrained(
... "facebook/rag-token-base", index_name="exact", use_dummy_dataset=True
... )
>>> # load fine-tuned model with retriever
>>> model = TFRagModel.from_pretrained("./rag", retriever=retriever)
```"""
kwargs_question_encoder = {
argument[len("question_encoder_") :]: value
for argument, value in kwargs.items()
if argument.startswith("question_encoder_")
}
kwargs_generator = {
argument[len("generator_") :]: value
for argument, value in kwargs.items()
if argument.startswith("generator_")
}
# remove question_encoder, generator kwargs from kwargs
for key in kwargs_question_encoder.keys():
del kwargs["question_encoder_" + key]
for key in kwargs_generator.keys():
del kwargs["generator_" + key]
# Load and initialize the question_encoder and generator
# The distinction between question_encoder and generator at the model level is made
# by the value of the flag `is_generator` that we need to set correctly.
question_encoder = kwargs_question_encoder.pop("model", None)
if question_encoder is None:
assert question_encoder_pretrained_model_name_or_path is not None, (
"If `model` is not defined as an argument, a `question_encoder_pretrained_model_name_or_path` has to"
" be defined"
)
from ..auto.modeling_tf_auto import TFAutoModel
if "config" not in kwargs_question_encoder:
from ..auto.configuration_auto import AutoConfig
question_encoder_config = AutoConfig.from_pretrained(question_encoder_pretrained_model_name_or_path)
kwargs_question_encoder["config"] = question_encoder_config
question_encoder = TFAutoModel.from_pretrained(
question_encoder_pretrained_model_name_or_path,
name="question_encoder",
load_weight_prefix=cls.load_weight_prefix,
*model_args,
**kwargs_question_encoder,
)
generator = kwargs_generator.pop("generator", None)
if generator is None:
assert generator_pretrained_model_name_or_path is not None, (
"If `generator_model` is not defined as an argument, a `generator_pretrained_model_name_or_path` has"
" to be defined"
)
from ..auto.modeling_tf_auto import TFAutoModelForSeq2SeqLM
if "config" not in kwargs_generator:
from ..auto.configuration_auto import AutoConfig
generator_config = AutoConfig.from_pretrained(generator_pretrained_model_name_or_path)
kwargs_generator["config"] = generator_config
generator = TFAutoModelForSeq2SeqLM.from_pretrained(
generator_pretrained_model_name_or_path,
name="generator",
load_weight_prefix=cls.load_weight_prefix,
**kwargs_generator,
)
# instantiate config with corresponding kwargs
config = kwargs.get("config", None)
if config is None:
config = RagConfig.from_question_encoder_generator_configs(
question_encoder.config, generator.config, **kwargs
)
return cls(question_encoder=question_encoder, generator=generator, config=config, retriever=retriever)
|
class_definition
| 14,023 | 22,226 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rag/modeling_tf_rag.py
| null | 6,186 |
class TFRagModel(TFRagPreTrainedModel):
load_weight_prefix = "tf_rag_model_1"
def __init__(
self,
config: Optional[PretrainedConfig] = None,
question_encoder: Optional[TFPreTrainedModel] = None,
generator: Optional[TFPreTrainedModel] = None,
retriever: Optional[RagRetriever] = None,
load_weight_prefix: Optional[str] = None,
**kwargs,
):
assert config is not None or (
question_encoder is not None and generator is not None
), "Either a configuration or an question_encoder and a generator has to be provided."
if config is None:
config = RagConfig.from_question_encoder_generator_configs(
question_encoder.config, generator.config, **kwargs
)
else:
assert isinstance(config, self.config_class), f"config: {config} has to be of type {self.config_class}"
super().__init__(config, **kwargs)
if question_encoder is None:
from ..auto.modeling_tf_auto import TFAutoModel
question_encoder = TFAutoModel.from_config(config.question_encoder, name="question_encoder")
if generator is None:
from ..auto.modeling_tf_auto import TFAutoModelForSeq2SeqLM
load_weight_prefix = load_weight_prefix if load_weight_prefix is not None else self.load_weight_prefix
generator = TFAutoModelForSeq2SeqLM.from_config(
config.generator, name="generator", load_weight_prefix=load_weight_prefix + "/generator"
)
self.retriever = retriever
if self.retriever is not None:
assert isinstance(
retriever, RagRetriever
), f"`self.retriever` is of type {type(self.retriever)}, but should be of type `RagRetriever`"
self.retriever = retriever
self.question_encoder = question_encoder
self.generator = generator
def set_retriever(self, retriever: RagRetriever):
self.retriever = retriever
@unpack_inputs
@add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFRetrievAugLMOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
encoder_outputs: np.ndarray | tf.Tensor | None = None,
decoder_input_ids: np.ndarray | tf.Tensor | None = None,
decoder_attention_mask: np.ndarray | tf.Tensor | None = None,
past_key_values: Tuple[Tuple[Union[np.ndarray, tf.Tensor]]] | None = None,
doc_scores: np.ndarray | tf.Tensor | None = None,
context_input_ids: np.ndarray | tf.Tensor | None = None,
context_attention_mask: np.ndarray | tf.Tensor | None = None,
use_cache: bool | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
output_retrieved: bool | None = None,
n_docs: int | None = None,
return_dict: bool | None = None,
training: bool = False,
**kwargs,
) -> TFRetrievAugLMOutput:
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, RagRetriever, TFRagModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-token-base")
>>> retriever = RagRetriever.from_pretrained(
... "facebook/rag-token-base", index_name="exact", use_dummy_dataset=True
... )
>>> # initialize with RagRetriever to do everything in one forward call
>>> model = TFRagModel.from_pretrained("facebook/rag-token-base", retriever=retriever, from_pt=True)
>>> input_dict = tokenizer.prepare_seq2seq_batch(
... "How many people live in Paris?", "In Paris, there are 10 million people.", return_tensors="tf"
... )
>>> input_ids = input_dict["input_ids"]
>>> outputs = model(input_ids)
```"""
assert (
"decoder_cached_states" not in kwargs
), "Please use past_key_values to cache intermediate outputs" # from modeling_tf_bart.py
# aliasing to minimize code changing
n_docs = n_docs if n_docs is not None else self.config.n_docs
# whether retriever has to be used
has_to_retrieve = (
self.retriever is not None
and (context_input_ids is None or context_attention_mask is None or doc_scores is None)
and encoder_outputs is None
)
# encoder_outputs are pre-computed during RAG-token generation
if encoder_outputs is None:
if has_to_retrieve:
question_enc_outputs = self.question_encoder(
input_ids, attention_mask=attention_mask, return_dict=True, training=training
)
# see https://github.com/huggingface/transformers/blob/main/src/transformers/models/dpr/modeling_tf_dpr.py#L91
question_encoder_last_hidden_state = question_enc_outputs[
0
] # hidden states of question encoder => pooler_output
retriever_outputs = self.retriever(
input_ids,
question_encoder_last_hidden_state.numpy(),
prefix=self.generator.config.prefix,
n_docs=n_docs,
return_tensors="tf",
)
context_input_ids, context_attention_mask, retrieved_doc_embeds, retrieved_doc_ids = (
retriever_outputs["context_input_ids"],
retriever_outputs["context_attention_mask"],
retriever_outputs["retrieved_doc_embeds"],
retriever_outputs["doc_ids"],
)
context_input_ids = tf.cast(context_input_ids, tf.int32)
context_attention_mask = tf.cast(context_attention_mask, tf.int32)
retrieved_doc_embeds = tf.cast(retrieved_doc_embeds, tf.float32)
retrieved_doc_ids = tf.cast(retrieved_doc_ids, tf.int32)
# compute doc_scores
doc_scores = tf.squeeze(
tf.matmul(
tf.expand_dims(question_encoder_last_hidden_state, axis=1),
retrieved_doc_embeds,
transpose_b=True,
),
axis=1,
)
else:
assert context_input_ids is not None, (
"Make sure that `context_input_ids` are passed, if no `retriever` is set. Alternatively, you can"
" set a retriever using the `set_retriever(...)` function."
)
assert context_attention_mask is not None, (
"Make sure that `context_attention_mask` are passed, if no `retriever` is set. Alternatively, you"
" can set a retriever using the `set_retriever(...)` function."
)
assert doc_scores is not None, (
"Make sure that `doc_scores` are passed, if no `retriever` is set. Alternatively, you can set a"
" retriever using the `set_retriever(...)` function."
)
assert (
doc_scores is not None
), "Make sure that `doc_scores` are passed when passing `encoder_outputs` to the forward function."
assert (doc_scores.shape[1] % n_docs) == 0, (
f" The first dimension of `context_input_ids` should be a multiple of `n_docs`={n_docs}, but is"
f" {context_input_ids.shape[0]}."
)
# Decoder input without context documents
if decoder_input_ids is not None:
decoder_input_ids = tf.repeat(decoder_input_ids, n_docs, axis=0)
if decoder_attention_mask is not None:
decoder_attention_mask = tf.repeat(decoder_attention_mask, n_docs, axis=0)
gen_outputs = self.generator(
context_input_ids,
attention_mask=context_attention_mask,
encoder_outputs=encoder_outputs,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
return_dict=True,
training=training,
)
if not has_to_retrieve:
question_encoder_last_hidden_state = None
question_enc_hidden_states = None
question_enc_attentions = None
retrieved_doc_embeds = None
retrieved_doc_ids = None
else:
question_enc_hidden_states = question_enc_outputs.hidden_states
question_enc_attentions = question_enc_outputs.attentions
if not has_to_retrieve or not output_retrieved:
# don't output retrieved docs
context_input_ids = (None,)
context_attention_mask = None
retrieved_doc_embeds = None
retrieved_doc_ids = None
return TFRetrievAugLMOutput(
logits=gen_outputs.logits,
doc_scores=doc_scores,
past_key_values=gen_outputs.past_key_values,
context_input_ids=context_input_ids,
context_attention_mask=context_attention_mask,
retrieved_doc_embeds=retrieved_doc_embeds,
retrieved_doc_ids=retrieved_doc_ids,
question_encoder_last_hidden_state=question_encoder_last_hidden_state,
question_enc_hidden_states=question_enc_hidden_states,
question_enc_attentions=question_enc_attentions,
generator_enc_last_hidden_state=gen_outputs.encoder_last_hidden_state,
generator_enc_hidden_states=gen_outputs.encoder_hidden_states,
generator_enc_attentions=gen_outputs.encoder_attentions,
generator_dec_hidden_states=gen_outputs.decoder_hidden_states,
generator_dec_attentions=gen_outputs.decoder_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
with tf.name_scope(self.generator.name):
self.generator.build(None)
with tf.name_scope(self.question_encoder.name):
self.question_encoder.build(None)
|
class_definition
| 29,544 | 39,958 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rag/modeling_tf_rag.py
| null | 6,187 |
class TFRagTokenForGeneration(TFRagPreTrainedModel, TFCausalLanguageModelingLoss):
load_weight_prefix = "tf_rag_token_for_generation_1/rag"
def __init__(
self,
config: Optional[PretrainedConfig] = None,
question_encoder: Optional[TFPreTrainedModel] = None,
generator: Optional[TFPreTrainedModel] = None,
retriever: Optional[RagRetriever] = None,
**kwargs,
):
assert config is not None or (
question_encoder is not None and generator is not None
), "Either a configuration or an encoder and a generator has to be provided."
if config is None:
config = RagConfig.from_question_encoder_generator_configs(
question_encoder.config, generator.config, **kwargs
)
super().__init__(config)
# instantiate model
self.rag = TFRagModel(
config=config,
question_encoder=question_encoder,
generator=generator,
retriever=retriever,
load_weight_prefix=self.load_weight_prefix,
name="rag",
)
def set_retriever(self, retriever: RagRetriever):
self.rag.retriever = retriever
# Adapted from https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_tf_bart.py
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past_key_values=None,
attention_mask=None,
use_cache=None,
encoder_outputs=None,
doc_scores=None,
n_docs=None,
**kwargs,
):
if past_key_values is not None:
# if past is defined use only last decoder_input_ids
decoder_input_ids = decoder_input_ids[:, -1:]
return {
"input_ids": None,
"encoder_outputs": encoder_outputs,
"doc_scores": doc_scores,
"context_attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"past_key_values": past_key_values,
"use_cache": use_cache,
"do_marginalize": True,
"n_docs": n_docs,
}
@property
def retriever(self):
return self.rag.retriever
@property
def generator(self):
return self.rag.generator
@property
def question_encoder(self):
return self.rag.question_encoder
@staticmethod
def _gather_beams(nested, beam_indices, batch_axis=0):
"""
RAG-specific `_gather_beams`: gathers the beam slices indexed by beam_indices into new beam array. If the
nested tensor has a shape mismatch with the beam indices, then it means it is the cache. In that case, isolates
and takes care of the extra dimension for ndocs.
"""
def gather_fn(tensor):
is_rag_cache = tensor.shape[0] != beam_indices.shape[0]
if is_rag_cache:
n_docs = tensor.shape[0] // beam_indices.shape[0]
batch_size = beam_indices.shape[0]
# reshapes into (batch size, num beams, n_docs, ...), the cache format expected by RAG
tensor = tf.reshape(tensor, (batch_size, -1, n_docs, *tensor.shape[2:]))
gathered_tensor = tf.gather(params=tensor, indices=beam_indices, axis=1, batch_dims=1)
if is_rag_cache:
# reshapes back into the shape expected by beam search
gathered_tensor = tf.reshape(gathered_tensor, (batch_size * n_docs, -1, *gathered_tensor.shape[3:]))
return gathered_tensor
return tf.nest.map_structure(gather_fn, nested)
def marginalize(self, seq_logits, doc_scores, n_docs=None):
n_docs = n_docs if n_docs is not None else self.config.n_docs
# RAG-token marginalization
seq_logprobs = tf.nn.log_softmax(seq_logits, axis=-1)
seq_logprobs = tf.reshape(seq_logprobs, [seq_logits.shape[0] // n_docs, n_docs, -1, seq_logits.shape[-1]])
doc_logprobs = tf.nn.log_softmax(doc_scores, axis=1)
doc_logprobs = tf.expand_dims(doc_logprobs, axis=-1)
doc_logprobs = tf.expand_dims(doc_logprobs, axis=-1) # twice
log_prob_sum = seq_logprobs + doc_logprobs
return tf.reduce_logsumexp(log_prob_sum, axis=1)
@unpack_inputs
@add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFRetrievAugLMMarginOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
decoder_input_ids: np.ndarray | tf.Tensor | None = None,
decoder_attention_mask: np.ndarray | tf.Tensor | None = None,
encoder_outputs: np.ndarray | tf.Tensor | None = None,
past_key_values: Tuple[Tuple[Union[np.ndarray, tf.Tensor]]] | None = None,
doc_scores: np.ndarray | tf.Tensor | None = None,
context_input_ids: np.ndarray | tf.Tensor | None = None,
context_attention_mask: np.ndarray | tf.Tensor | None = None,
use_cache: bool | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
output_retrieved: bool | None = None,
n_docs: int | None = None,
do_marginalize: bool | None = None,
labels: np.ndarray | tf.Tensor | None = None,
reduce_loss: bool | None = None,
return_dict: bool | None = None,
training: bool = False,
**kwargs, # needs kwargs for generation
) -> TFRetrievAugLMMarginOutput:
r"""
do_marginalize (`bool`, *optional*):
If `True`, the logits are marginalized over all documents by making use of
`torch.nn.functional.log_softmax`.
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the cross entropy classification loss according to Rag-Token model formulation See
https://arxiv.org/pdf/2005.11401.pdf Section 2.1 for details about Rag-Token formulation. Indices should be
in `[0, ..., config.vocab_size - 1]`.
reduce_loss (`bool`, *optional*):
Only relevant if `labels` is passed. If `True`, the NLL loss is reduced using the `tf.Tensor.sum`
operation.
kwargs (`Dict[str, any]`, *optional*, defaults to `{}`):
Legacy dictionary, which is required so that model can use *generate()* function.
Returns:
Example:
```python
>>> import tensorflow as tf
>>> from transformers import AutoTokenizer, RagRetriever, TFRagTokenForGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-token-nq")
>>> retriever = RagRetriever.from_pretrained(
... "facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True
... )
>>> # initialize with RagRetriever to do everything in one forward call
>>> model = TFRagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever, from_pt=True)
>>> input_dict = tokenizer.prepare_seq2seq_batch(
... "How many people live in Paris?", "In Paris, there are 10 million people.", return_tensors="tf"
... )
>>> outputs = model(input_dict, output_retrieved=True)
>>> # or use retriever separately
>>> # 1. Encode
>>> input_ids = input_dict["input_ids"]
>>> question_hidden_states = model.question_encoder(input_ids)[0]
>>> # 2. Retrieve
>>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.numpy(), return_tensors="tf")
>>> doc_scores = tf.squeeze(
... tf.matmul(
... tf.expand_dims(question_hidden_states, axis=1), docs_dict["retrieved_doc_embeds"], transpose_b=True
... ),
... axis=1,
... )
>>> # 3. Forward to generator
>>> outputs = model(
... inputs=None,
... context_input_ids=docs_dict["context_input_ids"],
... context_attention_mask=docs_dict["context_attention_mask"],
... doc_scores=doc_scores,
... decoder_input_ids=input_dict["labels"],
... )
>>> # or directly generate
>>> generated = model.generate(
... context_input_ids=docs_dict["context_input_ids"],
... context_attention_mask=docs_dict["context_attention_mask"],
... doc_scores=doc_scores,
... )
>>> generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True)
```"""
assert (
"decoder_cached_states" not in kwargs
), "Please use past_key_values to cache intermediate outputs" # from modeling_tf_bart.py
do_marginalize = do_marginalize if do_marginalize else self.config.do_marginalize
reduce_loss = reduce_loss if reduce_loss else self.config.reduce_loss
if labels is not None:
if decoder_input_ids is None:
decoder_input_ids = labels
use_cache = False
outputs = self.rag(
input_ids,
attention_mask=attention_mask,
encoder_outputs=encoder_outputs,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
context_input_ids=context_input_ids,
context_attention_mask=context_attention_mask,
doc_scores=doc_scores,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_retrieved=output_retrieved,
n_docs=n_docs,
training=training,
)
loss = None
logits = outputs.logits
if labels is not None:
assert decoder_input_ids is not None
loss = self.get_nll(
outputs.logits,
outputs.doc_scores,
labels,
reduce_loss=reduce_loss,
epsilon=self.config.label_smoothing,
n_docs=n_docs,
)
if do_marginalize:
logits = self.marginalize(logits, outputs.doc_scores, n_docs)
return TFRetrievAugLMMarginOutput(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
doc_scores=outputs.doc_scores,
context_input_ids=outputs.context_input_ids,
context_attention_mask=outputs.context_attention_mask,
retrieved_doc_embeds=outputs.retrieved_doc_embeds,
retrieved_doc_ids=outputs.retrieved_doc_ids,
question_encoder_last_hidden_state=outputs.question_encoder_last_hidden_state,
question_enc_hidden_states=outputs.question_enc_hidden_states,
question_enc_attentions=outputs.question_enc_attentions,
generator_enc_last_hidden_state=outputs.generator_enc_last_hidden_state,
generator_enc_hidden_states=outputs.generator_enc_hidden_states,
generator_enc_attentions=outputs.generator_enc_attentions,
generator_dec_hidden_states=outputs.generator_dec_hidden_states,
generator_dec_attentions=outputs.generator_dec_attentions,
)
def generate(
self,
input_ids: TFModelInputType | None = None,
attention_mask: tf.Tensor | None = None,
context_input_ids=None,
context_attention_mask=None,
doc_scores=None,
n_docs=None,
generation_config=None,
logits_processor=TFLogitsProcessorList(),
**kwargs,
):
"""
Implements TFRAG token decoding.
Args:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
The sequence used as a prompt for the generation. If `input_ids` is not passed, then
`context_input_ids` has to be provided.
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
context_input_ids (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Input IDs post-processed from the retrieved documents and the question encoder `input_ids` by the
retriever.
If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the
forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`].
context_attention_mask (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the
retriever.
If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the
forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`].
doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`):
Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
`question_encoder_last_hidden_state`.
If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the
forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`].
n_docs (`int`, *optional*, defaults to `config.n_docs`)
Number of documents to retrieve and/or number of documents for which to generate an answer.
generation_config (`~generation.GenerationConfig`, *optional*):
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
passed to generate matching the attributes of `generation_config` will override them. If
`generation_config` is not provided, the default will be used, which had the following loading
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
default values, whose documentation should be checked to parameterize generation.
logits_processor (`TFLogitsProcessorList`, *optional*):
Custom logits processors that complement the default logits processors built from arguments and a
model's config. If a logit processor is passed that is already created with the arguments or a model's
config an error is thrown.
kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model.
Return:
`tf.Tensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated sequences. The
second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early
due to the `eos_token_id`.
"""
# Handle `generation_config` and kwargs that might update it
if generation_config is None:
generation_config = self.generation_config
generation_config = copy.deepcopy(generation_config)
model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs
# set default parameters
n_docs = n_docs if n_docs is not None else self.config.n_docs
# retrieve docs
if self.retriever is not None and context_input_ids is None:
question_hidden_states = self.question_encoder(input_ids, attention_mask=attention_mask)[0]
out = self.retriever(
input_ids,
question_hidden_states.numpy().astype(np.float32),
prefix=self.generator.config.prefix,
n_docs=n_docs,
return_tensors="tf",
)
context_input_ids, context_attention_mask, retrieved_doc_embeds = (
out["context_input_ids"],
out["context_attention_mask"],
out["retrieved_doc_embeds"],
)
context_input_ids = tf.cast(context_input_ids, tf.int32)
context_attention_mask = tf.cast(context_attention_mask, tf.int32)
retrieved_doc_embeds = tf.cast(retrieved_doc_embeds, tf.float32)
# compute doc_scores
doc_scores = tf.matmul(
tf.expand_dims(question_hidden_states, axis=1), retrieved_doc_embeds, transpose_b=True
)
doc_scores = tf.squeeze(doc_scores, axis=1)
assert (context_input_ids.shape[0] % n_docs) == 0, (
f" The first dimension of `context_input_ids` should be a multiple of `n_docs`={n_docs}, but is"
f" {context_input_ids.shape[0]}."
)
batch_size = context_input_ids.shape[0] // n_docs
encoder = self.rag.generator.get_encoder()
encoder_outputs = encoder(
input_ids=context_input_ids,
attention_mask=context_attention_mask,
output_attentions=generation_config.output_attentions,
output_hidden_states=generation_config.output_hidden_states,
return_dict=True,
)
decoder_input_ids = tf.fill(
(batch_size * generation_config.num_beams, 1),
tf.cast(generation_config.decoder_start_token_id, tf.int32),
)
last_hidden_state = encoder_outputs["last_hidden_state"]
def extend_enc_output(tensor, num_beams=None):
"""
Broadcast tensor with `num_beams` replica, with correct order Input: tensor of shape (batch_size*n_docs ,
d) Output: tensor of shape (batch_size*num_beams*n_docs , d)
"""
# expand batch_size & num_beam dimensions
d_shape_list = tensor.shape[1:]
# split n_docs dimensions
new_shape = (batch_size, 1, n_docs) + d_shape_list
tensor = tf.reshape(tensor, new_shape)
# repeat same last hidden states over `num_beams` dimension
new_shape = (batch_size, num_beams, n_docs) + d_shape_list
tensor = tf.broadcast_to(tensor, new_shape)
# merge `batch_size`, `num_beams`, `num_docs` dims again
new_shape = (batch_size * num_beams * n_docs,) + d_shape_list
return tf.reshape(tensor, new_shape)
# correctly extend last_hidden_state and attention mask
context_attention_mask = extend_enc_output(context_attention_mask, num_beams=generation_config.num_beams)
encoder_outputs["last_hidden_state"] = extend_enc_output(
last_hidden_state, num_beams=generation_config.num_beams
)
doc_scores = tf.repeat(doc_scores, generation_config.num_beams, axis=0)
# define start_len & additional parameters
model_kwargs["doc_scores"] = doc_scores
model_kwargs["encoder_outputs"] = encoder_outputs
model_kwargs["attention_mask"] = context_attention_mask
model_kwargs["n_docs"] = n_docs
pre_processor = self._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=tf.shape(decoder_input_ids)[-1],
logits_processor=logits_processor,
)
if generation_config.num_beams == 1:
return self.greedy_search(
input_ids=decoder_input_ids,
max_length=generation_config.max_length,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
logits_processor=pre_processor,
output_attentions=generation_config.output_attentions,
output_hidden_states=generation_config.output_hidden_states,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
**model_kwargs,
)
elif generation_config.num_beams > 1:
if generation_config.num_beams < generation_config.num_return_sequences:
raise ValueError(
"Beam search decoding cannot return more sequences than it has beams. Please set num_beams >="
f" num_return_sequences, got {generation_config.num_beams} and"
f" {generation_config.num_return_sequences} (respectivelly)"
)
def unflatten_beam_dim(tensor):
"""Unflattens the first, flat batch*beam dimension of a non-scalar array."""
shape = shape_list(tensor)
return tf.reshape(tensor, [-1, generation_config.num_beams] + shape[1:])
decoder_input_ids = unflatten_beam_dim(decoder_input_ids)
model_kwargs["attention_mask"] = unflatten_beam_dim(model_kwargs["attention_mask"])
model_kwargs["encoder_outputs"]["last_hidden_state"] = unflatten_beam_dim(
model_kwargs["encoder_outputs"]["last_hidden_state"]
)
return self.beam_search(
input_ids=decoder_input_ids,
max_length=generation_config.max_length,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
logits_processor=pre_processor,
output_attentions=generation_config.output_attentions,
output_hidden_states=generation_config.output_hidden_states,
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
**model_kwargs,
)
else:
raise ValueError(
f"`num_beams` has to be an integer strictly superior to 0 (≥ 1), but is {generation_config.num_beams}"
)
def get_input_embeddings(self):
return self.rag.generator.get_input_embeddings()
def get_output_embeddings(self):
return self.rag.generator.get_output_embeddings()
# Adapted from tf_t5's & tf_bart's _shift_right
def shift_tokens_right(self, input_ids, start_token_id=None):
"""Shift input ids one token to the right, and pad with start_token_id"""
if start_token_id is None:
start_token_id = self.generator.config.decoder_start_token_id
assert start_token_id is not None, (
"self.generator.config.decoder_start_token_id has to be defined. In Rag we commonly use Bart as"
" generator, see Bart docs for more information"
)
pad_token_id = self.generator.config.pad_token_id
assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined."
start_tokens = tf.fill((shape_list(input_ids)[0], 1), tf.cast(start_token_id, input_ids.dtype))
shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1)
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids = tf.where(
shifted_input_ids == -100,
tf.fill(shape_list(shifted_input_ids), tf.cast(pad_token_id, input_ids.dtype)),
shifted_input_ids,
)
# "Verify that `labels` has only positive values and -100"
assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.cast(0, shifted_input_ids.dtype))
# Make sure the assertion op is called by wrapping the result in an identity no-op
with tf.control_dependencies([assert_gte0]):
shifted_input_ids = tf.identity(shifted_input_ids)
return shifted_input_ids
# nll stands for 'negative log likelihood'
def get_nll(self, seq_logits, doc_scores, target, reduce_loss=False, epsilon=0.0, n_docs=None):
n_docs = n_docs if n_docs is not None else self.config.n_docs
# shift tokens left (from original Pytorch's version)
target = tf.concat(
[target[:, 1:], tf.fill([target.shape[0], 1], tf.cast(self.config.generator.pad_token_id, target.dtype))],
axis=1,
)
rag_logprobs = self.marginalize(seq_logits, doc_scores, n_docs)
loss = self.hf_compute_loss(target, rag_logprobs, from_logits=True, reduce_loss=reduce_loss)
return loss
# Adopted modeling_tf_bart + add smooth_loss to match with pytorch version
def hf_compute_loss(self, labels, y_pred, smooth_epsilon=0.0, from_logits=True, reduce_loss=False):
"""CrossEntropyLoss that ignores pad tokens"""
# Matt: As written, this loss is not XLA-compatible, but it's doing some very weird things
# and I don't feel comfortable converting it.
loss_fn = keras.losses.SparseCategoricalCrossentropy(
from_logits=True,
reduction=keras.losses.Reduction.SUM,
)
if from_logits is False: # convert to logits
eps = 1e-9
y_pred = tf.clip_by_value(y_pred, clip_value_min=eps, clip_value_max=1 - eps)
y_pred = tf.math.log(y_pred)
logits = y_pred
melted_labels = tf.reshape(labels, (-1,))
active_loss = tf.not_equal(melted_labels, self.config.generator.pad_token_id)
reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, logits.shape[2])), active_loss)
labels = tf.boolean_mask(melted_labels, active_loss)
nll_loss = loss_fn(labels, reduced_logits)
smooth_loss = -tf.reduce_sum(reduced_logits, axis=-1)
smooth_loss = tf.reduce_sum(smooth_loss) # sum and squeeze like torch
eps_i = smooth_epsilon / reduced_logits.shape[-1]
loss = (1.0 - smooth_epsilon) * nll_loss + eps_i * smooth_loss
return loss
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "rag", None) is not None:
with tf.name_scope(self.rag.name):
self.rag.build(None)
|
class_definition
| 40,154 | 66,857 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rag/modeling_tf_rag.py
| null | 6,188 |
class TFRagSequenceForGeneration(TFRagPreTrainedModel, TFCausalLanguageModelingLoss):
load_weight_prefix = "tf_rag_sequence_for_generation_1/rag"
def __init__(
self,
config: Optional[PretrainedConfig] = None,
question_encoder: Optional[TFPreTrainedModel] = None,
generator: Optional[TFPreTrainedModel] = None,
retriever: Optional[RagRetriever] = None,
**kwargs,
):
assert config is not None or (
question_encoder is not None and generator is not None
), "Either a configuration or an encoder and a generator has to be provided."
if config is None:
config = RagConfig.from_question_encoder_generator_configs(
question_encoder.config, generator.config, **kwargs
)
super().__init__(config)
# instantiate model
self.rag = TFRagModel(
config=config,
question_encoder=question_encoder,
generator=generator,
retriever=retriever,
load_weight_prefix=self.load_weight_prefix,
name="rag",
)
def set_retriever(self, retriever: RagRetriever):
self.rag.retriever = retriever
@property
def retriever(self):
return self.rag.retriever
@property
def generator(self):
return self.rag.generator
@property
def question_encoder(self):
return self.rag.question_encoder
@unpack_inputs
@add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFRetrievAugLMMarginOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
decoder_input_ids: np.ndarray | tf.Tensor | None = None,
decoder_attention_mask: np.ndarray | tf.Tensor | None = None,
encoder_outputs: np.ndarray | tf.Tensor | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
doc_scores: np.ndarray | tf.Tensor | None = None,
context_input_ids: np.ndarray | tf.Tensor | None = None,
context_attention_mask: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_retrieved: Optional[bool] = None,
n_docs: Optional[int] = None,
exclude_bos_score: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
reduce_loss: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs, # needs kwargs for generation
) -> Union[Tuple[tf.Tensor], TFRetrievAugLMMarginOutput]:
r"""
exclude_bos_score (`bool`, *optional*):
Only relevant if `labels` is passed. If `True`, the score of the BOS token is disregarded when computing
the loss.
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the cross entropy classification loss according to Rag-Sequence model formulation See
https://arxiv.org/pdf/2005.11401.pdf Section 2.1 for details about Rag-Sequence formulation. Indices should
be in `[0, ..., config.vocab_size - 1]`.
reduce_loss (`bool`, *optional*):
Only relevant if `labels` is passed. If `True`, the NLL loss is reduced using the `tf.Tensor.sum`
operation.
kwargs (`Dict[str, any]`, *optional*, defaults to `{}`):
Legacy dictionary, which is required so that model can use *generate()* function.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, RagRetriever, TFRagSequenceForGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-sequence-nq")
>>> retriever = RagRetriever.from_pretrained(
... "facebook/rag-sequence-nq", index_name="exact", use_dummy_dataset=True
... )
>>> # initialize with RagRetriever to do everything in one forward call
>>> model = TFRagSequenceForGeneration.from_pretrained(
... "facebook/rag-sequence-nq", retriever=retriever, from_pt=True
... )
>>> input_dict = tokenizer.prepare_seq2seq_batch(
... "How many people live in Paris?", "In Paris, there are 10 million people.", return_tensors="tf"
... )
>>> outputs = model(input_dict, output_retrieved=True)
>>> # or use retriever separately
>>> # 1. Encode
>>> input_ids = input_dict["input_ids"]
>>> question_hidden_states = model.question_encoder(input_ids)[0]
>>> # 2. Retrieve
>>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.numpy(), return_tensors="tf")
>>> doc_scores = tf.squeeze(
... tf.matmul(
... tf.expand_dims(question_hidden_states, axis=1), docs_dict["retrieved_doc_embeds"], transpose_b=True
... ),
... axis=1,
... )
>>> # 3. Forward to generator
>>> outputs = model(
... inputs=None,
... context_input_ids=docs_dict["context_input_ids"],
... context_attention_mask=docs_dict["context_attention_mask"],
... doc_scores=doc_scores,
... decoder_input_ids=input_dict["labels"],
... )
>>> # or directly generate
>>> generated = model.generate(
... context_input_ids=docs_dict["context_input_ids"],
... context_attention_mask=docs_dict["context_attention_mask"],
... doc_scores=doc_scores,
... )
>>> generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True)
```"""
assert (
"decoder_cached_states" not in kwargs
), "Please use past_key_values to cache intermediate outputs" # from modeling_tf_bart.py
exclude_bos_score = exclude_bos_score if exclude_bos_score else self.config.exclude_bos_score
reduce_loss = reduce_loss if reduce_loss else self.config.reduce_loss
if labels is not None:
if decoder_input_ids is None:
decoder_input_ids = labels
use_cache = False
outputs = self.rag(
input_ids,
attention_mask=attention_mask,
encoder_outputs=encoder_outputs,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
context_input_ids=context_input_ids,
context_attention_mask=context_attention_mask,
doc_scores=doc_scores,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_retrieved=output_retrieved,
n_docs=n_docs,
training=training,
)
loss = None
if labels is not None:
loss = self.get_nll(
outputs.logits,
outputs.doc_scores,
labels,
reduce_loss=reduce_loss,
epsilon=self.config.label_smoothing,
n_docs=n_docs,
)
return TFRetrievAugLMMarginOutput(
loss=loss,
logits=outputs.logits,
doc_scores=outputs.doc_scores,
past_key_values=outputs.past_key_values,
context_input_ids=outputs.context_input_ids,
context_attention_mask=outputs.context_attention_mask,
retrieved_doc_embeds=outputs.retrieved_doc_embeds,
retrieved_doc_ids=outputs.retrieved_doc_ids,
question_encoder_last_hidden_state=outputs.question_encoder_last_hidden_state,
question_enc_hidden_states=outputs.question_enc_hidden_states,
question_enc_attentions=outputs.question_enc_attentions,
generator_enc_last_hidden_state=outputs.generator_enc_last_hidden_state,
generator_enc_hidden_states=outputs.generator_enc_hidden_states,
generator_enc_attentions=outputs.generator_enc_attentions,
generator_dec_hidden_states=outputs.generator_dec_hidden_states,
generator_dec_attentions=outputs.generator_dec_attentions,
)
def get_nll(
self, seq_logits, doc_scores, target, reduce_loss=False, epsilon=0.0, exclude_bos_score=False, n_docs=None
):
# shift tokens left
target = tf.concat(
[target[:, 1:], tf.fill([target.shape[0], 1], tf.cast(self.config.generator.pad_token_id, target.dtype))],
axis=1,
)
# bos_token_id is None for T5
bos_token_id = self.config.bos_token_id or self.config.generator.bos_token_id
n_docs = n_docs if n_docs is not None else self.config.n_docs
equal_bos_token_id_all = tf.reduce_all(tf.equal(target[:, 0], bos_token_id))
use_bos = bos_token_id is not None and equal_bos_token_id_all
def _mask_pads(ll, smooth_obj):
pad_mask = tf.equal(target, tf.cast(self.config.generator.pad_token_id, target.dtype))
if tf.reduce_any(pad_mask):
ll = tf.where(pad_mask, 0.0, ll)
smooth_obj = tf.where(pad_mask, 0.0, smooth_obj)
return tf.squeeze(ll, axis=-1), tf.squeeze(smooth_obj, axis=-1)
# seq_logits.shape = (batch*n_docs, tgt_len , vocabs)
seq_logprobs = tf.nn.log_softmax(seq_logits, axis=-1)
seq_logprobs = tf.reshape(
seq_logprobs, (seq_logits.shape[0] // n_docs, n_docs, -1, seq_logits.shape[-1])
) # (batch_size, n_docs, tgt_len, vocabs)
doc_logprobs = tf.nn.log_softmax(doc_scores, axis=1)
doc_logprobs = tf.expand_dims(doc_logprobs, axis=-1)
doc_logprobs = tf.expand_dims(doc_logprobs, axis=-1) # done twice to get 4-D
# RAG-sequence marginalization
first_token_scores = seq_logprobs[:, :, :1, :]
second_token_scores = seq_logprobs[:, :, 1:2, :]
remainder = seq_logprobs[:, :, 2:, :]
rag_logprobs = tf.concat([first_token_scores, second_token_scores + doc_logprobs, remainder], axis=2)
# calculate loss
target = tf.expand_dims(target, axis=1) # n_docs dimension
target = tf.expand_dims(target, axis=-1) # logits dimension
target = tf.repeat(target, n_docs, axis=1)
assert len(target.shape) == len(rag_logprobs.shape)
# last-axis gathering only - use 2D-reshape-trick for Torch's style nD gathering
def torch_gather(param, id_tensor):
# 2d-gather torch equivalent: https://stackoverflow.com/questions/52129909/tensorflow-equivalent-of-torch-gather
def gather2d(target, id_tensor):
idx = tf.stack([tf.range(tf.shape(id_tensor)[0], dtype=id_tensor.dtype), id_tensor[:, 0]], axis=-1)
result = tf.gather_nd(target, idx)
return tf.expand_dims(result, axis=-1)
target = tf.reshape(param, (-1, param.shape[-1])) # reshape 2D
target_shape = id_tensor.shape
id_tensor = tf.reshape(id_tensor, (-1, 1)) # also 2D-index
result = gather2d(target, id_tensor)
return tf.reshape(result, target_shape)
ll = torch_gather(rag_logprobs, id_tensor=target)
smooth_obj = tf.reduce_sum(rag_logprobs, axis=-1, keepdims=True) # total sum of all (normalised) logits
ll, smooth_obj = _mask_pads(ll, smooth_obj)
# sum over tokens, exclude bos while scoring
if exclude_bos_score and use_bos:
ll = tf.reduce_sum(ll[:, :, 1:], axis=2)
else:
ll = tf.reduce_sum(ll, axis=2)
smooth_obj = tf.reduce_sum(smooth_obj, axis=2)
ll = tf.math.reduce_logsumexp(ll, axis=1) # logsumexp over docs
smooth_obj = tf.math.reduce_logsumexp(smooth_obj, axis=1)
nll_loss = -ll
smooth_loss = -smooth_obj
if reduce_loss:
nll_loss = tf.reduce_sum(nll_loss)
smooth_loss = tf.reduce_sum(smooth_loss)
eps_i = epsilon / rag_logprobs.shape[-1]
loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss
return loss
def generate(
self,
input_ids: TFModelInputType | None = None,
attention_mask: tf.Tensor | None = None,
context_input_ids=None,
context_attention_mask=None,
doc_scores=None,
do_deduplication=None, # defaults to True
num_return_sequences=None, # defaults to 1
num_beams=None, # defaults to 1
n_docs=None,
**model_kwargs,
):
"""
Implements RAG sequence "thorough" decoding. Read the [`~generation.GenerationMixin.generate`]` documentation
for more information on how to set other generate input parameters
Args:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
The sequence used as a prompt for the generation. If `input_ids` is not passed, then
`context_input_ids` has to be provided.
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for
tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention
masks?](../glossary#attention-mask)
context_input_ids (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Input IDs post-processed from the retrieved documents and the question encoder input_ids by the
retriever.
context_attention_mask (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*):
Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the
retriever. If the model has is not initialized with a `retriever` or `input_ids` is not given,
`context_input_ids` and `context_attention_mask` have to be provided to the forward pass. They are
returned by [`~RagRetriever.__call__`].
doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`):
Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and
`question_encoder_last_hidden_state`. If the model has is not initialized with a `retriever` or
`input_ids` is not given, `doc_scores` has to be provided to the forward pass. `doc_scores` are
returned by [`~RagRetriever.__call__`].
do_deduplication (`bool`, *optional*):
Whether or not to deduplicate the generations from different context documents for a given input. Has
to be set to `False` if used while training with distributed backend.
num_return_sequences(`int`, *optional*, defaults to 1):
The number of independently computed returned sequences for each element in the batch. Note that this
is not the value we pass to the `generator`'s `[`~generation.GenerationMixin.generate`]` function,
where we set `num_return_sequences` to `num_beams`.
num_beams (`int`, *optional*, defaults to 1):
Number of beams for beam search. 1 means no beam search.
n_docs (`int`, *optional*, defaults to `config.n_docs`)
Number of documents to retrieve and/or number of documents for which to generate an answer.
kwargs (`Dict[str, Any]`, *optional*):
Additional kwargs will be passed to [`~generation.GenerationMixin.generate`]
Return:
`tf.Tensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated sequences. The
second dimension (sequence length) is either equal to `max_length` or shorter if all batches finished early
due to the `eos_token_id`.
"""
n_docs = n_docs if n_docs is not None else self.config.n_docs
do_deduplication = do_deduplication if do_deduplication is not None else self.config.do_deduplication
num_doc_return_sequences = (
num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences
)
num_beams = num_beams if num_beams is not None else self.config.num_beams
assert (
input_ids is not None or context_input_ids is not None
), " At least one of input_ids or context_input_ids must be given"
if self.retriever is not None and context_input_ids is None:
question_hidden_states = self.question_encoder(input_ids, attention_mask=attention_mask)[0]
context_input_ids = self.retriever(
input_ids,
question_hidden_states.numpy(),
prefix=self.generator.config.prefix,
n_docs=n_docs,
return_tensors="tf",
)["context_input_ids"]
hypos = []
model_kwargs["num_beams"] = num_beams
model_kwargs["num_return_sequences"] = num_beams # put here so that not confused with num_doc_return_sequences
model_kwargs["attention_mask"] = None
batch_size = input_ids.shape[0] if input_ids is not None else context_input_ids.shape[0] // n_docs
for index in range(batch_size):
# first, generate beams from documents:
generator_input_ids = context_input_ids[index * n_docs : (index + 1) * n_docs] # (n_docs, max_len)
output_sequences = self.generator.generate(
generator_input_ids,
**model_kwargs,
) # n_docs * n_beam, tgt_len
if do_deduplication:
# do_deduplication -- for TF, work on Eager mode only!
output_sequences = tf.stack(list({str(k.numpy().tolist()): k for k in output_sequences}.values()))
num_candidates = output_sequences.shape[
0
] # after deduplication, this number can be less than n_docs*n_beam
# then, run model forwards to get nll scores:
if input_ids is not None:
new_input_ids = tf.tile(input_ids[index : index + 1], (num_candidates, 1))
outputs = self(new_input_ids, labels=output_sequences, exclude_bos_score=True)
else: # input_ids is None, need context_input_ids/mask and doc_scores
assert context_attention_mask is not None, (
"Make sure that `context_attention_mask` are passed, if no `input_ids` is set. Alternatively, you"
" can set a retriever using the `set_retriever(...)` function."
)
assert doc_scores is not None, (
"Make sure that `doc_scores` are passed, if no `input_ids` is set. Alternatively, you can set a"
" retriever using the `set_retriever(...)` function."
)
individual_input_ids = tf.tile(
generator_input_ids, (num_candidates, 1)
) # (num_candidates*n_docs, max_len)
individual_attention_mask = context_attention_mask[index * n_docs : (index + 1) * n_docs]
individual_attention_mask = tf.tile(individual_attention_mask, (num_candidates, 1))
individual_doc_scores = doc_scores[index : (index + 1), :] # doc_scores.shape = [batch, n_docs]
individual_doc_scores = tf.tile(individual_doc_scores, (num_candidates, 1)) # [num_candidates, n_docs]
outputs = self(
input_ids=None,
context_input_ids=individual_input_ids,
context_attention_mask=individual_attention_mask,
doc_scores=individual_doc_scores,
labels=output_sequences,
exclude_bos_score=True,
)
top_cand_inds = tf.math.top_k((-outputs["loss"]), k=num_doc_return_sequences)[1]
# add hypothesis
hypos.append(tf.gather(output_sequences, top_cand_inds))
return self._cat_and_pad(hypos, pad_token_id=self.config.generator.pad_token_id)
@staticmethod
def _cat_and_pad(tensors, pad_token_id):
# used by generate(): tensors is a (batched) list of (candidates, len); len is varied across batch
# Initialize padded tensor with shape ( all_candidates , max_candidate_length ),
# where all_candidates counted from all inputs
new_shape = sum([t.shape[0] for t in tensors]), max([t.shape[1] for t in tensors])
output = tf.fill(new_shape, pad_token_id)
# Normal tensor doesn't support slice assignment, so we need tf.Variable
output = tf.Variable(output)
# Assign, and then convert back to tensor
ind = 0
for t in tensors:
output[ind : ind + t.shape[0], : t.shape[1]].assign(t)
ind += t.shape[0]
output = tf.convert_to_tensor(output)
return tf.cast(output, tensors[0][0][0].dtype)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "rag", None) is not None:
with tf.name_scope(self.rag.name):
self.rag.build(None)
|
class_definition
| 67,059 | 88,808 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rag/modeling_tf_rag.py
| null | 6,189 |
class Index:
"""
A base class for the Indices encapsulated by the [`RagRetriever`].
"""
def get_doc_dicts(self, doc_ids: np.ndarray) -> List[dict]:
"""
Returns a list of dictionaries, containing titles and text of the retrieved documents.
Args:
doc_ids (`np.ndarray` of shape `(batch_size, n_docs)`):
A tensor of document indices.
"""
raise NotImplementedError
def get_top_docs(self, question_hidden_states: np.ndarray, n_docs=5) -> Tuple[np.ndarray, np.ndarray]:
"""
For each query in the batch, retrieves `n_docs` documents.
Args:
question_hidden_states (`np.ndarray` of shape `(batch_size, vector_size)`):
An array of query vectors.
n_docs (`int`):
The number of docs retrieved per query.
Returns:
`np.ndarray` of shape `(batch_size, n_docs)`: A tensor of indices of retrieved documents. `np.ndarray` of
shape `(batch_size, vector_size)`: A tensor of vector representations of retrieved documents.
"""
raise NotImplementedError
def is_initialized(self):
"""
Returns `True` if index is already initialized.
"""
raise NotImplementedError
def init_index(self):
"""
A function responsible for loading the index into memory. Should be called only once per training run of a RAG
model. E.g. if the model is trained on multiple GPUs in a distributed setup, only one of the workers will load
the index.
"""
raise NotImplementedError
|
class_definition
| 1,351 | 2,989 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rag/retrieval_rag.py
| null | 6,190 |
class LegacyIndex(Index):
"""
An index which can be deserialized from the files built using https://github.com/facebookresearch/DPR. We use
default faiss index parameters as specified in that repository.
Args:
vector_size (`int`):
The dimension of indexed vectors.
index_path (`str`):
A path to a *directory* containing index files compatible with [`~models.rag.retrieval_rag.LegacyIndex`]
"""
INDEX_FILENAME = "hf_bert_base.hnswSQ8_correct_phi_128.c_index"
PASSAGE_FILENAME = "psgs_w100.tsv.pkl"
def __init__(self, vector_size, index_path):
self.index_id_to_db_id = []
self.index_path = index_path
self.passages = self._load_passages()
self.vector_size = vector_size
self.index = None
self._index_initialized = False
def _resolve_path(self, index_path, filename):
is_local = os.path.isdir(index_path)
try:
# Load from URL or cache if already cached
resolved_archive_file = cached_file(index_path, filename)
except EnvironmentError:
msg = (
f"Can't load '{filename}'. Make sure that:\n\n"
f"- '{index_path}' is a correct remote path to a directory containing a file named {filename}\n\n"
f"- or '{index_path}' is the correct path to a directory containing a file named {filename}.\n\n"
)
raise EnvironmentError(msg)
if is_local:
logger.info(f"loading file {resolved_archive_file}")
else:
logger.info(f"loading file {filename} from cache at {resolved_archive_file}")
return resolved_archive_file
def _load_passages(self):
logger.info(f"Loading passages from {self.index_path}")
passages_path = self._resolve_path(self.index_path, self.PASSAGE_FILENAME)
if not strtobool(os.environ.get("TRUST_REMOTE_CODE", "False")):
raise ValueError(
"This part uses `pickle.load` which is insecure and will execute arbitrary code that is potentially "
"malicious. It's recommended to never unpickle data that could have come from an untrusted source, or "
"that could have been tampered with. If you already verified the pickle data and decided to use it, "
"you can set the environment variable `TRUST_REMOTE_CODE` to `True` to allow it."
)
with open(passages_path, "rb") as passages_file:
passages = pickle.load(passages_file)
return passages
def _deserialize_index(self):
logger.info(f"Loading index from {self.index_path}")
resolved_index_path = self._resolve_path(self.index_path, self.INDEX_FILENAME + ".index.dpr")
self.index = faiss.read_index(resolved_index_path)
resolved_meta_path = self._resolve_path(self.index_path, self.INDEX_FILENAME + ".index_meta.dpr")
if not strtobool(os.environ.get("TRUST_REMOTE_CODE", "False")):
raise ValueError(
"This part uses `pickle.load` which is insecure and will execute arbitrary code that is potentially "
"malicious. It's recommended to never unpickle data that could have come from an untrusted source, or "
"that could have been tampered with. If you already verified the pickle data and decided to use it, "
"you can set the environment variable `TRUST_REMOTE_CODE` to `True` to allow it."
)
with open(resolved_meta_path, "rb") as metadata_file:
self.index_id_to_db_id = pickle.load(metadata_file)
assert (
len(self.index_id_to_db_id) == self.index.ntotal
), "Deserialized index_id_to_db_id should match faiss index size"
def is_initialized(self):
return self._index_initialized
def init_index(self):
index = faiss.IndexHNSWFlat(self.vector_size + 1, 512)
index.hnsw.efSearch = 128
index.hnsw.efConstruction = 200
self.index = index
self._deserialize_index()
self._index_initialized = True
def get_doc_dicts(self, doc_ids: np.array):
doc_list = []
for doc_ids_i in doc_ids:
ids = [str(int(doc_id)) for doc_id in doc_ids_i]
docs = [self.passages[doc_id] for doc_id in ids]
doc_list.append(docs)
doc_dicts = []
for docs in doc_list:
doc_dict = {}
doc_dict["title"] = [doc[1] for doc in docs]
doc_dict["text"] = [doc[0] for doc in docs]
doc_dicts.append(doc_dict)
return doc_dicts
def get_top_docs(self, question_hidden_states: np.ndarray, n_docs=5) -> Tuple[np.ndarray, np.ndarray]:
aux_dim = np.zeros(len(question_hidden_states), dtype="float32").reshape(-1, 1)
query_nhsw_vectors = np.hstack((question_hidden_states, aux_dim))
_, docs_ids = self.index.search(query_nhsw_vectors, n_docs)
vectors = [[self.index.reconstruct(int(doc_id))[:-1] for doc_id in doc_ids] for doc_ids in docs_ids]
ids = [[int(self.index_id_to_db_id[doc_id]) for doc_id in doc_ids] for doc_ids in docs_ids]
return np.array(ids), np.array(vectors)
|
class_definition
| 2,992 | 8,230 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rag/retrieval_rag.py
| null | 6,191 |
class HFIndexBase(Index):
def __init__(self, vector_size, dataset, index_initialized=False):
self.vector_size = vector_size
self.dataset = dataset
self._index_initialized = index_initialized
self._check_dataset_format(with_index=index_initialized)
dataset.set_format("numpy", columns=["embeddings"], output_all_columns=True, dtype="float32")
def _check_dataset_format(self, with_index: bool):
if not isinstance(self.dataset, Dataset):
raise TypeError(f"Dataset should be a datasets.Dataset object, but got {type(self.dataset)}")
if len({"title", "text", "embeddings"} - set(self.dataset.column_names)) > 0:
raise ValueError(
"Dataset should be a dataset with the following columns: "
"title (str), text (str) and embeddings (arrays of dimension vector_size), "
f"but got columns {self.dataset.column_names}"
)
if with_index and "embeddings" not in self.dataset.list_indexes():
raise ValueError(
"Missing faiss index in the dataset. Make sure you called `dataset.add_faiss_index` to compute it "
"or `dataset.load_faiss_index` to load one from the disk."
)
def init_index(self):
raise NotImplementedError()
def is_initialized(self):
return self._index_initialized
def get_doc_dicts(self, doc_ids: np.ndarray) -> List[dict]:
return [self.dataset[doc_ids[i].tolist()] for i in range(doc_ids.shape[0])]
def get_top_docs(self, question_hidden_states: np.ndarray, n_docs=5) -> Tuple[np.ndarray, np.ndarray]:
_, ids = self.dataset.search_batch("embeddings", question_hidden_states, n_docs)
docs = [self.dataset[[i for i in indices if i >= 0]] for indices in ids]
vectors = [doc["embeddings"] for doc in docs]
for i in range(len(vectors)):
if len(vectors[i]) < n_docs:
vectors[i] = np.vstack([vectors[i], np.zeros((n_docs - len(vectors[i]), self.vector_size))])
return np.array(ids), np.array(vectors) # shapes (batch_size, n_docs) and (batch_size, n_docs, d)
|
class_definition
| 8,233 | 10,410 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rag/retrieval_rag.py
| null | 6,192 |
class CanonicalHFIndex(HFIndexBase):
"""
A wrapper around an instance of [`~datasets.Datasets`]. If `index_path` is set to `None`, we load the pre-computed
index available with the [`~datasets.arrow_dataset.Dataset`], otherwise, we load the index from the indicated path
on disk.
Args:
vector_size (`int`): the dimension of the passages embeddings used by the index
dataset_name (`str`, optional, defaults to `wiki_dpr`):
A dataset identifier of the indexed dataset on HuggingFace AWS bucket (list all available datasets and ids
with `datasets.list_datasets()`).
dataset_split (`str`, optional, defaults to `train`)
Which split of the `dataset` to load.
index_name (`str`, optional, defaults to `train`)
The index_name of the index associated with the `dataset`. The index loaded from `index_path` will be saved
under this name.
index_path (`str`, optional, defaults to `None`)
The path to the serialized faiss index on disk.
use_dummy_dataset (`bool`, optional, defaults to `False`):
If True, use the dummy configuration of the dataset for tests.
"""
def __init__(
self,
vector_size: int,
dataset_name: str = "wiki_dpr",
dataset_split: str = "train",
index_name: Optional[str] = None,
index_path: Optional[str] = None,
use_dummy_dataset=False,
dataset_revision=None,
):
if int(index_path is None) + int(index_name is None) != 1:
raise ValueError("Please provide `index_name` or `index_path`.")
self.dataset_name = dataset_name
self.dataset_split = dataset_split
self.index_name = index_name
self.index_path = index_path
self.use_dummy_dataset = use_dummy_dataset
self.dataset_revision = dataset_revision
logger.info(f"Loading passages from {self.dataset_name}")
dataset = load_dataset(
self.dataset_name,
with_index=False,
split=self.dataset_split,
dummy=self.use_dummy_dataset,
revision=dataset_revision,
)
super().__init__(vector_size, dataset, index_initialized=False)
def init_index(self):
if self.index_path is not None:
logger.info(f"Loading index from {self.index_path}")
self.dataset.load_faiss_index("embeddings", file=self.index_path)
else:
logger.info(f"Loading index from {self.dataset_name} with index name {self.index_name}")
self.dataset = load_dataset(
self.dataset_name,
with_embeddings=True,
with_index=True,
split=self.dataset_split,
index_name=self.index_name,
dummy=self.use_dummy_dataset,
revision=self.dataset_revision,
)
self.dataset.set_format("numpy", columns=["embeddings"], output_all_columns=True)
self._index_initialized = True
|
class_definition
| 10,413 | 13,474 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rag/retrieval_rag.py
| null | 6,193 |
class CustomHFIndex(HFIndexBase):
"""
A wrapper around an instance of [`~datasets.Datasets`]. The dataset and the index are both loaded from the
indicated paths on disk.
Args:
vector_size (`int`): the dimension of the passages embeddings used by the index
dataset_path (`str`):
The path to the serialized dataset on disk. The dataset should have 3 columns: title (str), text (str) and
embeddings (arrays of dimension vector_size)
index_path (`str`)
The path to the serialized faiss index on disk.
"""
def __init__(self, vector_size: int, dataset, index_path=None):
super().__init__(vector_size, dataset, index_initialized=index_path is None)
self.index_path = index_path
@classmethod
def load_from_disk(cls, vector_size, dataset_path, index_path):
logger.info(f"Loading passages from {dataset_path}")
if dataset_path is None or index_path is None:
raise ValueError(
"Please provide `dataset_path` and `index_path` after calling `dataset.save_to_disk(dataset_path)` "
"and `dataset.get_index('embeddings').save(index_path)`."
)
dataset = load_from_disk(dataset_path)
return cls(vector_size=vector_size, dataset=dataset, index_path=index_path)
def init_index(self):
if not self.is_initialized():
logger.info(f"Loading index from {self.index_path}")
self.dataset.load_faiss_index("embeddings", file=self.index_path)
self._index_initialized = True
|
class_definition
| 13,477 | 15,068 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rag/retrieval_rag.py
| null | 6,194 |
class RagRetriever:
"""
Retriever used to get documents from vector queries. It retrieves the documents embeddings as well as the documents
contents, and it formats them to be used with a RagModel.
Args:
config ([`RagConfig`]):
The configuration of the RAG model this Retriever is used with. Contains parameters indicating which
`Index` to build. You can load your own custom dataset with `config.index_name="custom"` or use a canonical
one (default) from the datasets library with `config.index_name="wiki_dpr"` for example.
question_encoder_tokenizer ([`PreTrainedTokenizer`]):
The tokenizer that was used to tokenize the question. It is used to decode the question and then use the
generator_tokenizer.
generator_tokenizer ([`PreTrainedTokenizer`]):
The tokenizer used for the generator part of the RagModel.
index ([`~models.rag.retrieval_rag.Index`], optional, defaults to the one defined by the configuration):
If specified, use this index instead of the one built using the configuration
Examples:
```python
>>> # To load the default "wiki_dpr" dataset with 21M passages from wikipedia (index name is 'compressed' or 'exact')
>>> from transformers import RagRetriever
>>> retriever = RagRetriever.from_pretrained(
... "facebook/dpr-ctx_encoder-single-nq-base", dataset="wiki_dpr", index_name="compressed"
... )
>>> # To load your own indexed dataset built with the datasets library. More info on how to build the indexed dataset in examples/rag/use_own_knowledge_dataset.py
>>> from transformers import RagRetriever
>>> dataset = (
... ...
... ) # dataset must be a datasets.Datasets object with columns "title", "text" and "embeddings", and it must have a faiss index
>>> retriever = RagRetriever.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base", indexed_dataset=dataset)
>>> # To load your own indexed dataset built with the datasets library that was saved on disk. More info in examples/rag/use_own_knowledge_dataset.py
>>> from transformers import RagRetriever
>>> dataset_path = "path/to/my/dataset" # dataset saved via *dataset.save_to_disk(...)*
>>> index_path = "path/to/my/index.faiss" # faiss index saved via *dataset.get_index("embeddings").save(...)*
>>> retriever = RagRetriever.from_pretrained(
... "facebook/dpr-ctx_encoder-single-nq-base",
... index_name="custom",
... passages_path=dataset_path,
... index_path=index_path,
... )
>>> # To load the legacy index built originally for Rag's paper
>>> from transformers import RagRetriever
>>> retriever = RagRetriever.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base", index_name="legacy")
```"""
def __init__(self, config, question_encoder_tokenizer, generator_tokenizer, index=None, init_retrieval=True):
self._init_retrieval = init_retrieval
requires_backends(self, ["datasets", "faiss"])
super().__init__()
self.index = index or self._build_index(config)
self.generator_tokenizer = generator_tokenizer
self.question_encoder_tokenizer = question_encoder_tokenizer
self.n_docs = config.n_docs
self.batch_size = config.retrieval_batch_size
self.config = config
if self._init_retrieval:
self.init_retrieval()
self.ctx_encoder_tokenizer = None
self.return_tokenized_docs = False
@staticmethod
def _build_index(config):
if config.index_name == "legacy":
return LegacyIndex(
config.retrieval_vector_size,
config.index_path or LEGACY_INDEX_PATH,
)
elif config.index_name == "custom":
return CustomHFIndex.load_from_disk(
vector_size=config.retrieval_vector_size,
dataset_path=config.passages_path,
index_path=config.index_path,
)
else:
return CanonicalHFIndex(
vector_size=config.retrieval_vector_size,
dataset_name=config.dataset,
dataset_split=config.dataset_split,
index_name=config.index_name,
index_path=config.index_path,
use_dummy_dataset=config.use_dummy_dataset,
dataset_revision=config.dataset_revision,
)
@classmethod
def from_pretrained(cls, retriever_name_or_path, indexed_dataset=None, **kwargs):
requires_backends(cls, ["datasets", "faiss"])
config = kwargs.pop("config", None) or RagConfig.from_pretrained(retriever_name_or_path, **kwargs)
rag_tokenizer = RagTokenizer.from_pretrained(retriever_name_or_path, config=config)
question_encoder_tokenizer = rag_tokenizer.question_encoder
generator_tokenizer = rag_tokenizer.generator
if indexed_dataset is not None:
config.index_name = "custom"
index = CustomHFIndex(config.retrieval_vector_size, indexed_dataset)
else:
index = cls._build_index(config)
return cls(
config,
question_encoder_tokenizer=question_encoder_tokenizer,
generator_tokenizer=generator_tokenizer,
index=index,
)
def save_pretrained(self, save_directory):
if isinstance(self.index, CustomHFIndex):
if self.config.index_path is None:
index_path = os.path.join(save_directory, "hf_dataset_index.faiss")
self.index.dataset.get_index("embeddings").save(index_path)
self.config.index_path = index_path
if self.config.passages_path is None:
passages_path = os.path.join(save_directory, "hf_dataset")
# datasets don't support save_to_disk with indexes right now
faiss_index = self.index.dataset._indexes.pop("embeddings")
self.index.dataset.save_to_disk(passages_path)
self.index.dataset._indexes["embeddings"] = faiss_index
self.config.passages_path = passages_path
self.config.save_pretrained(save_directory)
rag_tokenizer = RagTokenizer(
question_encoder=self.question_encoder_tokenizer,
generator=self.generator_tokenizer,
)
rag_tokenizer.save_pretrained(save_directory)
def init_retrieval(self):
"""
Retriever initialization function. It loads the index into memory.
"""
logger.info("initializing retrieval")
self.index.init_index()
def postprocess_docs(self, docs, input_strings, prefix, n_docs, return_tensors=None):
r"""
Postprocessing retrieved `docs` and combining them with `input_strings`.
Args:
docs (`dict`):
Retrieved documents.
input_strings (`str`):
Input strings decoded by `preprocess_query`.
prefix (`str`):
Prefix added at the beginning of each input, typically used with T5-based models.
Return:
`tuple(tensors)`: a tuple consisting of two elements: contextualized `input_ids` and a compatible
`attention_mask`.
"""
def cat_input_and_doc(doc_title, doc_text, input_string, prefix):
# TODO(Patrick): if we train more RAG models, I want to put the input first to take advantage of effortless truncation
# TODO(piktus): better handling of truncation
if doc_title.startswith('"'):
doc_title = doc_title[1:]
if doc_title.endswith('"'):
doc_title = doc_title[:-1]
if prefix is None:
prefix = ""
out = (prefix + doc_title + self.config.title_sep + doc_text + self.config.doc_sep + input_string).replace(
" ", " "
)
return out
rag_input_strings = [
cat_input_and_doc(
docs[i]["title"][j],
docs[i]["text"][j],
input_strings[i],
prefix,
)
for i in range(len(docs))
for j in range(n_docs)
]
contextualized_inputs = self.generator_tokenizer.batch_encode_plus(
rag_input_strings,
max_length=self.config.max_combined_length,
return_tensors=return_tensors,
padding="max_length",
truncation=True,
)
return contextualized_inputs["input_ids"], contextualized_inputs["attention_mask"]
def _chunk_tensor(self, t: Iterable, chunk_size: int) -> List[Iterable]:
return [t[i : i + chunk_size] for i in range(0, len(t), chunk_size)]
def _main_retrieve(self, question_hidden_states: np.ndarray, n_docs: int) -> Tuple[np.ndarray, np.ndarray]:
question_hidden_states_batched = self._chunk_tensor(question_hidden_states, self.batch_size)
ids_batched = []
vectors_batched = []
for question_hidden_states in question_hidden_states_batched:
start_time = time.time()
ids, vectors = self.index.get_top_docs(question_hidden_states, n_docs)
logger.debug(
f"index search time: {time.time() - start_time} sec, batch size {question_hidden_states.shape}"
)
ids_batched.extend(ids)
vectors_batched.extend(vectors)
return (
np.array(ids_batched),
np.array(vectors_batched),
) # shapes (batch_size, n_docs) and (batch_size, n_docs, d)
def retrieve(self, question_hidden_states: np.ndarray, n_docs: int) -> Tuple[np.ndarray, List[dict]]:
"""
Retrieves documents for specified `question_hidden_states`.
Args:
question_hidden_states (`np.ndarray` of shape `(batch_size, vector_size)`):
A batch of query vectors to retrieve with.
n_docs (`int`):
The number of docs retrieved per query.
Return:
`Tuple[np.ndarray, np.ndarray, List[dict]]`: A tuple with the following objects:
- **retrieved_doc_embeds** (`np.ndarray` of shape `(batch_size, n_docs, dim)`) -- The retrieval embeddings
of the retrieved docs per query.
- **doc_ids** (`np.ndarray` of shape `(batch_size, n_docs)`) -- The ids of the documents in the index
- **doc_dicts** (`List[dict]`): The `retrieved_doc_embeds` examples per query.
"""
doc_ids, retrieved_doc_embeds = self._main_retrieve(question_hidden_states, n_docs)
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(doc_ids)
def set_ctx_encoder_tokenizer(self, ctx_encoder_tokenizer: PreTrainedTokenizer):
# used in end2end retriever training
self.ctx_encoder_tokenizer = ctx_encoder_tokenizer
self.return_tokenized_docs = True
def __call__(
self,
question_input_ids: List[List[int]],
question_hidden_states: np.ndarray,
prefix=None,
n_docs=None,
return_tensors=None,
) -> BatchEncoding:
"""
Retrieves documents for specified `question_hidden_states`.
Args:
question_input_ids (`List[List[int]]`) batch of input ids
question_hidden_states (`np.ndarray` of shape `(batch_size, vector_size)`:
A batch of query vectors to retrieve with.
prefix (`str`, *optional*):
The prefix used by the generator's tokenizer.
n_docs (`int`, *optional*):
The number of docs retrieved per query.
return_tensors (`str` or [`~utils.TensorType`], *optional*, defaults to "pt"):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
Returns: [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
- **context_input_ids** -- List of token ids to be fed to a model.
[What are input IDs?](../glossary#input-ids)
- **context_attention_mask** -- List of indices specifying which tokens should be attended to by the model
(when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`).
[What are attention masks?](../glossary#attention-mask)
- **retrieved_doc_embeds** -- List of embeddings of the retrieved documents
- **doc_ids** -- List of ids of the retrieved documents
"""
n_docs = n_docs if n_docs is not None else self.n_docs
prefix = prefix if prefix is not None else self.config.generator.prefix
retrieved_doc_embeds, doc_ids, docs = self.retrieve(question_hidden_states, n_docs)
input_strings = self.question_encoder_tokenizer.batch_decode(question_input_ids, skip_special_tokens=True)
context_input_ids, context_attention_mask = self.postprocess_docs(
docs, input_strings, prefix, n_docs, return_tensors=return_tensors
)
if self.return_tokenized_docs:
retrieved_doc_text = []
retrieved_doc_title = []
for b_idx in range(len(docs)):
for doc_idx in range(n_docs):
retrieved_doc_text.append(docs[b_idx]["text"][doc_idx])
retrieved_doc_title.append(docs[b_idx]["title"][doc_idx])
tokenized_docs = self.ctx_encoder_tokenizer(
retrieved_doc_title,
retrieved_doc_text,
truncation=True,
padding="longest",
return_tensors=return_tensors,
)
return BatchEncoding(
{
"context_input_ids": context_input_ids,
"context_attention_mask": context_attention_mask,
"retrieved_doc_embeds": retrieved_doc_embeds,
"doc_ids": doc_ids,
"tokenized_doc_ids": tokenized_docs["input_ids"],
"tokenized_doc_attention_mask": tokenized_docs["attention_mask"],
},
tensor_type=return_tensors,
)
else:
return BatchEncoding(
{
"context_input_ids": context_input_ids,
"context_attention_mask": context_attention_mask,
"retrieved_doc_embeds": retrieved_doc_embeds,
"doc_ids": doc_ids,
},
tensor_type=return_tensors,
)
|
class_definition
| 15,071 | 29,921 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rag/retrieval_rag.py
| null | 6,195 |
class RagTokenizer:
def __init__(self, question_encoder, generator):
self.question_encoder = question_encoder
self.generator = generator
self.current_tokenizer = self.question_encoder
def save_pretrained(self, save_directory):
if os.path.isfile(save_directory):
raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file")
os.makedirs(save_directory, exist_ok=True)
question_encoder_path = os.path.join(save_directory, "question_encoder_tokenizer")
generator_path = os.path.join(save_directory, "generator_tokenizer")
self.question_encoder.save_pretrained(question_encoder_path)
self.generator.save_pretrained(generator_path)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
# dynamically import AutoTokenizer
from ..auto.tokenization_auto import AutoTokenizer
config = kwargs.pop("config", None)
if config is None:
config = RagConfig.from_pretrained(pretrained_model_name_or_path)
question_encoder = AutoTokenizer.from_pretrained(
pretrained_model_name_or_path, config=config.question_encoder, subfolder="question_encoder_tokenizer"
)
generator = AutoTokenizer.from_pretrained(
pretrained_model_name_or_path, config=config.generator, subfolder="generator_tokenizer"
)
return cls(question_encoder=question_encoder, generator=generator)
def __call__(self, *args, **kwargs):
return self.current_tokenizer(*args, **kwargs)
def batch_decode(self, *args, **kwargs):
return self.generator.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
return self.generator.decode(*args, **kwargs)
def _switch_to_input_mode(self):
self.current_tokenizer = self.question_encoder
def _switch_to_target_mode(self):
self.current_tokenizer = self.generator
def prepare_seq2seq_batch(
self,
src_texts: List[str],
tgt_texts: Optional[List[str]] = None,
max_length: Optional[int] = None,
max_target_length: Optional[int] = None,
padding: str = "longest",
return_tensors: str = None,
truncation: bool = True,
**kwargs,
) -> BatchEncoding:
warnings.warn(
"`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the "
"regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` "
"context manager to prepare your targets. See the documentation of your specific tokenizer for more "
"details",
FutureWarning,
)
if max_length is None:
max_length = self.current_tokenizer.model_max_length
model_inputs = self(
src_texts,
add_special_tokens=True,
return_tensors=return_tensors,
max_length=max_length,
padding=padding,
truncation=truncation,
**kwargs,
)
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
max_target_length = self.current_tokenizer.model_max_length
labels = self(
text_target=tgt_texts,
add_special_tokens=True,
return_tensors=return_tensors,
padding=padding,
max_length=max_target_length,
truncation=truncation,
**kwargs,
)
model_inputs["labels"] = labels["input_ids"]
return model_inputs
|
class_definition
| 889 | 4,576 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rag/tokenization_rag.py
| null | 6,196 |
class MobileViTV2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MobileViTV2Model`]. It is used to instantiate a
MobileViTV2 model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the MobileViTV2
[apple/mobilevitv2-1.0](https://huggingface.co/apple/mobilevitv2-1.0) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
image_size (`int`, *optional*, defaults to 256):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 2):
The size (resolution) of each patch.
expand_ratio (`float`, *optional*, defaults to 2.0):
Expansion factor for the MobileNetv2 layers.
hidden_act (`str` or `function`, *optional*, defaults to `"swish"`):
The non-linear activation function (function or string) in the Transformer encoder and convolution layers.
conv_kernel_size (`int`, *optional*, defaults to 3):
The size of the convolutional kernel in the MobileViTV2 layer.
output_stride (`int`, *optional*, defaults to 32):
The ratio of the spatial resolution of the output to the resolution of the input image.
classifier_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for attached classifiers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
aspp_out_channels (`int`, *optional*, defaults to 512):
Number of output channels used in the ASPP layer for semantic segmentation.
atrous_rates (`List[int]`, *optional*, defaults to `[6, 12, 18]`):
Dilation (atrous) factors used in the ASPP layer for semantic segmentation.
aspp_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the ASPP layer for semantic segmentation.
semantic_loss_ignore_index (`int`, *optional*, defaults to 255):
The index that is ignored by the loss function of the semantic segmentation model.
n_attn_blocks (`List[int]`, *optional*, defaults to `[2, 4, 3]`):
The number of attention blocks in each MobileViTV2Layer
base_attn_unit_dims (`List[int]`, *optional*, defaults to `[128, 192, 256]`):
The base multiplier for dimensions of attention blocks in each MobileViTV2Layer
width_multiplier (`float`, *optional*, defaults to 1.0):
The width multiplier for MobileViTV2.
ffn_multiplier (`int`, *optional*, defaults to 2):
The FFN multiplier for MobileViTV2.
attn_dropout (`float`, *optional*, defaults to 0.0):
The dropout in the attention layer.
ffn_dropout (`float`, *optional*, defaults to 0.0):
The dropout between FFN layers.
Example:
```python
>>> from transformers import MobileViTV2Config, MobileViTV2Model
>>> # Initializing a mobilevitv2-small style configuration
>>> configuration = MobileViTV2Config()
>>> # Initializing a model from the mobilevitv2-small style configuration
>>> model = MobileViTV2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mobilevitv2"
def __init__(
self,
num_channels=3,
image_size=256,
patch_size=2,
expand_ratio=2.0,
hidden_act="swish",
conv_kernel_size=3,
output_stride=32,
classifier_dropout_prob=0.1,
initializer_range=0.02,
layer_norm_eps=1e-5,
aspp_out_channels=512,
atrous_rates=[6, 12, 18],
aspp_dropout_prob=0.1,
semantic_loss_ignore_index=255,
n_attn_blocks=[2, 4, 3],
base_attn_unit_dims=[128, 192, 256],
width_multiplier=1.0,
ffn_multiplier=2,
attn_dropout=0.0,
ffn_dropout=0.0,
**kwargs,
):
super().__init__(**kwargs)
self.num_channels = num_channels
self.image_size = image_size
self.patch_size = patch_size
self.expand_ratio = expand_ratio
self.hidden_act = hidden_act
self.conv_kernel_size = conv_kernel_size
self.output_stride = output_stride
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.n_attn_blocks = n_attn_blocks
self.base_attn_unit_dims = base_attn_unit_dims
self.width_multiplier = width_multiplier
self.ffn_multiplier = ffn_multiplier
self.ffn_dropout = ffn_dropout
self.attn_dropout = attn_dropout
self.classifier_dropout_prob = classifier_dropout_prob
# decode head attributes for semantic segmentation
self.aspp_out_channels = aspp_out_channels
self.atrous_rates = atrous_rates
self.aspp_dropout_prob = aspp_dropout_prob
self.semantic_loss_ignore_index = semantic_loss_ignore_index
|
class_definition
| 914 | 6,439 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevitv2/configuration_mobilevitv2.py
| null | 6,197 |
class MobileViTV2OnnxConfig(OnnxConfig):
torch_onnx_minimum_version = version.parse("1.11")
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict([("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"})])
@property
def outputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "image-classification":
return OrderedDict([("logits", {0: "batch"})])
else:
return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})])
@property
def atol_for_validation(self) -> float:
return 1e-4
|
class_definition
| 6,442 | 7,090 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevitv2/configuration_mobilevitv2.py
| null | 6,198 |
class MobileViTV2ConvLayer(nn.Module):
def __init__(
self,
config: MobileViTV2Config,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
groups: int = 1,
bias: bool = False,
dilation: int = 1,
use_normalization: bool = True,
use_activation: Union[bool, str] = True,
) -> None:
super().__init__()
padding = int((kernel_size - 1) / 2) * dilation
if in_channels % groups != 0:
raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups.")
if out_channels % groups != 0:
raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups.")
self.convolution = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias,
padding_mode="zeros",
)
if use_normalization:
self.normalization = nn.BatchNorm2d(
num_features=out_channels,
eps=1e-5,
momentum=0.1,
affine=True,
track_running_stats=True,
)
else:
self.normalization = None
if use_activation:
if isinstance(use_activation, str):
self.activation = ACT2FN[use_activation]
elif isinstance(config.hidden_act, str):
self.activation = ACT2FN[config.hidden_act]
else:
self.activation = config.hidden_act
else:
self.activation = None
def forward(self, features: torch.Tensor) -> torch.Tensor:
features = self.convolution(features)
if self.normalization is not None:
features = self.normalization(features)
if self.activation is not None:
features = self.activation(features)
return features
|
class_definition
| 2,773 | 4,865 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilevitv2/modeling_mobilevitv2.py
| null | 6,199 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.