text
stringlengths 31
243k
| type
stringclasses 1
value | start
int64 36
275k
| end
int64 286
280k
| depth
int64 0
1
| filepath
stringlengths 85
188
| parent_class
stringclasses 3
values | class_index
int64 0
10.8k
|
---|---|---|---|---|---|---|---|
class TFXLMRobertaOutput(keras.layers.Layer):
def __init__(self, config: XLMRobertaConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.config = config
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.intermediate_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
|
class_definition
| 24,689 | 26,030 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_tf_xlm_roberta.py
| null | 5,900 |
class TFXLMRobertaLayer(keras.layers.Layer):
def __init__(self, config: XLMRobertaConfig, **kwargs):
super().__init__(**kwargs)
self.attention = TFXLMRobertaAttention(config, name="attention")
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = TFXLMRobertaAttention(config, name="crossattention")
self.intermediate = TFXLMRobertaIntermediate(config, name="intermediate")
self.bert_output = TFXLMRobertaOutput(config, name="output")
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
head_mask: tf.Tensor,
encoder_hidden_states: tf.Tensor | None,
encoder_attention_mask: tf.Tensor | None,
past_key_value: Tuple[tf.Tensor] | None,
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
input_tensor=hidden_states,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=self_attn_past_key_value,
output_attentions=output_attentions,
training=training,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
" by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
input_tensor=attention_output,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
training=training,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
intermediate_output = self.intermediate(hidden_states=attention_output)
layer_output = self.bert_output(
hidden_states=intermediate_output, input_tensor=attention_output, training=training
)
outputs = (layer_output,) + outputs # add attentions if we output them
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "intermediate", None) is not None:
with tf.name_scope(self.intermediate.name):
self.intermediate.build(None)
if getattr(self, "bert_output", None) is not None:
with tf.name_scope(self.bert_output.name):
self.bert_output.build(None)
if getattr(self, "crossattention", None) is not None:
with tf.name_scope(self.crossattention.name):
self.crossattention.build(None)
|
class_definition
| 26,123 | 30,888 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_tf_xlm_roberta.py
| null | 5,901 |
class TFXLMRobertaEncoder(keras.layers.Layer):
def __init__(self, config: XLMRobertaConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.layer = [TFXLMRobertaLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
head_mask: tf.Tensor,
encoder_hidden_states: tf.Tensor | None,
encoder_attention_mask: tf.Tensor | None,
past_key_values: Tuple[Tuple[tf.Tensor]] | None,
use_cache: Optional[bool],
output_attentions: bool,
output_hidden_states: bool,
return_dict: bool,
training: bool = False,
) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
past_key_value = past_key_values[i] if past_key_values is not None else None
layer_outputs = layer_module(
hidden_states=hidden_states,
attention_mask=attention_mask,
head_mask=head_mask[i],
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
training=training,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if self.config.add_cross_attention and encoder_hidden_states is not None:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None
)
return TFBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layer", None) is not None:
for layer in self.layer:
with tf.name_scope(layer.name):
layer.build(None)
|
class_definition
| 30,983 | 34,082 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_tf_xlm_roberta.py
| null | 5,902 |
class TFXLMRobertaMainLayer(keras.layers.Layer):
config_class = XLMRobertaConfig
def __init__(self, config, add_pooling_layer=True, **kwargs):
super().__init__(**kwargs)
self.config = config
self.is_decoder = config.is_decoder
self.num_hidden_layers = config.num_hidden_layers
self.initializer_range = config.initializer_range
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.return_dict = config.use_return_dict
self.encoder = TFXLMRobertaEncoder(config, name="encoder")
self.pooler = TFXLMRobertaPooler(config, name="pooler") if add_pooling_layer else None
# The embeddings must be the last declaration in order to follow the weights order
self.embeddings = TFXLMRobertaEmbeddings(config, name="embeddings")
# Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.get_input_embeddings
def get_input_embeddings(self) -> keras.layers.Layer:
return self.embeddings
# Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.set_input_embeddings
def set_input_embeddings(self, value: tf.Variable):
self.embeddings.weight = value
self.embeddings.vocab_size = shape_list(value)[0]
# Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer._prune_heads
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
raise NotImplementedError
@unpack_inputs
# Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.call
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
if not self.config.is_decoder:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
if past_key_values is None:
past_key_values_length = 0
past_key_values = [None] * len(self.encoder.layer)
else:
past_key_values_length = shape_list(past_key_values[0][0])[-2]
if attention_mask is None:
attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1)
if token_type_ids is None:
token_type_ids = tf.fill(dims=input_shape, value=0)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
training=training,
)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask_shape = shape_list(attention_mask)
mask_seq_length = seq_length + past_key_values_length
# Copied from `modeling_tf_t5.py`
# Provided a padding mask of dimensions [batch_size, mask_seq_length]
# - if the model is a decoder, apply a causal mask in addition to the padding mask
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
if self.is_decoder:
seq_ids = tf.range(mask_seq_length)
causal_mask = tf.less_equal(
tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)),
seq_ids[None, :, None],
)
causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype)
extended_attention_mask = causal_mask * attention_mask[:, None, :]
attention_mask_shape = shape_list(extended_attention_mask)
extended_attention_mask = tf.reshape(
extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2])
)
if past_key_values[0] is not None:
# attention_mask needs to be sliced to the shape `[batch_size, 1, from_seq_length - cached_seq_length, to_seq_length]
extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :]
else:
extended_attention_mask = tf.reshape(
attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1])
)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype)
one_cst = tf.constant(1.0, dtype=embedding_output.dtype)
ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype)
extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
# Copied from `modeling_tf_t5.py` with -1e9 -> -10000
if self.is_decoder and encoder_attention_mask is not None:
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype)
num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask))
if num_dims_encoder_attention_mask == 3:
encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
if num_dims_encoder_attention_mask == 2:
encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask,
# tf.transpose(encoder_extended_attention_mask, perm=(-1, -2)))
encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if head_mask is not None:
raise NotImplementedError
else:
head_mask = [None] * self.config.num_hidden_layers
encoder_outputs = self.encoder(
hidden_states=embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None
if not return_dict:
return (
sequence_output,
pooled_output,
) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "pooler", None) is not None:
with tf.name_scope(self.pooler.name):
self.pooler.build(None)
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
|
class_definition
| 34,211 | 44,700 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_tf_xlm_roberta.py
| null | 5,903 |
class TFXLMRobertaPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = XLMRobertaConfig
base_model_prefix = "roberta"
|
class_definition
| 44,815 | 45,084 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_tf_xlm_roberta.py
| null | 5,904 |
class TFXLMRobertaModel(TFXLMRobertaPreTrainedModel):
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.roberta = TFXLMRobertaMainLayer(config, name="roberta")
@unpack_inputs
@add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutputWithPoolingAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[Tuple, TFBaseModelOutputWithPoolingAndCrossAttentions]:
r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*, defaults to `True`):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`). Set to `False` during training, `True` during generation
"""
outputs = self.roberta(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "roberta", None) is not None:
with tf.name_scope(self.roberta.name):
self.roberta.build(None)
|
class_definition
| 45,378 | 49,253 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_tf_xlm_roberta.py
| null | 5,905 |
class TFXLMRobertaLMHead(keras.layers.Layer):
"""XLMRoberta Head for masked language modeling."""
def __init__(self, config, input_embeddings, **kwargs):
super().__init__(**kwargs)
self.config = config
self.hidden_size = config.hidden_size
self.dense = keras.layers.Dense(
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
self.act = get_tf_activation("gelu")
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = input_embeddings
def build(self, input_shape=None):
self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, self.config.hidden_size])
def get_output_embeddings(self):
return self.decoder
def set_output_embeddings(self, value):
self.decoder.weight = value
self.decoder.vocab_size = shape_list(value)[0]
def get_bias(self):
return {"bias": self.bias}
def set_bias(self, value):
self.bias = value["bias"]
self.config.vocab_size = shape_list(value["bias"])[0]
def call(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.layer_norm(hidden_states)
# project back to size of vocabulary with bias
seq_length = shape_list(tensor=hidden_states)[1]
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size])
hidden_states = tf.matmul(a=hidden_states, b=self.decoder.weight, transpose_b=True)
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
return hidden_states
|
class_definition
| 49,359 | 51,783 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_tf_xlm_roberta.py
| null | 5,906 |
class TFXLMRobertaForMaskedLM(TFXLMRobertaPreTrainedModel, TFMaskedLanguageModelingLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head.decoder.weight"]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.roberta = TFXLMRobertaMainLayer(config, add_pooling_layer=False, name="roberta")
self.lm_head = TFXLMRobertaLMHead(config, self.roberta.embeddings, name="lm_head")
def get_lm_head(self):
return self.lm_head
def get_prefix_bias_name(self):
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
return self.name + "/" + self.lm_head.name
@unpack_inputs
@add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFMaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
mask="<mask>",
expected_output="' Paris'",
expected_loss=0.1,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
outputs = self.roberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFMaskedLMOutput(
loss=loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "roberta", None) is not None:
with tf.name_scope(self.roberta.name):
self.roberta.build(None)
if getattr(self, "lm_head", None) is not None:
with tf.name_scope(self.lm_head.name):
self.lm_head.build(None)
|
class_definition
| 52,032 | 55,723 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_tf_xlm_roberta.py
| null | 5,907 |
class TFXLMRobertaForCausalLM(TFXLMRobertaPreTrainedModel, TFCausalLanguageModelingLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head.decoder.weight"]
def __init__(self, config: XLMRobertaConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
if not config.is_decoder:
logger.warning("If you want to use `TFXLMRobertaLMHeadModel` as a standalone, add `is_decoder=True.`")
self.roberta = TFXLMRobertaMainLayer(config, add_pooling_layer=False, name="roberta")
self.lm_head = TFXLMRobertaLMHead(config, input_embeddings=self.roberta.embeddings, name="lm_head")
def get_lm_head(self):
return self.lm_head
def get_prefix_bias_name(self):
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
return self.name + "/" + self.lm_head.name
# Copied from transformers.models.bert.modeling_tf_bert.TFBertLMHeadModel.prepare_inputs_for_generation
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
input_shape = input_ids.shape
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = tf.ones(input_shape)
# cut decoder_input_ids if past is used
if past_key_values is not None:
input_ids = input_ids[:, -1:]
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
@unpack_inputs
@add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFCausalLMOutputWithCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]:
r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*, defaults to `True`):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`). Set to `False` during training, `True` during generation
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the cross entropy classification loss. Indices should be in `[0, ...,
config.vocab_size - 1]`.
"""
outputs = self.roberta(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
logits = self.lm_head(hidden_states=sequence_output, training=training)
loss = None
if labels is not None:
# shift labels to the left and cut last logit token
shifted_logits = logits[:, :-1]
labels = labels[:, 1:]
loss = self.hf_compute_loss(labels=labels, logits=shifted_logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFCausalLMOutputWithCrossAttentions(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "roberta", None) is not None:
with tf.name_scope(self.roberta.name):
self.roberta.build(None)
if getattr(self, "lm_head", None) is not None:
with tf.name_scope(self.lm_head.name):
self.lm_head.build(None)
|
class_definition
| 55,999 | 62,629 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_tf_xlm_roberta.py
| null | 5,908 |
class TFXLMRobertaClassificationHead(keras.layers.Layer):
"""Head for sentence-level classification tasks."""
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
activation="tanh",
name="dense",
)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = keras.layers.Dropout(classifier_dropout)
self.out_proj = keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj"
)
self.config = config
def call(self, features, training=False):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x, training=training)
x = self.dense(x)
x = self.dropout(x, training=training)
x = self.out_proj(x)
return x
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "out_proj", None) is not None:
with tf.name_scope(self.out_proj.name):
self.out_proj.build([None, None, self.config.hidden_size])
|
class_definition
| 62,747 | 64,304 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_tf_xlm_roberta.py
| null | 5,909 |
class TFXLMRobertaForSequenceClassification(TFXLMRobertaPreTrainedModel, TFSequenceClassificationLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.roberta = TFXLMRobertaMainLayer(config, add_pooling_layer=False, name="roberta")
self.classifier = TFXLMRobertaClassificationHead(config, name="classifier")
@unpack_inputs
@add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="cardiffnlp/twitter-roberta-base-emotion",
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output="'optimism'",
expected_loss=0.08,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs = self.roberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output, training=training)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "roberta", None) is not None:
with tf.name_scope(self.roberta.name):
self.roberta.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build(None)
|
class_definition
| 64,684 | 68,146 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_tf_xlm_roberta.py
| null | 5,910 |
class TFXLMRobertaForMultipleChoice(TFXLMRobertaPreTrainedModel, TFMultipleChoiceLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [r"lm_head"]
_keys_to_ignore_on_load_missing = [r"dropout"]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.roberta = TFXLMRobertaMainLayer(config, name="roberta")
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
self.classifier = keras.layers.Dense(
1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(
XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFMultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
"""
if input_ids is not None:
num_choices = shape_list(input_ids)[1]
seq_length = shape_list(input_ids)[2]
else:
num_choices = shape_list(inputs_embeds)[1]
seq_length = shape_list(inputs_embeds)[2]
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
outputs = self.roberta(
flat_input_ids,
flat_attention_mask,
flat_token_type_ids,
flat_position_ids,
head_mask,
inputs_embeds,
output_attentions,
output_hidden_states,
return_dict=return_dict,
training=training,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output, training=training)
logits = self.classifier(pooled_output)
reshaped_logits = tf.reshape(logits, (-1, num_choices))
loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFMultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "roberta", None) is not None:
with tf.name_scope(self.roberta.name):
self.roberta.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
|
class_definition
| 68,527 | 72,758 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_tf_xlm_roberta.py
| null | 5,911 |
class TFXLMRobertaForTokenClassification(TFXLMRobertaPreTrainedModel, TFTokenClassificationLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"]
_keys_to_ignore_on_load_missing = [r"dropout"]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.roberta = TFXLMRobertaMainLayer(config, add_pooling_layer=False, name="roberta")
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = keras.layers.Dropout(classifier_dropout)
self.classifier = keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="ydshieh/roberta-large-ner-english",
output_type=TFTokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output="['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']",
expected_loss=0.01,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
outputs = self.roberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output, training=training)
logits = self.classifier(sequence_output)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFTokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "roberta", None) is not None:
with tf.name_scope(self.roberta.name):
self.roberta.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
|
class_definition
| 73,142 | 76,934 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_tf_xlm_roberta.py
| null | 5,912 |
class TFXLMRobertaForQuestionAnswering(TFXLMRobertaPreTrainedModel, TFQuestionAnsweringLoss):
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
_keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"]
def __init__(self, config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.roberta = TFXLMRobertaMainLayer(config, add_pooling_layer=False, name="roberta")
self.qa_outputs = keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="ydshieh/roberta-base-squad2",
output_type=TFQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
expected_output="' puppet'",
expected_loss=0.86,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
start_positions: np.ndarray | tf.Tensor | None = None,
end_positions: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
outputs = self.roberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = tf.split(logits, 2, axis=-1)
start_logits = tf.squeeze(start_logits, axis=-1)
end_logits = tf.squeeze(end_logits, axis=-1)
loss = None
if start_positions is not None and end_positions is not None:
labels = {"start_position": start_positions}
labels["end_position"] = end_positions
loss = self.hf_compute_loss(labels, (start_logits, end_logits))
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFQuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "roberta", None) is not None:
with tf.name_scope(self.roberta.name):
self.roberta.build(None)
if getattr(self, "qa_outputs", None) is not None:
with tf.name_scope(self.qa_outputs.name):
self.qa_outputs.build([None, None, self.config.hidden_size])
|
class_definition
| 77,374 | 81,821 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_tf_xlm_roberta.py
| null | 5,913 |
class XLMRobertaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`XLMRobertaModel`] or a [`TFXLMRobertaModel`]. It
is used to instantiate a XLM-RoBERTa model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the XLMRoBERTa
[FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the XLM-RoBERTa model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`XLMRobertaModel`] or [`TFXLMRobertaModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`XLMRobertaModel`] or
[`TFXLMRobertaModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
is_decoder (`bool`, *optional*, defaults to `False`):
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
classifier_dropout (`float`, *optional*):
The dropout ratio for the classification head.
Examples:
```python
>>> from transformers import XLMRobertaConfig, XLMRobertaModel
>>> # Initializing a XLM-RoBERTa FacebookAI/xlm-roberta-base style configuration
>>> configuration = XLMRobertaConfig()
>>> # Initializing a model (with random weights) from the FacebookAI/xlm-roberta-base style configuration
>>> model = XLMRobertaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "xlm-roberta"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
position_embedding_type="absolute",
use_cache=True,
classifier_dropout=None,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
self.classifier_dropout = classifier_dropout
|
class_definition
| 960 | 6,952 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/configuration_xlm_roberta.py
| null | 5,914 |
class XLMRobertaOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
]
)
|
class_definition
| 7,062 | 7,513 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/configuration_xlm_roberta.py
| null | 5,915 |
class FlaxXLMRobertaEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.word_embeddings = nn.Embed(
self.config.vocab_size,
self.config.hidden_size,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
dtype=self.dtype,
)
self.position_embeddings = nn.Embed(
self.config.max_position_embeddings,
self.config.hidden_size,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
dtype=self.dtype,
)
self.token_type_embeddings = nn.Embed(
self.config.type_vocab_size,
self.config.hidden_size,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
dtype=self.dtype,
)
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
def __call__(self, input_ids, token_type_ids, position_ids, attention_mask, deterministic: bool = True):
# Embed
inputs_embeds = self.word_embeddings(input_ids.astype("i4"))
position_embeds = self.position_embeddings(position_ids.astype("i4"))
token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4"))
# Sum all embeddings
hidden_states = inputs_embeds + token_type_embeddings + position_embeds
# Layer Norm
hidden_states = self.LayerNorm(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
return hidden_states
|
class_definition
| 6,186 | 8,019 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py
| null | 5,916 |
class FlaxXLMRobertaSelfAttention(nn.Module):
config: XLMRobertaConfig
causal: bool = False
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.head_dim = self.config.hidden_size // self.config.num_attention_heads
if self.config.hidden_size % self.config.num_attention_heads != 0:
raise ValueError(
"`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` "
" : {self.config.num_attention_heads}"
)
self.query = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.key = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.value = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
if self.causal:
self.causal_mask = make_causal_mask(
jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
)
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.config.num_attention_heads, self.head_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.config.hidden_size,))
@nn.compact
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention._concatenate_to_cache
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slighly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = lax.dynamic_update_slice(cached_key.value, key, indices)
value = lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def __call__(
self,
hidden_states,
attention_mask,
layer_head_mask,
key_value_states: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic=True,
output_attentions: bool = False,
):
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
batch_size = hidden_states.shape[0]
# get query proj
query_states = self.query(hidden_states)
# get key, value proj
if is_cross_attention:
# cross_attentions
key_states = self.key(key_value_states)
value_states = self.value(key_value_states)
else:
# self_attention
key_states = self.key(hidden_states)
value_states = self.value(hidden_states)
query_states = self._split_heads(query_states)
key_states = self._split_heads(key_states)
value_states = self._split_heads(value_states)
# handle cache prepare causal attention mask
if self.causal:
query_length, key_length = query_states.shape[1], key_states.shape[1]
if self.has_variable("cache", "cached_key"):
mask_shift = self.variables["cache"]["cache_index"]
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_mask = lax.dynamic_slice(
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
)
else:
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
# combine masks if needed
if attention_mask is not None and self.causal:
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
attention_mask = combine_masks(attention_mask, causal_mask)
elif self.causal:
attention_mask = causal_mask
elif attention_mask is not None:
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
key_states, value_states, attention_mask = self._concatenate_to_cache(
key_states, value_states, query_states, attention_mask
)
# Convert the boolean attention mask to an attention bias.
if attention_mask is not None:
# attention mask in the form of attention bias
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
)
else:
attention_bias = None
dropout_rng = None
if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
dropout_rng = self.make_rng("dropout")
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.config.attention_probs_dropout_prob,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = jnp.einsum("...hqk,h->...hqk", attn_weights, layer_head_mask)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
return outputs
|
class_definition
| 8,124 | 16,027 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py
| null | 5,917 |
class FlaxXLMRobertaSelfOutput(nn.Module):
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
def __call__(self, hidden_states, input_tensor, deterministic: bool = True):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
|
class_definition
| 16,129 | 16,955 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py
| null | 5,918 |
class FlaxXLMRobertaAttention(nn.Module):
config: XLMRobertaConfig
causal: bool = False
dtype: jnp.dtype = jnp.float32
def setup(self):
self.self = FlaxXLMRobertaSelfAttention(self.config, causal=self.causal, dtype=self.dtype)
self.output = FlaxXLMRobertaSelfOutput(self.config, dtype=self.dtype)
def __call__(
self,
hidden_states,
attention_mask,
layer_head_mask,
key_value_states=None,
init_cache=False,
deterministic=True,
output_attentions: bool = False,
):
# Attention mask comes in as attention_mask.shape == (*batch_sizes, kv_length)
# FLAX expects: attention_mask.shape == (*batch_sizes, 1, 1, kv_length) such that it is broadcastable
# with attn_weights.shape == (*batch_sizes, num_heads, q_length, kv_length)
attn_outputs = self.self(
hidden_states,
attention_mask,
layer_head_mask=layer_head_mask,
key_value_states=key_value_states,
init_cache=init_cache,
deterministic=deterministic,
output_attentions=output_attentions,
)
attn_output = attn_outputs[0]
hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_outputs[1],)
return outputs
|
class_definition
| 17,056 | 18,484 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py
| null | 5,919 |
class FlaxXLMRobertaIntermediate(nn.Module):
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.intermediate_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.activation = ACT2FN[self.config.hidden_act]
def __call__(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
|
class_definition
| 18,588 | 19,178 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py
| null | 5,920 |
class FlaxXLMRobertaOutput(nn.Module):
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
def __call__(self, hidden_states, attention_output, deterministic: bool = True):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.LayerNorm(hidden_states + attention_output)
return hidden_states
|
class_definition
| 19,276 | 20,106 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py
| null | 5,921 |
class FlaxXLMRobertaLayer(nn.Module):
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.attention = FlaxXLMRobertaAttention(self.config, causal=self.config.is_decoder, dtype=self.dtype)
self.intermediate = FlaxXLMRobertaIntermediate(self.config, dtype=self.dtype)
self.output = FlaxXLMRobertaOutput(self.config, dtype=self.dtype)
if self.config.add_cross_attention:
self.crossattention = FlaxXLMRobertaAttention(self.config, causal=False, dtype=self.dtype)
def __call__(
self,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
):
# Self Attention
attention_outputs = self.attention(
hidden_states,
attention_mask,
layer_head_mask=layer_head_mask,
init_cache=init_cache,
deterministic=deterministic,
output_attentions=output_attentions,
)
attention_output = attention_outputs[0]
# Cross-Attention Block
if encoder_hidden_states is not None:
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask=encoder_attention_mask,
layer_head_mask=layer_head_mask,
key_value_states=encoder_hidden_states,
deterministic=deterministic,
output_attentions=output_attentions,
)
attention_output = cross_attention_outputs[0]
hidden_states = self.intermediate(attention_output)
hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic)
outputs = (hidden_states,)
if output_attentions:
outputs += (attention_outputs[1],)
if encoder_hidden_states is not None:
outputs += (cross_attention_outputs[1],)
return outputs
|
class_definition
| 20,203 | 22,379 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py
| null | 5,922 |
class FlaxXLMRobertaLayerCollection(nn.Module):
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
gradient_checkpointing: bool = False
def setup(self):
if self.gradient_checkpointing:
FlaxXLMRobertaCheckpointLayer = remat(FlaxXLMRobertaLayer, static_argnums=(5, 6, 7))
self.layers = [
FlaxXLMRobertaCheckpointLayer(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.num_hidden_layers)
]
else:
self.layers = [
FlaxXLMRobertaLayer(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.num_hidden_layers)
]
def __call__(
self,
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
# Check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.shape[0] != (len(self.layers)):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for "
f" {head_mask.shape[0]}."
)
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = layer(
hidden_states,
attention_mask,
head_mask[i] if head_mask is not None else None,
encoder_hidden_states,
encoder_attention_mask,
init_cache,
deterministic,
output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = (hidden_states, all_hidden_states, all_attentions, all_cross_attentions)
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
|
class_definition
| 22,486 | 25,530 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py
| null | 5,923 |
class FlaxXLMRobertaEncoder(nn.Module):
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
gradient_checkpointing: bool = False
def setup(self):
self.layer = FlaxXLMRobertaLayerCollection(
self.config,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
def __call__(
self,
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
return self.layer(
hidden_states,
attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
init_cache=init_cache,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
|
class_definition
| 25,629 | 26,884 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py
| null | 5,924 |
class FlaxXLMRobertaPooler(nn.Module):
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
def __call__(self, hidden_states):
cls_hidden_state = hidden_states[:, 0]
cls_hidden_state = self.dense(cls_hidden_state)
return nn.tanh(cls_hidden_state)
|
class_definition
| 26,982 | 27,513 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py
| null | 5,925 |
class FlaxXLMRobertaLMHead(nn.Module):
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32
bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.decoder = nn.Dense(
self.config.vocab_size,
dtype=self.dtype,
use_bias=False,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.bias = self.param("bias", self.bias_init, (self.config.vocab_size,))
def __call__(self, hidden_states, shared_embedding=None):
hidden_states = self.dense(hidden_states)
hidden_states = ACT2FN["gelu"](hidden_states)
hidden_states = self.layer_norm(hidden_states)
if shared_embedding is not None:
hidden_states = self.decoder.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
else:
hidden_states = self.decoder(hidden_states)
bias = jnp.asarray(self.bias, self.dtype)
hidden_states += bias
return hidden_states
|
class_definition
| 27,623 | 28,952 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py
| null | 5,926 |
class FlaxXLMRobertaClassificationHead(nn.Module):
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
classifier_dropout = (
self.config.classifier_dropout
if self.config.classifier_dropout is not None
else self.config.hidden_dropout_prob
)
self.dropout = nn.Dropout(rate=classifier_dropout)
self.out_proj = nn.Dense(
self.config.num_labels,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
def __call__(self, hidden_states, deterministic=True):
hidden_states = hidden_states[:, 0, :] # take <s> token (equiv. to [CLS])
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.dense(hidden_states)
hidden_states = nn.tanh(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.out_proj(hidden_states)
return hidden_states
|
class_definition
| 29,074 | 30,328 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py
| null | 5,927 |
class FlaxXLMRobertaPreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = XLMRobertaConfig
base_model_prefix = "xlm-roberta"
module_class: nn.Module = None
def __init__(
self,
config: XLMRobertaConfig,
input_shape: Tuple = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
gradient_checkpointing: bool = False,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPreTrainedModel.enable_gradient_checkpointing
def enable_gradient_checkpointing(self):
self._module = self.module_class(
config=self.config,
dtype=self.dtype,
gradient_checkpointing=True,
)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
token_type_ids = jnp.ones_like(input_ids)
position_ids = create_position_ids_from_input_ids(input_ids, self.config.pad_token_id)
attention_mask = jnp.ones_like(input_ids)
head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
if self.config.add_cross_attention:
encoder_hidden_states = jnp.zeros(input_shape + (self.config.hidden_size,))
encoder_attention_mask = attention_mask
module_init_outputs = self.module.init(
rngs,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
return_dict=False,
)
else:
module_init_outputs = self.module.init(
rngs, input_ids, attention_mask, token_type_ids, position_ids, head_mask, return_dict=False
)
random_params = module_init_outputs["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderPreTrainedModel.init_cache
def init_cache(self, batch_size, max_length):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
"""
# init input variables to retrieve cache
input_ids = jnp.ones((batch_size, max_length), dtype="i4")
attention_mask = jnp.ones_like(input_ids, dtype="i4")
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
init_variables = self.module.init(
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
)
return unfreeze(init_variables["cache"])
@add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def __call__(
self,
input_ids,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
params: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
past_key_values: dict = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
# init input tensors if not passed
if token_type_ids is None:
token_type_ids = jnp.zeros_like(input_ids)
if position_ids is None:
position_ids = create_position_ids_from_input_ids(input_ids, self.config.pad_token_id)
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
if head_mask is None:
head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
if self.config.add_cross_attention:
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed
# down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be
# changed by FlaxXLMRobertaAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
outputs = self.module.apply(
inputs,
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
token_type_ids=jnp.array(token_type_ids, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
head_mask=jnp.array(head_mask, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
deterministic=not train,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
rngs=rngs,
mutable=mutable,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past_key_values = outputs
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past_key_values = outputs
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
else:
outputs = self.module.apply(
inputs,
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
token_type_ids=jnp.array(token_type_ids, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
head_mask=jnp.array(head_mask, dtype="i4"),
deterministic=not train,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
rngs=rngs,
)
return outputs
|
class_definition
| 30,491 | 38,474 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py
| null | 5,928 |
class FlaxXLMRobertaModule(nn.Module):
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
add_pooling_layer: bool = True
gradient_checkpointing: bool = False
def setup(self):
self.embeddings = FlaxXLMRobertaEmbeddings(self.config, dtype=self.dtype)
self.encoder = FlaxXLMRobertaEncoder(
self.config,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
self.pooler = FlaxXLMRobertaPooler(self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids: Optional[jnp.ndarray] = None,
position_ids: Optional[jnp.ndarray] = None,
head_mask: Optional[jnp.ndarray] = None,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# make sure `token_type_ids` is correctly initialized when not passed
if token_type_ids is None:
token_type_ids = jnp.zeros_like(input_ids)
# make sure `position_ids` is correctly initialized when not passed
if position_ids is None:
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
hidden_states = self.embeddings(
input_ids, token_type_ids, position_ids, attention_mask, deterministic=deterministic
)
outputs = self.encoder(
hidden_states,
attention_mask,
head_mask=head_mask,
deterministic=deterministic,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
pooled = self.pooler(hidden_states) if self.add_pooling_layer else None
if not return_dict:
# if pooled is None, don't return it
if pooled is None:
return (hidden_states,) + outputs[1:]
return (hidden_states, pooled) + outputs[1:]
return FlaxBaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=hidden_states,
pooler_output=pooled,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
|
class_definition
| 38,572 | 41,322 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py
| null | 5,929 |
class FlaxXLMRobertaModel(FlaxXLMRobertaPreTrainedModel):
module_class = FlaxXLMRobertaModule
|
class_definition
| 41,492 | 41,589 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py
| null | 5,930 |
class FlaxXLMRobertaForMaskedLMModule(nn.Module):
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.roberta = FlaxXLMRobertaModule(
config=self.config,
add_pooling_layer=False,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
self.lm_head = FlaxXLMRobertaLMHead(config=self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.roberta(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = self.roberta.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
else:
shared_embedding = None
# Compute the prediction scores
logits = self.lm_head(hidden_states, shared_embedding=shared_embedding)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxMaskedLMOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 41,832 | 43,577 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py
| null | 5,931 |
class FlaxXLMRobertaForMaskedLM(FlaxXLMRobertaPreTrainedModel):
module_class = FlaxXLMRobertaForMaskedLMModule
|
class_definition
| 43,696 | 43,810 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py
| null | 5,932 |
class FlaxXLMRobertaForSequenceClassificationModule(nn.Module):
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.roberta = FlaxXLMRobertaModule(
config=self.config,
dtype=self.dtype,
add_pooling_layer=False,
gradient_checkpointing=self.gradient_checkpointing,
)
self.classifier = FlaxXLMRobertaClassificationHead(config=self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.roberta(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output, deterministic=deterministic)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxSequenceClassifierOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 44,111 | 45,651 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py
| null | 5,933 |
class FlaxXLMRobertaForSequenceClassification(FlaxXLMRobertaPreTrainedModel):
module_class = FlaxXLMRobertaForSequenceClassificationModule
|
class_definition
| 45,887 | 46,029 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py
| null | 5,934 |
class FlaxXLMRobertaForMultipleChoiceModule(nn.Module):
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.roberta = FlaxXLMRobertaModule(
config=self.config,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
self.classifier = nn.Dense(1, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
num_choices = input_ids.shape[1]
input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None
attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None
token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None
position_ids = position_ids.reshape(-1, position_ids.shape[-1]) if position_ids is not None else None
# Model
outputs = self.roberta(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output, deterministic=deterministic)
logits = self.classifier(pooled_output)
reshaped_logits = logits.reshape(-1, num_choices)
if not return_dict:
return (reshaped_logits,) + outputs[2:]
return FlaxMultipleChoiceModelOutput(
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 46,333 | 48,471 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py
| null | 5,935 |
class FlaxXLMRobertaForMultipleChoice(FlaxXLMRobertaPreTrainedModel):
module_class = FlaxXLMRobertaForMultipleChoiceModule
|
class_definition
| 48,716 | 48,842 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py
| null | 5,936 |
class FlaxXLMRobertaForTokenClassificationModule(nn.Module):
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.roberta = FlaxXLMRobertaModule(
config=self.config,
dtype=self.dtype,
add_pooling_layer=False,
gradient_checkpointing=self.gradient_checkpointing,
)
classifier_dropout = (
self.config.classifier_dropout
if self.config.classifier_dropout is not None
else self.config.hidden_dropout_prob
)
self.dropout = nn.Dropout(rate=classifier_dropout)
self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.roberta(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
logits = self.classifier(hidden_states)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxTokenClassifierOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 49,289 | 51,101 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py
| null | 5,937 |
class FlaxXLMRobertaForTokenClassification(FlaxXLMRobertaPreTrainedModel):
module_class = FlaxXLMRobertaForTokenClassificationModule
|
class_definition
| 51,344 | 51,480 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py
| null | 5,938 |
class FlaxXLMRobertaForQuestionAnsweringModule(nn.Module):
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.roberta = FlaxXLMRobertaModule(
config=self.config,
dtype=self.dtype,
add_pooling_layer=False,
gradient_checkpointing=self.gradient_checkpointing,
)
self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.roberta(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.qa_outputs(hidden_states)
start_logits, end_logits = jnp.split(logits, self.config.num_labels, axis=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
if not return_dict:
return (start_logits, end_logits) + outputs[1:]
return FlaxQuestionAnsweringModelOutput(
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 51,781 | 53,510 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py
| null | 5,939 |
class FlaxXLMRobertaForQuestionAnswering(FlaxXLMRobertaPreTrainedModel):
module_class = FlaxXLMRobertaForQuestionAnsweringModule
|
class_definition
| 53,811 | 53,943 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py
| null | 5,940 |
class FlaxXLMRobertaForCausalLMModule(nn.Module):
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.roberta = FlaxXLMRobertaModule(
config=self.config,
add_pooling_layer=False,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
self.lm_head = FlaxXLMRobertaLMHead(config=self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
token_type_ids: Optional[jnp.ndarray] = None,
head_mask: Optional[jnp.ndarray] = None,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.roberta(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
init_cache=init_cache,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = self.roberta.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
else:
shared_embedding = None
# Compute the prediction scores
logits = self.lm_head(hidden_states, shared_embedding=shared_embedding)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxCausalLMOutputWithCrossAttentions(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
|
class_definition
| 54,222 | 56,409 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py
| null | 5,941 |
class FlaxXLMRobertaForCausalLM(FlaxXLMRobertaPreTrainedModel):
module_class = FlaxXLMRobertaForCausalLMModule
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
# initializing the cache
batch_size, seq_length = input_ids.shape
past_key_values = self.init_cache(batch_size, max_length)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since the decoder uses a causal mask, those positions are masked anyway.
# Thus, we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if attention_mask is not None:
position_ids = attention_mask.cumsum(axis=-1) - 1
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
else:
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
return {
"past_key_values": past_key_values,
"attention_mask": extended_attention_mask,
"position_ids": position_ids,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
return model_kwargs
|
class_definition
| 56,744 | 58,290 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py
| null | 5,942 |
class CLIPSegTextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to instantiate an
CLIPSeg model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the CLIPSeg
[CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 49408):
Vocabulary size of the CLIPSeg text model. Defines the number of different tokens that can be represented
by the `inputs_ids` passed when calling [`CLIPSegModel`].
hidden_size (`int`, *optional*, defaults to 512):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 2048):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
max_position_embeddings (`int`, *optional*, defaults to 77):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
pad_token_id (`int`, *optional*, defaults to 1):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 49406):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 49407):
End of stream token id.
Example:
```python
>>> from transformers import CLIPSegTextConfig, CLIPSegTextModel
>>> # Initializing a CLIPSegTextConfig with CIDAS/clipseg-rd64 style configuration
>>> configuration = CLIPSegTextConfig()
>>> # Initializing a CLIPSegTextModel (with random weights) from the CIDAS/clipseg-rd64 style configuration
>>> model = CLIPSegTextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "clipseg_text_model"
base_config_key = "text_config"
def __init__(
self,
vocab_size=49408,
hidden_size=512,
intermediate_size=2048,
num_hidden_layers=12,
num_attention_heads=8,
max_position_embeddings=77,
hidden_act="quick_gelu",
layer_norm_eps=1e-5,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
pad_token_id=1,
bos_token_id=49406,
eos_token_id=49407,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.max_position_embeddings = max_position_embeddings
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
self.attention_dropout = attention_dropout
|
class_definition
| 784 | 5,378 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clipseg/configuration_clipseg.py
| null | 5,943 |
class CLIPSegVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to instantiate an
CLIPSeg model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the CLIPSeg
[CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 32):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
Example:
```python
>>> from transformers import CLIPSegVisionConfig, CLIPSegVisionModel
>>> # Initializing a CLIPSegVisionConfig with CIDAS/clipseg-rd64 style configuration
>>> configuration = CLIPSegVisionConfig()
>>> # Initializing a CLIPSegVisionModel (with random weights) from the CIDAS/clipseg-rd64 style configuration
>>> model = CLIPSegVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "clipseg_vision_model"
base_config_key = "vision_config"
def __init__(
self,
hidden_size=768,
intermediate_size=3072,
num_hidden_layers=12,
num_attention_heads=12,
num_channels=3,
image_size=224,
patch_size=32,
hidden_act="quick_gelu",
layer_norm_eps=1e-5,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
|
class_definition
| 5,381 | 9,392 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clipseg/configuration_clipseg.py
| null | 5,944 |
class CLIPSegConfig(PretrainedConfig):
r"""
[`CLIPSegConfig`] is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to
instantiate a CLIPSeg model according to the specified arguments, defining the text model and vision model configs.
Instantiating a configuration with the defaults will yield a similar configuration to that of the CLIPSeg
[CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`CLIPSegTextConfig`].
vision_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`CLIPSegVisionConfig`].
projection_dim (`int`, *optional*, defaults to 512):
Dimensionality of text and vision projection layers.
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
The initial value of the *logit_scale* parameter. Default is used as per the original CLIPSeg implementation.
extract_layers (`List[int]`, *optional*, defaults to `[3, 6, 9]`):
Layers to extract when forwarding the query image through the frozen visual backbone of CLIP.
reduce_dim (`int`, *optional*, defaults to 64):
Dimensionality to reduce the CLIP vision embedding.
decoder_num_attention_heads (`int`, *optional*, defaults to 4):
Number of attention heads in the decoder of CLIPSeg.
decoder_attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
decoder_hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
decoder_intermediate_size (`int`, *optional*, defaults to 2048):
Dimensionality of the "intermediate" (i.e., feed-forward) layers in the Transformer decoder.
conditional_layer (`int`, *optional*, defaults to 0):
The layer to use of the Transformer encoder whose activations will be combined with the condition
embeddings using FiLM (Feature-wise Linear Modulation). If 0, the last layer is used.
use_complex_transposed_convolution (`bool`, *optional*, defaults to `False`):
Whether to use a more complex transposed convolution in the decoder, enabling more fine-grained
segmentation.
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import CLIPSegConfig, CLIPSegModel
>>> # Initializing a CLIPSegConfig with CIDAS/clipseg-rd64 style configuration
>>> configuration = CLIPSegConfig()
>>> # Initializing a CLIPSegModel (with random weights) from the CIDAS/clipseg-rd64 style configuration
>>> model = CLIPSegModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> # We can also initialize a CLIPSegConfig from a CLIPSegTextConfig and a CLIPSegVisionConfig
>>> # Initializing a CLIPSegText and CLIPSegVision configuration
>>> config_text = CLIPSegTextConfig()
>>> config_vision = CLIPSegVisionConfig()
>>> config = CLIPSegConfig.from_text_vision_configs(config_text, config_vision)
```"""
model_type = "clipseg"
sub_configs = {"text_config": CLIPSegTextConfig, "vision_config": CLIPSegVisionConfig}
def __init__(
self,
text_config=None,
vision_config=None,
projection_dim=512,
logit_scale_init_value=2.6592,
extract_layers=[3, 6, 9],
reduce_dim=64,
decoder_num_attention_heads=4,
decoder_attention_dropout=0.0,
decoder_hidden_act="quick_gelu",
decoder_intermediate_size=2048,
conditional_layer=0,
use_complex_transposed_convolution=False,
**kwargs,
):
# If `_config_dict` exist, we use them for the backward compatibility.
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
# of confusion!).
text_config_dict = kwargs.pop("text_config_dict", None)
vision_config_dict = kwargs.pop("vision_config_dict", None)
super().__init__(**kwargs)
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
if text_config_dict is not None:
if text_config is None:
text_config = {}
# This is the complete result when using `text_config_dict`.
_text_config_dict = CLIPSegTextConfig(**text_config_dict).to_dict()
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
for key, value in _text_config_dict.items():
if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
# If specified in `text_config_dict`
if key in text_config_dict:
message = (
f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
f'The value `text_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
message = (
f"`text_config_dict` is provided which will be used to initialize `CLIPSegTextConfig`. The "
f'value `text_config["{key}"]` will be overridden.'
)
logger.info(message)
# Update all values in `text_config` with the ones in `_text_config_dict`.
text_config.update(_text_config_dict)
if vision_config_dict is not None:
if vision_config is None:
vision_config = {}
# This is the complete result when using `vision_config_dict`.
_vision_config_dict = CLIPSegVisionConfig(**vision_config_dict).to_dict()
# convert keys to string instead of integer
if "id2label" in _vision_config_dict:
_vision_config_dict["id2label"] = {
str(key): value for key, value in _vision_config_dict["id2label"].items()
}
# Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
for key, value in _vision_config_dict.items():
if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
# If specified in `vision_config_dict`
if key in vision_config_dict:
message = (
f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different "
f'values. The value `vision_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
message = (
f"`vision_config_dict` is provided which will be used to initialize `CLIPSegVisionConfig`. "
f'The value `vision_config["{key}"]` will be overridden.'
)
logger.info(message)
# Update all values in `vision_config` with the ones in `_vision_config_dict`.
vision_config.update(_vision_config_dict)
if text_config is None:
text_config = {}
logger.info("`text_config` is `None`. Initializing the `CLIPSegTextConfig` with default values.")
if vision_config is None:
vision_config = {}
logger.info("`vision_config` is `None`. initializing the `CLIPSegVisionConfig` with default values.")
self.text_config = CLIPSegTextConfig(**text_config)
self.vision_config = CLIPSegVisionConfig(**vision_config)
self.projection_dim = projection_dim
self.logit_scale_init_value = logit_scale_init_value
self.extract_layers = extract_layers
self.reduce_dim = reduce_dim
self.decoder_num_attention_heads = decoder_num_attention_heads
self.decoder_attention_dropout = decoder_attention_dropout
self.decoder_hidden_act = decoder_hidden_act
self.decoder_intermediate_size = decoder_intermediate_size
self.conditional_layer = conditional_layer
self.initializer_factor = 1.0
self.use_complex_transposed_convolution = use_complex_transposed_convolution
@classmethod
def from_text_vision_configs(cls, text_config: CLIPSegTextConfig, vision_config: CLIPSegVisionConfig, **kwargs):
r"""
Instantiate a [`CLIPSegConfig`] (or a derived class) from clipseg text model configuration and clipseg vision
model configuration.
Returns:
[`CLIPSegConfig`]: An instance of a configuration object
"""
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
class_definition
| 9,395 | 19,278 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clipseg/configuration_clipseg.py
| null | 5,945 |
class CLIPSegProcessor(ProcessorMixin):
r"""
Constructs a CLIPSeg processor which wraps a CLIPSeg image processor and a CLIP tokenizer into a single processor.
[`CLIPSegProcessor`] offers all the functionalities of [`ViTImageProcessor`] and [`CLIPTokenizerFast`]. See the
[`~CLIPSegProcessor.__call__`] and [`~CLIPSegProcessor.decode`] for more information.
Args:
image_processor ([`ViTImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`CLIPTokenizerFast`], *optional*):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "ViTImageProcessor"
tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
feature_extractor = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead.",
FutureWarning,
)
feature_extractor = kwargs.pop("feature_extractor")
image_processor = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
super().__init__(image_processor, tokenizer)
def __call__(self, text=None, images=None, visual_prompt=None, return_tensors=None, **kwargs):
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to CLIPTokenizerFast's [`~CLIPTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
ViTImageProcessor's [`~ViTImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of
the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
visual_prompt (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The visual prompt image or batch of images to be prepared. Each visual prompt image can be a PIL image,
NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape
(C, H, W), where C is a number of channels, H and W are image height and width.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
if text is None and visual_prompt is None and images is None:
raise ValueError("You have to specify either text, visual prompt or images.")
if text is not None and visual_prompt is not None:
raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt.")
if text is not None:
encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs)
if visual_prompt is not None:
prompt_features = self.image_processor(visual_prompt, return_tensors=return_tensors, **kwargs)
if images is not None:
image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs)
if visual_prompt is not None and images is not None:
encoding = {
"pixel_values": image_features.pixel_values,
"conditional_pixel_values": prompt_features.pixel_values,
}
return encoding
elif text is not None and images is not None:
encoding["pixel_values"] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
elif visual_prompt is not None:
encoding = {
"conditional_pixel_values": prompt_features.pixel_values,
}
return encoding
else:
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def feature_extractor_class(self):
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
FutureWarning,
)
return self.image_processor_class
@property
def feature_extractor(self):
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",
FutureWarning,
)
return self.image_processor
|
class_definition
| 772 | 7,789 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clipseg/processing_clipseg.py
| null | 5,946 |
class CLIPSegOutput(ModelOutput):
"""
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for image-text similarity.
logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
similarity scores.
logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
similarity scores.
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
The text embeddings obtained by applying the projection layer to the pooled output of [`CLIPSegTextModel`].
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
The image embeddings obtained by applying the projection layer to the pooled output of [`CLIPSegVisionModel`].
text_model_output (`BaseModelOutputWithPooling`):
The output of the [`CLIPSegTextModel`].
vision_model_output (`BaseModelOutputWithPooling`):
The output of the [`CLIPSegVisionModel`].
"""
loss: Optional[torch.FloatTensor] = None
logits_per_image: torch.FloatTensor = None
logits_per_text: torch.FloatTensor = None
text_embeds: torch.FloatTensor = None
image_embeds: torch.FloatTensor = None
text_model_output: BaseModelOutputWithPooling = None
vision_model_output: BaseModelOutputWithPooling = None
def to_tuple(self) -> Tuple[Any]:
return tuple(
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
for k in self.keys()
)
|
class_definition
| 2,146 | 4,023 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clipseg/modeling_clipseg.py
| null | 5,947 |
class CLIPSegDecoderOutput(ModelOutput):
"""
Args:
logits (`torch.FloatTensor` of shape `(batch_size, height, width)`):
Classification scores for each pixel.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
class_definition
| 4,037 | 5,188 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clipseg/modeling_clipseg.py
| null | 5,948 |
class CLIPSegImageSegmentationOutput(ModelOutput):
"""
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for image-text similarity.
...
vision_model_output (`BaseModelOutputWithPooling`):
The output of the [`CLIPSegVisionModel`].
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
conditional_embeddings: torch.FloatTensor = None
pooled_output: torch.FloatTensor = None
vision_model_output: BaseModelOutputWithPooling = None
decoder_output: CLIPSegDecoderOutput = None
def to_tuple(self) -> Tuple[Any]:
return tuple(
self[k] if k not in ["vision_model_output", "decoder_output"] else getattr(self, k).to_tuple()
for k in self.keys()
)
|
class_definition
| 5,202 | 6,061 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clipseg/modeling_clipseg.py
| null | 5,949 |
class CLIPSegVisionEmbeddings(nn.Module):
# Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings.__init__ with CLIP->CLIPSeg
def __init__(self, config: CLIPSegVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
bias=False,
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
images. This method is also adapted to support torch.jit tracing.
Adapted from:
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
- https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
"""
num_patches = embeddings.shape[1] - 1
position_embedding = self.position_embedding.weight.unsqueeze(0)
num_positions = position_embedding.shape[1] - 1
# always interpolate when tracing to ensure the exported model works for dynamic input shapes
if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
return self.position_embedding(self.position_ids)
class_pos_embed = position_embedding[:, :1]
patch_pos_embed = position_embedding[:, 1:]
dim = embeddings.shape[-1]
new_height = height // self.patch_size
new_width = width // self.patch_size
sqrt_num_positions = torch_int(num_positions**0.5)
patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed,
size=(new_height, new_width),
mode="bicubic",
align_corners=False,
)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed, patch_pos_embed), dim=1)
def forward(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding=True) -> torch.Tensor:
batch_size, _, height, width = pixel_values.shape
if not interpolate_pos_encoding and (height != self.image_size or width != self.image_size):
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size}*{self.image_size})."
)
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
if interpolate_pos_encoding:
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
else:
embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings
|
class_definition
| 6,064 | 9,921 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clipseg/modeling_clipseg.py
| null | 5,950 |
class CLIPSegTextEmbeddings(nn.Module):
def __init__(self, config: CLIPSegTextConfig):
super().__init__()
embed_dim = config.hidden_size
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
) -> torch.Tensor:
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
max_position_embedding = self.position_embedding.weight.shape[0]
if seq_length > max_position_embedding:
raise ValueError(
f"Sequence length must be less than max_position_embeddings (got `sequence length`: "
f"{seq_length} and max_position_embeddings: {max_position_embedding}"
)
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if inputs_embeds is None:
inputs_embeds = self.token_embedding(input_ids)
position_embeddings = self.position_embedding(position_ids)
embeddings = inputs_embeds + position_embeddings
return embeddings
|
class_definition
| 10,015 | 11,599 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clipseg/modeling_clipseg.py
| null | 5,951 |
class CLIPSegAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Input shape: Batch x Time x Channel"""
bsz, tgt_len, embed_dim = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scale
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
# apply the causal_attention_mask first
if causal_attention_mask is not None:
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {causal_attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit akward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
|
class_definition
| 11,688 | 16,421 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clipseg/modeling_clipseg.py
| null | 5,952 |
class CLIPSegMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
|
class_definition
| 16,504 | 17,077 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clipseg/modeling_clipseg.py
| null | 5,953 |
class CLIPSegEncoderLayer(nn.Module):
def __init__(self, config: CLIPSegConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = CLIPSegAttention(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = CLIPSegMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
|
class_definition
| 17,181 | 19,138 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clipseg/modeling_clipseg.py
| null | 5,954 |
class CLIPSegPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = CLIPSegConfig
base_model_prefix = "clip"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor
if isinstance(module, CLIPSegTextEmbeddings):
module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
elif isinstance(module, CLIPSegVisionEmbeddings):
factor = self.config.initializer_factor
nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
elif isinstance(module, CLIPSegAttention):
factor = self.config.initializer_factor
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
out_proj_std = (module.embed_dim**-0.5) * factor
nn.init.normal_(module.q_proj.weight, std=in_proj_std)
nn.init.normal_(module.k_proj.weight, std=in_proj_std)
nn.init.normal_(module.v_proj.weight, std=in_proj_std)
nn.init.normal_(module.out_proj.weight, std=out_proj_std)
elif isinstance(module, CLIPSegMLP):
factor = self.config.initializer_factor
in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
nn.init.normal_(module.fc1.weight, std=fc_std)
nn.init.normal_(module.fc2.weight, std=in_proj_std)
elif isinstance(module, CLIPSegModel):
nn.init.normal_(
module.text_projection.weight,
std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
)
nn.init.normal_(
module.visual_projection.weight,
std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
)
if isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
|
class_definition
| 19,141 | 21,791 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clipseg/modeling_clipseg.py
| null | 5,955 |
class CLIPSegEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`CLIPSegEncoderLayer`].
Args:
config: CLIPSegConfig
"""
def __init__(self, config: CLIPSegConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList([CLIPSegEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Causal mask for the text model. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
|
class_definition
| 27,496 | 31,899 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clipseg/modeling_clipseg.py
| null | 5,956 |
class CLIPSegTextTransformer(nn.Module):
def __init__(self, config: CLIPSegTextConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = CLIPSegTextEmbeddings(config)
self.encoder = CLIPSegEncoder(config)
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
# For `pooled_output` computation
self.eos_token_id = config.eos_token_id
@add_start_docstrings_to_model_forward(CLIPSEG_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPSegTextConfig)
# Adapted from transformers.models.clip.modeling_clip.CLIPTextTransformer.forward with clip->clipseg, CLIP->CLIPSeg
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is None:
raise ValueError("You have to specify input_ids")
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
# CLIPSeg's text model uses causal mask, prepare it here.
# https://github.com/openai/CLIPSeg/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clipseg/model.py#L324
causal_attention_mask = _create_4d_causal_attention_mask(
input_shape, hidden_states.dtype, device=hidden_states.device
)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
last_hidden_state = self.final_layer_norm(last_hidden_state)
if self.eos_token_id == 2:
# The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here.
# A CLIPSeg model with such `eos_token_id` in the config can't work correctly with extra new tokens added
# ------------------------------------------------------------
# text_embeds.shape = [batch_size, sequence_length, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
# casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
pooled_output = last_hidden_state[
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1),
]
else:
# The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible)
pooled_output = last_hidden_state[
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
# We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`)
# Note: we assume each sequence (along batch dim.) contains an `eos_token_id` (e.g. prepared by the tokenizer)
(input_ids.to(dtype=torch.int, device=last_hidden_state.device) == self.eos_token_id)
.int()
.argmax(dim=-1),
]
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
|
class_definition
| 31,902 | 36,655 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clipseg/modeling_clipseg.py
| null | 5,957 |
class CLIPSegTextModel(CLIPSegPreTrainedModel):
config_class = CLIPSegTextConfig
_no_split_modules = ["CLIPSegTextEmbeddings", "CLIPSegEncoderLayer"]
def __init__(self, config: CLIPSegTextConfig):
super().__init__(config)
self.text_model = CLIPSegTextTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.text_model.embeddings.token_embedding
def set_input_embeddings(self, value):
self.text_model.embeddings.token_embedding = value
@add_start_docstrings_to_model_forward(CLIPSEG_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPSegTextConfig)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, CLIPSegTextModel
>>> tokenizer = AutoTokenizer.from_pretrained("CIDAS/clipseg-rd64-refined")
>>> model = CLIPSegTextModel.from_pretrained("CIDAS/clipseg-rd64-refined")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
```"""
return self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
|
class_definition
| 36,658 | 38,718 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clipseg/modeling_clipseg.py
| null | 5,958 |
class CLIPSegVisionTransformer(nn.Module):
# Copied from transformers.models.altclip.modeling_altclip.AltCLIPVisionTransformer.__init__ with AltCLIP->CLIPSeg
def __init__(self, config: CLIPSegVisionConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = CLIPSegVisionEmbeddings(config)
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.encoder = CLIPSegEncoder(config)
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
@add_start_docstrings_to_model_forward(CLIPSEG_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPSegVisionConfig)
def forward(
self,
pixel_values: Optional[torch.FloatTensor],
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = True,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
hidden_states = self.pre_layrnorm(hidden_states)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
pooled_output = last_hidden_state[:, 0, :]
pooled_output = self.post_layernorm(pooled_output)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
|
class_definition
| 38,721 | 41,126 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clipseg/modeling_clipseg.py
| null | 5,959 |
class CLIPSegVisionModel(CLIPSegPreTrainedModel):
config_class = CLIPSegVisionConfig
main_input_name = "pixel_values"
def __init__(self, config: CLIPSegVisionConfig):
super().__init__(config)
self.vision_model = CLIPSegVisionTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.vision_model.embeddings.patch_embedding
@add_start_docstrings_to_model_forward(CLIPSEG_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPSegVisionConfig)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = True,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, CLIPSegVisionModel
>>> processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
>>> model = CLIPSegVisionModel.from_pretrained("CIDAS/clipseg-rd64-refined")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled CLS states
```"""
return self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
|
class_definition
| 41,129 | 43,170 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clipseg/modeling_clipseg.py
| null | 5,960 |
class CLIPSegModel(CLIPSegPreTrainedModel):
config_class = CLIPSegConfig
def __init__(self, config: CLIPSegConfig):
super().__init__(config)
if not isinstance(config.text_config, CLIPSegTextConfig):
raise TypeError(
"config.text_config is expected to be of type CLIPSegTextConfig but is of type"
f" {type(config.text_config)}."
)
if not isinstance(config.vision_config, CLIPSegVisionConfig):
raise TypeError(
"config.vision_config is expected to be of type CLIPSegVisionConfig but is of type"
f" {type(config.vision_config)}."
)
text_config = config.text_config
vision_config = config.vision_config
self.projection_dim = config.projection_dim
self.text_embed_dim = text_config.hidden_size
self.vision_embed_dim = vision_config.hidden_size
self.text_model = CLIPSegTextTransformer(text_config)
self.vision_model = CLIPSegVisionTransformer(vision_config)
self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(CLIPSEG_TEXT_INPUTS_DOCSTRING)
def get_text_features(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
applying the projection layer to the pooled output of [`CLIPSegTextModel`].
Examples:
```python
>>> from transformers import AutoTokenizer, CLIPSegModel
>>> tokenizer = AutoTokenizer.from_pretrained("CIDAS/clipseg-rd64-refined")
>>> model = CLIPSegModel.from_pretrained("CIDAS/clipseg-rd64-refined")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
>>> text_features = model.get_text_features(**inputs)
```"""
# Use CLIPSEG model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = text_outputs[1]
text_features = self.text_projection(pooled_output)
return text_features
@add_start_docstrings_to_model_forward(CLIPSEG_VISION_INPUTS_DOCSTRING)
def get_image_features(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = True,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
applying the projection layer to the pooled output of [`CLIPSegVisionModel`].
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, CLIPSegModel
>>> processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
>>> model = CLIPSegModel.from_pretrained("CIDAS/clipseg-rd64-refined")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> image_features = model.get_image_features(**inputs)
```"""
# Use CLIPSEG model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
pooled_output = vision_outputs[1] # pooled_output
image_features = self.visual_projection(pooled_output)
return image_features
@add_start_docstrings_to_model_forward(CLIPSEG_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CLIPSegOutput, config_class=CLIPSegConfig)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
return_loss: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = True,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CLIPSegOutput]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, CLIPSegModel
>>> processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
>>> model = CLIPSegModel.from_pretrained("CIDAS/clipseg-rd64-refined")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
... )
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
```"""
# Use CLIPSEG model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
image_embeds = vision_outputs[1]
image_embeds = self.visual_projection(image_embeds)
text_embeds = text_outputs[1]
text_embeds = self.text_projection(text_embeds)
# normalized features
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
# cosine similarity as logits
logit_scale = self.logit_scale.exp()
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
logits_per_image = logits_per_text.t()
loss = None
if return_loss:
loss = clipseg_loss(logits_per_text)
if not return_dict:
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
return ((loss,) + output) if loss is not None else output
return CLIPSegOutput(
loss=loss,
logits_per_image=logits_per_image,
logits_per_text=logits_per_text,
text_embeds=text_embeds,
image_embeds=image_embeds,
text_model_output=text_outputs,
vision_model_output=vision_outputs,
)
|
class_definition
| 43,220 | 52,795 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clipseg/modeling_clipseg.py
| null | 5,961 |
class CLIPSegDecoderLayer(nn.Module):
"""
CLIPSeg decoder layer, which is identical to `CLIPSegEncoderLayer`, except that normalization is applied after
self-attention/MLP, rather than before.
"""
# Copied from transformers.models.altclip.modeling_altclip.AltCLIPEncoderLayer.__init__ with AltCLIP->CLIPSeg
def __init__(self, config: CLIPSegConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = CLIPSegAttention(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = CLIPSegMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
hidden_states = self.layer_norm1(hidden_states)
residual = hidden_states
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
hidden_states = self.layer_norm2(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
|
class_definition
| 52,798 | 55,046 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clipseg/modeling_clipseg.py
| null | 5,962 |
class CLIPSegDecoder(CLIPSegPreTrainedModel):
def __init__(self, config: CLIPSegConfig):
super().__init__(config)
self.conditional_layer = config.conditional_layer
self.film_mul = nn.Linear(config.projection_dim, config.reduce_dim)
self.film_add = nn.Linear(config.projection_dim, config.reduce_dim)
if config.use_complex_transposed_convolution:
transposed_kernels = (config.vision_config.patch_size // 4, config.vision_config.patch_size // 4)
self.transposed_convolution = nn.Sequential(
nn.Conv2d(config.reduce_dim, config.reduce_dim, kernel_size=3, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(
config.reduce_dim,
config.reduce_dim // 2,
kernel_size=transposed_kernels[0],
stride=transposed_kernels[0],
),
nn.ReLU(),
nn.ConvTranspose2d(
config.reduce_dim // 2, 1, kernel_size=transposed_kernels[1], stride=transposed_kernels[1]
),
)
else:
self.transposed_convolution = nn.ConvTranspose2d(
config.reduce_dim, 1, config.vision_config.patch_size, stride=config.vision_config.patch_size
)
depth = len(config.extract_layers)
self.reduces = nn.ModuleList(
[nn.Linear(config.vision_config.hidden_size, config.reduce_dim) for _ in range(depth)]
)
decoder_config = copy.deepcopy(config.vision_config)
decoder_config.hidden_size = config.reduce_dim
decoder_config.num_attention_heads = config.decoder_num_attention_heads
decoder_config.intermediate_size = config.decoder_intermediate_size
decoder_config.hidden_act = "relu"
self.layers = nn.ModuleList([CLIPSegDecoderLayer(decoder_config) for _ in range(len(config.extract_layers))])
def forward(
self,
hidden_states: Tuple[torch.Tensor],
conditional_embeddings: torch.Tensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = True,
):
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
activations = hidden_states[::-1]
output = None
for i, (activation, layer, reduce) in enumerate(zip(activations, self.layers, self.reduces)):
if output is not None:
output = reduce(activation) + output
else:
output = reduce(activation)
if i == self.conditional_layer:
output = self.film_mul(conditional_embeddings) * output.permute(1, 0, 2) + self.film_add(
conditional_embeddings
)
output = output.permute(1, 0, 2)
layer_outputs = layer(
output, attention_mask=None, causal_attention_mask=None, output_attentions=output_attentions
)
output = layer_outputs[0]
if output_hidden_states:
all_hidden_states += (output,)
if output_attentions:
all_attentions += (layer_outputs[1],)
output = output[:, 1:, :].permute(0, 2, 1) # remove cls token and reshape to [batch_size, reduce_dim, seq_len]
size = int(math.sqrt(output.shape[2]))
batch_size = conditional_embeddings.shape[0]
output = output.view(batch_size, output.shape[1], size, size)
logits = self.transposed_convolution(output).squeeze(1)
if not return_dict:
return tuple(v for v in [logits, all_hidden_states, all_attentions] if v is not None)
return CLIPSegDecoderOutput(
logits=logits,
hidden_states=all_hidden_states,
attentions=all_attentions,
)
|
class_definition
| 55,049 | 58,997 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clipseg/modeling_clipseg.py
| null | 5,963 |
class CLIPSegForImageSegmentation(CLIPSegPreTrainedModel):
config_class = CLIPSegConfig
def __init__(self, config: CLIPSegConfig):
super().__init__(config)
self.config = config
self.clip = CLIPSegModel(config)
self.extract_layers = config.extract_layers
self.decoder = CLIPSegDecoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_conditional_embeddings(
self,
batch_size: int = None,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
conditional_pixel_values: Optional[torch.Tensor] = None,
):
if input_ids is not None:
# compute conditional embeddings from texts
if len(input_ids) != batch_size:
raise ValueError("Make sure to pass as many prompt texts as there are query images")
with torch.no_grad():
conditional_embeddings = self.clip.get_text_features(
input_ids, attention_mask=attention_mask, position_ids=position_ids
)
elif conditional_pixel_values is not None:
# compute conditional embeddings from images
if len(conditional_pixel_values) != batch_size:
raise ValueError("Make sure to pass as many prompt images as there are query images")
with torch.no_grad():
conditional_embeddings = self.clip.get_image_features(conditional_pixel_values)
else:
raise ValueError(
"Invalid conditional, should be either provided as `input_ids` or `conditional_pixel_values`"
)
return conditional_embeddings
@add_start_docstrings_to_model_forward(CLIPSEG_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CLIPSegImageSegmentationOutput, config_class=CLIPSegTextConfig)
def forward(
self,
input_ids: Optional[torch.FloatTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
conditional_pixel_values: Optional[torch.FloatTensor] = None,
conditional_embeddings: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = True,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CLIPSegOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoProcessor, CLIPSegForImageSegmentation
>>> from PIL import Image
>>> import requests
>>> processor = AutoProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
>>> model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> texts = ["a cat", "a remote", "a blanket"]
>>> inputs = processor(text=texts, images=[image] * len(texts), padding=True, return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> print(logits.shape)
torch.Size([3, 352, 352])
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# step 1: forward the query images through the frozen CLIP vision encoder
with torch.no_grad():
vision_outputs = self.clip.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=True, # we need the intermediate hidden states
interpolate_pos_encoding=interpolate_pos_encoding,
return_dict=return_dict,
)
pooled_output = self.clip.visual_projection(vision_outputs[1])
hidden_states = vision_outputs.hidden_states if return_dict else vision_outputs[2]
# we add +1 here as the hidden states also include the initial embeddings
activations = [hidden_states[i + 1] for i in self.extract_layers]
# update vision_outputs
if return_dict:
vision_outputs = BaseModelOutputWithPooling(
last_hidden_state=vision_outputs.last_hidden_state,
pooler_output=vision_outputs.pooler_output,
hidden_states=vision_outputs.hidden_states if output_hidden_states else None,
attentions=vision_outputs.attentions,
)
else:
vision_outputs = (
vision_outputs[:2] + vision_outputs[3:] if not output_hidden_states else vision_outputs
)
# step 2: compute conditional embeddings, either from text, images or an own provided embedding
if conditional_embeddings is None:
conditional_embeddings = self.get_conditional_embeddings(
batch_size=pixel_values.shape[0],
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
conditional_pixel_values=conditional_pixel_values,
)
else:
if conditional_embeddings.shape[0] != pixel_values.shape[0]:
raise ValueError(
"Make sure to pass as many conditional embeddings as there are query images in the batch"
)
if conditional_embeddings.shape[1] != self.config.projection_dim:
raise ValueError(
"Make sure that the feature dimension of the conditional embeddings matches"
" `config.projection_dim`."
)
# step 3: forward both the pooled output and the activations through the lightweight decoder to predict masks
decoder_outputs = self.decoder(
activations,
conditional_embeddings,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
loss = None
if labels is not None:
# move labels to the correct device to enable PP
labels = labels.to(logits.device)
loss_fn = nn.BCEWithLogitsLoss()
loss = loss_fn(logits, labels)
if not return_dict:
output = (logits, conditional_embeddings, pooled_output, vision_outputs, decoder_outputs)
return ((loss,) + output) if loss is not None else output
return CLIPSegImageSegmentationOutput(
loss=loss,
logits=logits,
conditional_embeddings=conditional_embeddings,
pooled_output=pooled_output,
vision_model_output=vision_outputs,
decoder_output=decoder_outputs,
)
|
class_definition
| 59,176 | 66,772 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/clipseg/modeling_clipseg.py
| null | 5,964 |
class CodeLlamaTokenizer(PreTrainedTokenizer):
"""
Construct a CodeLlama tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as
there is no padding token in the original model.
The default configuration match that of
[codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/meta-llama/CodeLlama-7b-Instruct-hf/blob/main/tokenizer_config.json)
which supports prompt infilling.
Args:
vocab_file (`str`):
Path to the vocabulary file.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
prefix_token (`str`, *optional*, defaults to `"▁<PRE>"`):
Prefix token used for infilling.
middle_token (`str`, *optional*, defaults to `"▁<MID>"`):
Middle token used for infilling.
suffix_token (`str`, *optional*, defaults to `"▁<SUF>"`):
Suffix token used for infilling.
eot_token (`str`, *optional*, defaults to `"▁<EOT>"`):
End of text token used for infilling.
fill_token (`str`, *optional*, defaults to `"<FILL_ME>"`):
The token used to split the input between the prefix and suffix.
suffix_first (`bool`, *optional*, defaults to `False`):
Whether the input prompt and suffix should be formatted with the suffix first.
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
add_bos_token (`bool`, *optional*, defaults to `True`):
Whether to add a beginning of sequence token at the start of sequences.
add_eos_token (`bool`, *optional*, defaults to `False`):
Whether to add an end of sequence token at the end of sequences.
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
Whether or not to clean up the tokenization spaces.
additional_special_tokens (`List[str]`, *optional*):
Additional special tokens used by the tokenizer.
use_default_system_prompt (`bool`, *optional*, defaults to `False`):
Whether or not the default system prompt for Llama should be used.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
unk_token="<unk>",
bos_token="<s>",
eos_token="</s>",
prefix_token="▁<PRE>",
middle_token="▁<MID>",
suffix_token="▁<SUF>",
eot_token="▁<EOT>",
fill_token="<FILL_ME>",
suffix_first=False,
sp_model_kwargs: Optional[Dict[str, Any]] = None,
add_bos_token=True,
add_eos_token=False,
clean_up_tokenization_spaces=False,
additional_special_tokens=None,
use_default_system_prompt=False,
**kwargs,
):
requires_backends(self, "protobuf")
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token
unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token
self.use_default_system_prompt = use_default_system_prompt
# mark tokens special to skip them
additional_special_tokens = additional_special_tokens or []
for token in [prefix_token, middle_token, suffix_token, eot_token]:
additional_special_tokens += [token] if token is not None else []
self.vocab_file = vocab_file
self.add_bos_token = add_bos_token
self.add_eos_token = add_eos_token
self._prefix_token = prefix_token
self._middle_token = middle_token
self._suffix_token = suffix_token
self._eot_token = eot_token
self.fill_token = fill_token
self.suffix_first = suffix_first
self.sp_model = self.get_spm_processor()
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
add_bos_token=add_bos_token,
add_eos_token=add_eos_token,
prefix_token=prefix_token,
middle_token=middle_token,
suffix_token=suffix_token,
eot_token=eot_token,
fill_token=fill_token,
sp_model_kwargs=self.sp_model_kwargs,
suffix_first=suffix_first,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
additional_special_tokens=additional_special_tokens,
use_default_system_prompt=use_default_system_prompt,
**kwargs,
)
@property
def unk_token_length(self):
return len(self.sp_model.encode(str(self.unk_token)))
def get_spm_processor(self):
tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
with open(self.vocab_file, "rb") as f:
sp_model = f.read()
model_pb2 = import_protobuf()
model = model_pb2.ModelProto.FromString(sp_model)
normalizer_spec = model_pb2.NormalizerSpec()
normalizer_spec.add_dummy_prefix = False
model.normalizer_spec.MergeFrom(normalizer_spec)
sp_model = model.SerializeToString()
tokenizer.LoadFromSerializedProto(sp_model)
return tokenizer
@property
def prefix_token(self):
return self._prefix_token
@property
def prefix_id(self):
if self._prefix_token is None:
return None
return self.convert_tokens_to_ids(self.prefix_token)
@property
def middle_token(self):
return self._middle_token
@property
def middle_id(self):
if self._middle_token is None:
return None
return self.convert_tokens_to_ids(self.middle_token)
@property
def suffix_token(self):
return self._suffix_token
@property
def suffix_id(self):
if self._suffix_token is None:
return None
return self.convert_tokens_to_ids(self.suffix_token)
@property
def eot_token(self):
return self._eot_token
@property
def eot_id(self):
if self._eot_token is None:
return None
return self.convert_tokens_to_ids(self.eot_token)
@property
def vocab_size(self):
"""Returns vocab size"""
return self.sp_model.get_piece_size()
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.get_vocab
def get_vocab(self):
"""Returns vocab as a dict"""
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def tokenize(self, prefix, suffix=None, suffix_first=False, **kwargs) -> List[int]:
# add a prefix space to `prefix`
if self.fill_token is not None and self.fill_token in prefix and suffix is None:
prefix, suffix = prefix.split(self.fill_token)
if len(prefix) > 0:
prefix = SPIECE_UNDERLINE + prefix.replace(SPIECE_UNDERLINE, " ")
if suffix is None or len(suffix) < 1:
tokens = super().tokenize(prefix, **kwargs)
if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens:
tokens = tokens[1:]
return tokens
prefix_tokens = self._tokenize(prefix) # prefix has an extra `SPIECE_UNDERLINE`
if None in (self.prefix_id, self.middle_id, self.suffix_id):
raise ValueError(
"The input either includes a `prefix` and a `suffix` used for the infilling task,"
f" or can be split on the {self.fill_token} token, creating a suffix and prefix,"
" but the model does not support `infilling`."
)
suffix_tokens = self._tokenize(suffix) # make sure CodeLlama sp model does not mess up
suffix_first = suffix_first if suffix_first is not None else self.suffix_first
if suffix_first:
# format as " <PRE> <SUF>{suf} <MID> {pre}"
return [self.prefix_token, self.suffix_token] + suffix_tokens + [self.middle_token] + prefix_tokens
else:
# format as " <PRE> {pre} <SUF>{suf} <MID>"
return [self.prefix_token] + prefix_tokens + [self.suffix_token] + suffix_tokens + [self.middle_token]
def _tokenize(self, text, **kwargs):
"""
Returns a tokenized string.
We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any
SPIECE_UNDERLINE. For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give
`['H', 'e', 'y']` instead of `['▁He', 'y']`. Thus we always encode `f"{unk_token}text"` and strip the
`unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`.
`self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`.
"""
tokens = self.sp_model.encode(text, out_type=str)
if not text.startswith((SPIECE_UNDERLINE, " ")):
return tokens
# 1. Encode string + prefix ex: "<unk> Hey"
tokens = self.sp_model.encode(self.unk_token + text, out_type=str)
# 2. Remove self.unk_token from ['<','unk','>', '▁Hey']
return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer._convert_token_to_id
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.sp_model.piece_to_id(token)
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer._convert_id_to_token
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
token = self.sp_model.IdToPiece(index)
return token
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
# since we manually add the prefix space, we have to remove it when decoding
if tokens[0].startswith(SPIECE_UNDERLINE):
tokens[0] = tokens[0][1:]
current_sub_tokens = []
out_string = ""
for _, token in enumerate(tokens):
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(current_sub_tokens) + token
current_sub_tokens = []
else:
current_sub_tokens.append(token)
out_string += self.sp_model.decode(current_sub_tokens)
return out_string
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.save_vocabulary
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
"""
Save the vocabulary and special tokens file to a directory.
Args:
save_directory (`str`):
The directory in which to save the vocabulary.
Returns:
`Tuple(str)`: Paths to the files saved.
"""
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = bos_token_id + token_ids_0 + eos_token_id
if token_ids_1 is not None:
output = output + bos_token_id + token_ids_1 + eos_token_id
return output
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.get_special_tokens_mask
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
bos_token_id = [1] if self.add_bos_token else []
eos_token_id = [1] if self.add_eos_token else []
if token_ids_1 is None:
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
return (
bos_token_id
+ ([0] * len(token_ids_0))
+ eos_token_id
+ bos_token_id
+ ([0] * len(token_ids_1))
+ eos_token_id
)
# Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.create_token_type_ids_from_sequences
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
if token_ids_1 is None, only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of ids.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
if token_ids_1 is not None:
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
return output
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
return state
def __setstate__(self, d):
self.__dict__ = d
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
|
class_definition
| 1,744 | 19,215 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/code_llama/tokenization_code_llama.py
| null | 5,965 |
class CodeLlamaTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a Llama tokenizer. Based on byte-level Byte-Pair-Encoding.
This uses notably ByteFallback and no normalization.
```python
>>> from transformers import CodeLlamaTokenizerFast
>>> tokenizer = CodeLlamaTokenizerFast.from_pretrained("hf-internal-testing/llama-tokenizer")
>>> tokenizer.encode("Hello this is a test")
[1, 15043, 445, 338, 263, 1243]
```
If you want to change the `bos_token` or the `eos_token`, make sure to specify them when initializing the model, or
call `tokenizer.update_post_processor()` to make sure that the post-processing is correctly done (otherwise the
values of the first token and final token of an encoded sequence will not be correct). For more details, checkout
[post-processors] (https://huggingface.co/docs/tokenizers/api/post-processors) documentation.
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods. The default configuration match that of
[meta-llama/CodeLlama-7b-Instruct-hf](https://huggingface.co/meta-llama/CodeLlama-7b-Instruct-hf/blob/main/tokenizer_config.json)
which supports prompt infilling.
Args:
vocab_file (`str`, *optional*):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a .model extension) that
contains the vocabulary necessary to instantiate a tokenizer.
tokenizer_file (`str`, *optional*):
[tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
contains everything needed to load the tokenizer.
clean_up_tokenization_spaces (`str`, *optional*, defaults to `False`):
Wether to cleanup spaces after decoding, cleanup consists in removing potential artifacts like extra
spaces.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
prefix_token (`str`, *optional*, defaults to `"▁<PRE>"`):
Prefix token used for infilling.
middle_token (`str`, *optional*, defaults to `"▁<MID>"`):
Middle token used for infilling.
suffix_token (`str`, *optional*, defaults to `"▁<SUF>"`):
Suffix token used for infilling.
eot_token (`str`, *optional*, defaults to `"▁<EOT>"`):
End of text token used for infilling.
fill_token (`str`, *optional*, defaults to `"<FILL_ME>"`):
The token used to split the input between the prefix and suffix.
additional_special_tokens (`List[str]`, *optional*):
Additional special tokens used by the tokenizer.
add_bos_token (`bool`, *optional*, defaults to `True`):
Whether to add a beginning of sequence token at the start of sequences.
add_eos_token (`bool`, *optional*, defaults to `False`):
Whether to add an end of sequence token at the end of sequences.
use_default_system_prompt (`bool`, *optional*, defaults to `False`):
Whether or not the default system prompt for Llama should be used.
"""
vocab_files_names = VOCAB_FILES_NAMES
slow_tokenizer_class = CodeLlamaTokenizer
padding_side = "left"
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
clean_up_tokenization_spaces=False,
unk_token="<unk>",
bos_token="<s>",
eos_token="</s>",
prefix_token="▁<PRE>",
middle_token="▁<MID>",
suffix_token="▁<SUF>",
eot_token="▁<EOT>",
fill_token="<FILL_ME>",
additional_special_tokens=None,
add_bos_token=True,
add_eos_token=False,
use_default_system_prompt=False,
**kwargs,
):
# mark tokens special to skip them
additional_special_tokens = additional_special_tokens or []
for token in [prefix_token, middle_token, suffix_token, eot_token]:
additional_special_tokens += [token] if token is not None else []
self.use_default_system_prompt = use_default_system_prompt
super().__init__(
vocab_file=vocab_file,
tokenizer_file=tokenizer_file,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
additional_special_tokens=additional_special_tokens,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
add_bos_token=add_bos_token,
add_eos_token=add_eos_token,
prefix_token=prefix_token,
middle_token=middle_token,
suffix_token=suffix_token,
eot_token=eot_token,
fill_token=fill_token,
use_default_system_prompt=use_default_system_prompt,
**kwargs,
)
self._add_bos_token = add_bos_token
self._add_eos_token = add_eos_token
self.update_post_processor()
self.vocab_file = vocab_file
self._prefix_token = prefix_token
self._middle_token = middle_token
self._suffix_token = suffix_token
self._eot_token = eot_token
self.fill_token = fill_token
@property
def can_save_slow_tokenizer(self) -> bool:
return os.path.isfile(self.vocab_file) if self.vocab_file else False
# Copied from transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast.update_post_processor
def update_post_processor(self):
"""
Updates the underlying post processor with the current `bos_token` and `eos_token`.
"""
bos = self.bos_token
bos_token_id = self.bos_token_id
if bos is None and self.add_bos_token:
raise ValueError("add_bos_token = True but bos_token = None")
eos = self.eos_token
eos_token_id = self.eos_token_id
if eos is None and self.add_eos_token:
raise ValueError("add_eos_token = True but eos_token = None")
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
special_tokens = []
if self.add_bos_token:
special_tokens.append((bos, bos_token_id))
if self.add_eos_token:
special_tokens.append((eos, eos_token_id))
self._tokenizer.post_processor = processors.TemplateProcessing(
single=single, pair=pair, special_tokens=special_tokens
)
@property
def prefix_token(self):
return self._prefix_token
@property
def prefix_id(self):
if self._prefix_token is None:
return None
return self.convert_tokens_to_ids(self.prefix_token)
@property
def middle_token(self):
return self._middle_token
@property
def middle_id(self):
if self._middle_token is None:
return None
return self.convert_tokens_to_ids(self.middle_token)
@property
def suffix_token(self):
return self._suffix_token
@property
def suffix_id(self):
if self._suffix_token is None:
return None
return self.convert_tokens_to_ids(self.suffix_token)
@property
def eot_id(self):
if self._eot_token is None:
return None
return self.convert_tokens_to_ids(self.eot_token)
@property
def eot_token(self):
return self._eot_token
@property
def add_eos_token(self):
return self._add_eos_token
@property
def add_bos_token(self):
return self._add_bos_token
@add_eos_token.setter
def add_eos_token(self, value):
self._add_eos_token = value
self.update_post_processor()
@add_bos_token.setter
def add_bos_token(self, value):
self._add_bos_token = value
self.update_post_processor()
def set_infilling_processor(self, reset, suffix_first=False, add_special_tokens=True):
"""
Updates the normalizer to make sure the prompt format for `infilling` is respected. The infilling format is the
following: if suffix_first
" <PRE> <SUF>{suf} <MID> {pre}"
else:
" <PRE> {pre} <SUF>{suf} <MID>"
If `reset` is set to `True`, the `normalizer` and `post_processor` are reset to their "normal" behaviour, which
is to add a prefix space for the normalizer, and add a `bos_token` to the input text for the `post_processor`.
"""
if reset:
self._tokenizer.normalizer = normalizers.Sequence(
[
normalizers.Prepend(prepend="▁"),
normalizers.Replace(pattern=" ", content="▁"),
]
)
self.update_post_processor()
return
self._tokenizer.normalizer = normalizers.Replace(pattern=" ", content="▁")
pair = [self.bos_token] if self.add_bos_token and add_special_tokens else []
special_tokens = [(self.bos_token, self.bos_token_id)] if self.add_bos_token and add_special_tokens else []
if suffix_first:
# format as " <PRE> <SUF>{suf} <MID> {pre}"
pair += [self.prefix_token, self.suffix_token, "$B", self.middle_token, "$A"]
special_tokens += [
(self.prefix_token, self.prefix_id),
(self.suffix_token, self.suffix_id),
(self.middle_token, self.middle_id),
]
else:
# format as " <PRE> {pre} <SUF>{suf} <MID>"
pair += [self.prefix_token, "$A", self.suffix_token, "$B", self.middle_token]
special_tokens += [
(self.prefix_token, self.prefix_id),
(self.suffix_token, self.suffix_id),
(self.middle_token, self.middle_id),
]
if self.add_eos_token and add_special_tokens:
pair += [self.eos_token]
special_tokens += [(self.eos_token, self.eos_token_id)]
self._tokenizer.post_processor = processors.TemplateProcessing(
single="$A", pair=pair, special_tokens=special_tokens
)
def encode_plus(self, text, text_pair=None, suffix_first=False, add_special_tokens=True, **kwargs):
# hack to make sure the input is pre-process but outside rust
text_pair = kwargs.pop("suffix", text_pair)
if self.fill_token is not None and self.fill_token in text and text_pair is None:
text, text_pair = text.split(self.fill_token)
if text_pair is None or len(text_pair) < 1:
return super().encode_plus(text, text_pair, add_special_tokens=add_special_tokens, **kwargs)
if None in (self.prefix_id, self.middle_id, self.suffix_id):
raise ValueError(
"Then input includes a `prefix` and a `suffix` used for the infilling task,"
" the `prefix_id, middle_id, suffix_id` must all be initialized. Current"
f" values : {self.prefix_id, self.middle_id, self.suffix_id}"
)
self.set_infilling_processor(False, suffix_first=suffix_first, add_special_tokens=add_special_tokens)
tokens = super().encode_plus(" " + text, text_pair=text_pair, add_special_tokens=True, **kwargs)
self.set_infilling_processor(True)
return tokens
# Copied from transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast.save_vocabulary
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer."
)
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. The special tokens depend on calling set_lang.
An NLLB sequence has the following format, where `X` represents the sequence:
- `input_ids` (for encoder) `X [eos, src_lang_code]`
- `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]`
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
separator.
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return self.bos_token_id + token_ids_0 + self.eos_token_id
return self.bos_token_id + token_ids_0 + token_ids_1 + self.eos_token_id
|
class_definition
| 1,876 | 16,014 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/code_llama/tokenization_code_llama_fast.py
| null | 5,966 |
class EfficientNetConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`EfficientNetModel`]. It is used to instantiate an
EfficientNet model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the EfficientNet
[google/efficientnet-b7](https://huggingface.co/google/efficientnet-b7) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
image_size (`int`, *optional*, defaults to 600):
The input image size.
width_coefficient (`float`, *optional*, defaults to 2.0):
Scaling coefficient for network width at each stage.
depth_coefficient (`float`, *optional*, defaults to 3.1):
Scaling coefficient for network depth at each stage.
depth_divisor `int`, *optional*, defaults to 8):
A unit of network width.
kernel_sizes (`List[int]`, *optional*, defaults to `[3, 3, 5, 3, 5, 5, 3]`):
List of kernel sizes to be used in each block.
in_channels (`List[int]`, *optional*, defaults to `[32, 16, 24, 40, 80, 112, 192]`):
List of input channel sizes to be used in each block for convolutional layers.
out_channels (`List[int]`, *optional*, defaults to `[16, 24, 40, 80, 112, 192, 320]`):
List of output channel sizes to be used in each block for convolutional layers.
depthwise_padding (`List[int]`, *optional*, defaults to `[]`):
List of block indices with square padding.
strides (`List[int]`, *optional*, defaults to `[1, 2, 2, 2, 1, 2, 1]`):
List of stride sizes to be used in each block for convolutional layers.
num_block_repeats (`List[int]`, *optional*, defaults to `[1, 2, 2, 3, 3, 4, 1]`):
List of the number of times each block is to repeated.
expand_ratios (`List[int]`, *optional*, defaults to `[1, 6, 6, 6, 6, 6, 6]`):
List of scaling coefficient of each block.
squeeze_expansion_ratio (`float`, *optional*, defaults to 0.25):
Squeeze expansion ratio.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`,
`"selu", `"gelu_new"`, `"silu"` and `"mish"` are supported.
hiddem_dim (`int`, *optional*, defaults to 1280):
The hidden dimension of the layer before the classification head.
pooling_type (`str` or `function`, *optional*, defaults to `"mean"`):
Type of final pooling to be applied before the dense classification head. Available options are [`"mean"`,
`"max"`]
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
batch_norm_eps (`float`, *optional*, defaults to 1e-3):
The epsilon used by the batch normalization layers.
batch_norm_momentum (`float`, *optional*, defaults to 0.99):
The momentum used by the batch normalization layers.
dropout_rate (`float`, *optional*, defaults to 0.5):
The dropout rate to be applied before final classifier layer.
drop_connect_rate (`float`, *optional*, defaults to 0.2):
The drop rate for skip connections.
Example:
```python
>>> from transformers import EfficientNetConfig, EfficientNetModel
>>> # Initializing a EfficientNet efficientnet-b7 style configuration
>>> configuration = EfficientNetConfig()
>>> # Initializing a model (with random weights) from the efficientnet-b7 style configuration
>>> model = EfficientNetModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "efficientnet"
def __init__(
self,
num_channels: int = 3,
image_size: int = 600,
width_coefficient: float = 2.0,
depth_coefficient: float = 3.1,
depth_divisor: int = 8,
kernel_sizes: List[int] = [3, 3, 5, 3, 5, 5, 3],
in_channels: List[int] = [32, 16, 24, 40, 80, 112, 192],
out_channels: List[int] = [16, 24, 40, 80, 112, 192, 320],
depthwise_padding: List[int] = [],
strides: List[int] = [1, 2, 2, 2, 1, 2, 1],
num_block_repeats: List[int] = [1, 2, 2, 3, 3, 4, 1],
expand_ratios: List[int] = [1, 6, 6, 6, 6, 6, 6],
squeeze_expansion_ratio: float = 0.25,
hidden_act: str = "swish",
hidden_dim: int = 2560,
pooling_type: str = "mean",
initializer_range: float = 0.02,
batch_norm_eps: float = 0.001,
batch_norm_momentum: float = 0.99,
dropout_rate: float = 0.5,
drop_connect_rate: float = 0.2,
**kwargs,
):
super().__init__(**kwargs)
self.num_channels = num_channels
self.image_size = image_size
self.width_coefficient = width_coefficient
self.depth_coefficient = depth_coefficient
self.depth_divisor = depth_divisor
self.kernel_sizes = kernel_sizes
self.in_channels = in_channels
self.out_channels = out_channels
self.depthwise_padding = depthwise_padding
self.strides = strides
self.num_block_repeats = num_block_repeats
self.expand_ratios = expand_ratios
self.squeeze_expansion_ratio = squeeze_expansion_ratio
self.hidden_act = hidden_act
self.hidden_dim = hidden_dim
self.pooling_type = pooling_type
self.initializer_range = initializer_range
self.batch_norm_eps = batch_norm_eps
self.batch_norm_momentum = batch_norm_momentum
self.dropout_rate = dropout_rate
self.drop_connect_rate = drop_connect_rate
self.num_hidden_layers = sum(num_block_repeats) * 4
|
class_definition
| 947 | 7,187 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/efficientnet/configuration_efficientnet.py
| null | 5,967 |
class EfficientNetOnnxConfig(OnnxConfig):
torch_onnx_minimum_version = version.parse("1.11")
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
]
)
@property
def atol_for_validation(self) -> float:
return 1e-5
|
class_definition
| 7,190 | 7,595 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/efficientnet/configuration_efficientnet.py
| null | 5,968 |
class EfficientNetImageProcessor(BaseImageProcessor):
r"""
Constructs a EfficientNet image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
`do_resize` in `preprocess`.
size (`Dict[str, int]` *optional*, defaults to `{"height": 346, "width": 346}`):
Size of the image after `resize`. Can be overridden by `size` in `preprocess`.
resample (`PILImageResampling` filter, *optional*, defaults to 0):
Resampling filter to use if resizing the image. Can be overridden by `resample` in `preprocess`.
do_center_crop (`bool`, *optional*, defaults to `False`):
Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image
is padded with 0's and then center cropped. Can be overridden by `do_center_crop` in `preprocess`.
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 289, "width": 289}`):
Desired output size when applying center-cropping. Can be overridden by `crop_size` in `preprocess`.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
rescale_offset (`bool`, *optional*, defaults to `False`):
Whether to rescale the image between [-scale_range, scale_range] instead of [0, scale_range]. Can be
overridden by the `rescale_factor` parameter in the `preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
include_top (`bool`, *optional*, defaults to `True`):
Whether to rescale the image again. Should be set to True if the inputs are used for image classification.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PIL.Image.NEAREST,
do_center_crop: bool = False,
crop_size: Dict[str, int] = None,
rescale_factor: Union[int, float] = 1 / 255,
rescale_offset: bool = False,
do_rescale: bool = True,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
include_top: bool = True,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 346, "width": 346}
size = get_size_dict(size)
crop_size = crop_size if crop_size is not None else {"height": 289, "width": 289}
crop_size = get_size_dict(crop_size, param_name="crop_size")
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.rescale_offset = rescale_offset
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
self.include_top = include_top
# Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.NEAREST
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.NEAREST,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.NEAREST`):
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.NEAREST`.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
Returns:
`np.ndarray`: The resized image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
output_size = (size["height"], size["width"])
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def rescale(
self,
image: np.ndarray,
scale: Union[int, float],
offset: bool = True,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
):
"""
Rescale an image by a scale factor.
If `offset` is `True`, the image has its values rescaled by `scale` and then offset by 1. If `scale` is
1/127.5, the image is rescaled between [-1, 1].
image = image * scale - 1
If `offset` is `False`, and `scale` is 1/255, the image is rescaled between [0, 1].
image = image * scale
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
offset (`bool`, *optional*):
Whether to scale the image in both negative and positive directions.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
rescaled_image = rescale(
image, scale=scale, data_format=data_format, input_data_format=input_data_format, **kwargs
)
if offset:
rescaled_image = rescaled_image - 1
return rescaled_image
@filter_out_non_signature_kwargs()
def preprocess(
self,
images: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample=None,
do_center_crop: bool = None,
crop_size: Dict[str, int] = None,
do_rescale: bool = None,
rescale_factor: float = None,
rescale_offset: bool = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
include_top: bool = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after `resize`.
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
PILImageResampling filter to use if resizing the image Only has an effect if `do_resize` is set to
`True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the image after center crop. If one edge the image is smaller than `crop_size`, it will be
padded with zeros and then cropped
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
rescale_offset (`bool`, *optional*, defaults to `self.rescale_offset`):
Whether to rescale the image between [-scale_range, scale_range] instead of [0, scale_range].
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation.
include_top (`bool`, *optional*, defaults to `self.include_top`):
Rescales the image again for image classification if set to True.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- `None`: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
rescale_offset = rescale_offset if rescale_offset is not None else self.rescale_offset
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
include_top = include_top if include_top is not None else self.include_top
size = size if size is not None else self.size
size = get_size_dict(size)
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size, param_name="crop_size")
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_center_crop=do_center_crop,
crop_size=crop_size,
do_resize=do_resize,
size=size,
resample=resample,
)
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_rescale and is_scaled_image(images[0]):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_center_crop:
images = [
self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
]
if do_rescale:
images = [
self.rescale(
image=image, scale=rescale_factor, offset=rescale_offset, input_data_format=input_data_format
)
for image in images
]
if do_normalize:
images = [
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
if include_top:
images = [
self.normalize(image=image, mean=0, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
|
class_definition
| 1,387 | 18,298 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/efficientnet/image_processing_efficientnet.py
| null | 5,969 |
class EfficientNetEmbeddings(nn.Module):
r"""
A module that corresponds to the stem module of the original work.
"""
def __init__(self, config: EfficientNetConfig):
super().__init__()
self.out_dim = round_filters(config, 32)
self.padding = nn.ZeroPad2d(padding=(0, 1, 0, 1))
self.convolution = nn.Conv2d(
config.num_channels, self.out_dim, kernel_size=3, stride=2, padding="valid", bias=False
)
self.batchnorm = nn.BatchNorm2d(self.out_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum)
self.activation = ACT2FN[config.hidden_act]
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
features = self.padding(pixel_values)
features = self.convolution(features)
features = self.batchnorm(features)
features = self.activation(features)
return features
|
class_definition
| 4,080 | 4,988 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/efficientnet/modeling_efficientnet.py
| null | 5,970 |
class EfficientNetDepthwiseConv2d(nn.Conv2d):
def __init__(
self,
in_channels,
depth_multiplier=1,
kernel_size=3,
stride=1,
padding=0,
dilation=1,
bias=True,
padding_mode="zeros",
):
out_channels = in_channels * depth_multiplier
super().__init__(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=in_channels,
bias=bias,
padding_mode=padding_mode,
)
|
class_definition
| 4,991 | 5,637 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/efficientnet/modeling_efficientnet.py
| null | 5,971 |
class EfficientNetExpansionLayer(nn.Module):
r"""
This corresponds to the expansion phase of each block in the original implementation.
"""
def __init__(self, config: EfficientNetConfig, in_dim: int, out_dim: int, stride: int):
super().__init__()
self.expand_conv = nn.Conv2d(
in_channels=in_dim,
out_channels=out_dim,
kernel_size=1,
padding="same",
bias=False,
)
self.expand_bn = nn.BatchNorm2d(num_features=out_dim, eps=config.batch_norm_eps)
self.expand_act = ACT2FN[config.hidden_act]
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
# Expand phase
hidden_states = self.expand_conv(hidden_states)
hidden_states = self.expand_bn(hidden_states)
hidden_states = self.expand_act(hidden_states)
return hidden_states
|
class_definition
| 5,640 | 6,537 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/efficientnet/modeling_efficientnet.py
| null | 5,972 |
class EfficientNetDepthwiseLayer(nn.Module):
r"""
This corresponds to the depthwise convolution phase of each block in the original implementation.
"""
def __init__(
self,
config: EfficientNetConfig,
in_dim: int,
stride: int,
kernel_size: int,
adjust_padding: bool,
):
super().__init__()
self.stride = stride
conv_pad = "valid" if self.stride == 2 else "same"
padding = correct_pad(kernel_size, adjust=adjust_padding)
self.depthwise_conv_pad = nn.ZeroPad2d(padding=padding)
self.depthwise_conv = EfficientNetDepthwiseConv2d(
in_dim, kernel_size=kernel_size, stride=stride, padding=conv_pad, bias=False
)
self.depthwise_norm = nn.BatchNorm2d(
num_features=in_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum
)
self.depthwise_act = ACT2FN[config.hidden_act]
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
# Depthwise convolution
if self.stride == 2:
hidden_states = self.depthwise_conv_pad(hidden_states)
hidden_states = self.depthwise_conv(hidden_states)
hidden_states = self.depthwise_norm(hidden_states)
hidden_states = self.depthwise_act(hidden_states)
return hidden_states
|
class_definition
| 6,540 | 7,897 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/efficientnet/modeling_efficientnet.py
| null | 5,973 |
class EfficientNetSqueezeExciteLayer(nn.Module):
r"""
This corresponds to the Squeeze and Excitement phase of each block in the original implementation.
"""
def __init__(self, config: EfficientNetConfig, in_dim: int, expand_dim: int, expand: bool = False):
super().__init__()
self.dim = expand_dim if expand else in_dim
self.dim_se = max(1, int(in_dim * config.squeeze_expansion_ratio))
self.squeeze = nn.AdaptiveAvgPool2d(output_size=1)
self.reduce = nn.Conv2d(
in_channels=self.dim,
out_channels=self.dim_se,
kernel_size=1,
padding="same",
)
self.expand = nn.Conv2d(
in_channels=self.dim_se,
out_channels=self.dim,
kernel_size=1,
padding="same",
)
self.act_reduce = ACT2FN[config.hidden_act]
self.act_expand = nn.Sigmoid()
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
inputs = hidden_states
hidden_states = self.squeeze(hidden_states)
hidden_states = self.reduce(hidden_states)
hidden_states = self.act_reduce(hidden_states)
hidden_states = self.expand(hidden_states)
hidden_states = self.act_expand(hidden_states)
hidden_states = torch.mul(inputs, hidden_states)
return hidden_states
|
class_definition
| 7,900 | 9,275 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/efficientnet/modeling_efficientnet.py
| null | 5,974 |
class EfficientNetFinalBlockLayer(nn.Module):
r"""
This corresponds to the final phase of each block in the original implementation.
"""
def __init__(
self, config: EfficientNetConfig, in_dim: int, out_dim: int, stride: int, drop_rate: float, id_skip: bool
):
super().__init__()
self.apply_dropout = stride == 1 and not id_skip
self.project_conv = nn.Conv2d(
in_channels=in_dim,
out_channels=out_dim,
kernel_size=1,
padding="same",
bias=False,
)
self.project_bn = nn.BatchNorm2d(
num_features=out_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum
)
self.dropout = nn.Dropout(p=drop_rate)
def forward(self, embeddings: torch.FloatTensor, hidden_states: torch.FloatTensor) -> torch.Tensor:
hidden_states = self.project_conv(hidden_states)
hidden_states = self.project_bn(hidden_states)
if self.apply_dropout:
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states + embeddings
return hidden_states
|
class_definition
| 9,278 | 10,430 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/efficientnet/modeling_efficientnet.py
| null | 5,975 |
class EfficientNetBlock(nn.Module):
r"""
This corresponds to the expansion and depthwise convolution phase of each block in the original implementation.
Args:
config ([`EfficientNetConfig`]):
Model configuration class.
in_dim (`int`):
Number of input channels.
out_dim (`int`):
Number of output channels.
stride (`int`):
Stride size to be used in convolution layers.
expand_ratio (`int`):
Expand ratio to set the output dimensions for the expansion and squeeze-excite layers.
kernel_size (`int`):
Kernel size for the depthwise convolution layer.
drop_rate (`float`):
Dropout rate to be used in the final phase of each block.
id_skip (`bool`):
Whether to apply dropout and sum the final hidden states with the input embeddings during the final phase
of each block. Set to `True` for the first block of each stage.
adjust_padding (`bool`):
Whether to apply padding to only right and bottom side of the input kernel before the depthwise convolution
operation, set to `True` for inputs with odd input sizes.
"""
def __init__(
self,
config: EfficientNetConfig,
in_dim: int,
out_dim: int,
stride: int,
expand_ratio: int,
kernel_size: int,
drop_rate: float,
id_skip: bool,
adjust_padding: bool,
):
super().__init__()
self.expand_ratio = expand_ratio
self.expand = True if self.expand_ratio != 1 else False
expand_in_dim = in_dim * expand_ratio
if self.expand:
self.expansion = EfficientNetExpansionLayer(
config=config, in_dim=in_dim, out_dim=expand_in_dim, stride=stride
)
self.depthwise_conv = EfficientNetDepthwiseLayer(
config=config,
in_dim=expand_in_dim if self.expand else in_dim,
stride=stride,
kernel_size=kernel_size,
adjust_padding=adjust_padding,
)
self.squeeze_excite = EfficientNetSqueezeExciteLayer(
config=config, in_dim=in_dim, expand_dim=expand_in_dim, expand=self.expand
)
self.projection = EfficientNetFinalBlockLayer(
config=config,
in_dim=expand_in_dim if self.expand else in_dim,
out_dim=out_dim,
stride=stride,
drop_rate=drop_rate,
id_skip=id_skip,
)
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
embeddings = hidden_states
# Expansion and depthwise convolution phase
if self.expand_ratio != 1:
hidden_states = self.expansion(hidden_states)
hidden_states = self.depthwise_conv(hidden_states)
# Squeeze and excite phase
hidden_states = self.squeeze_excite(hidden_states)
hidden_states = self.projection(embeddings, hidden_states)
return hidden_states
|
class_definition
| 10,433 | 13,488 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/efficientnet/modeling_efficientnet.py
| null | 5,976 |
class EfficientNetEncoder(nn.Module):
r"""
Forward propogates the embeddings through each EfficientNet block.
Args:
config ([`EfficientNetConfig`]):
Model configuration class.
"""
def __init__(self, config: EfficientNetConfig):
super().__init__()
self.config = config
self.depth_coefficient = config.depth_coefficient
def round_repeats(repeats):
# Round number of block repeats based on depth multiplier.
return int(math.ceil(self.depth_coefficient * repeats))
num_base_blocks = len(config.in_channels)
num_blocks = sum(round_repeats(n) for n in config.num_block_repeats)
curr_block_num = 0
blocks = []
for i in range(num_base_blocks):
in_dim = round_filters(config, config.in_channels[i])
out_dim = round_filters(config, config.out_channels[i])
stride = config.strides[i]
kernel_size = config.kernel_sizes[i]
expand_ratio = config.expand_ratios[i]
for j in range(round_repeats(config.num_block_repeats[i])):
id_skip = True if j == 0 else False
stride = 1 if j > 0 else stride
in_dim = out_dim if j > 0 else in_dim
adjust_padding = False if curr_block_num in config.depthwise_padding else True
drop_rate = config.drop_connect_rate * curr_block_num / num_blocks
block = EfficientNetBlock(
config=config,
in_dim=in_dim,
out_dim=out_dim,
stride=stride,
kernel_size=kernel_size,
expand_ratio=expand_ratio,
drop_rate=drop_rate,
id_skip=id_skip,
adjust_padding=adjust_padding,
)
blocks.append(block)
curr_block_num += 1
self.blocks = nn.ModuleList(blocks)
self.top_conv = nn.Conv2d(
in_channels=out_dim,
out_channels=round_filters(config, 1280),
kernel_size=1,
padding="same",
bias=False,
)
self.top_bn = nn.BatchNorm2d(
num_features=config.hidden_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum
)
self.top_activation = ACT2FN[config.hidden_act]
def forward(
self,
hidden_states: torch.FloatTensor,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> BaseModelOutputWithNoAttention:
all_hidden_states = (hidden_states,) if output_hidden_states else None
for block in self.blocks:
hidden_states = block(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
hidden_states = self.top_conv(hidden_states)
hidden_states = self.top_bn(hidden_states)
hidden_states = self.top_activation(hidden_states)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
return BaseModelOutputWithNoAttention(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
)
|
class_definition
| 13,491 | 16,807 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/efficientnet/modeling_efficientnet.py
| null | 5,977 |
class EfficientNetPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = EfficientNetConfig
base_model_prefix = "efficientnet"
main_input_name = "pixel_values"
_no_split_modules = []
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
|
class_definition
| 16,810 | 17,731 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/efficientnet/modeling_efficientnet.py
| null | 5,978 |
class EfficientNetModel(EfficientNetPreTrainedModel):
def __init__(self, config: EfficientNetConfig):
super().__init__(config)
self.config = config
self.embeddings = EfficientNetEmbeddings(config)
self.encoder = EfficientNetEncoder(config)
# Final pooling layer
if config.pooling_type == "mean":
self.pooler = nn.AvgPool2d(config.hidden_dim, ceil_mode=True)
elif config.pooling_type == "max":
self.pooler = nn.MaxPool2d(config.hidden_dim, ceil_mode=True)
else:
raise ValueError(f"config.pooling must be one of ['mean', 'max'] got {config.pooling}")
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(EFFICIENTNET_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndNoAttention,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: torch.FloatTensor = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
embedding_output = self.embeddings(pixel_values)
encoder_outputs = self.encoder(
embedding_output,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# Apply pooling
last_hidden_state = encoder_outputs[0]
pooled_output = self.pooler(last_hidden_state)
# Reshape (batch_size, 1280, 1 , 1) -> (batch_size, 1280)
pooled_output = pooled_output.reshape(pooled_output.shape[:2])
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
)
|
class_definition
| 17,886 | 20,348 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/efficientnet/modeling_efficientnet.py
| null | 5,979 |
class EfficientNetForImageClassification(EfficientNetPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.efficientnet = EfficientNetModel(config)
# Classifier head
self.dropout = nn.Dropout(p=config.dropout_rate)
self.classifier = nn.Linear(config.hidden_dim, self.num_labels) if self.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(EFFICIENTNET_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutputWithNoAttention,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: torch.FloatTensor = None,
labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.efficientnet(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
pooled_output = outputs.pooler_output if return_dict else outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
)
|
class_definition
| 20,562 | 23,945 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/efficientnet/modeling_efficientnet.py
| null | 5,980 |
class MgpstrConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of an [`MgpstrModel`]. It is used to instantiate an
MGP-STR model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the MGP-STR
[alibaba-damo/mgp-str-base](https://huggingface.co/alibaba-damo/mgp-str-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
image_size (`List[int]`, *optional*, defaults to `[32, 128]`):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 4):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
max_token_length (`int`, *optional*, defaults to 27):
The max number of output tokens.
num_character_labels (`int`, *optional*, defaults to 38):
The number of classes for character head .
num_bpe_labels (`int`, *optional*, defaults to 50257):
The number of classes for bpe head .
num_wordpiece_labels (`int`, *optional*, defaults to 30522):
The number of classes for wordpiece head .
hidden_size (`int`, *optional*, defaults to 768):
The embedding dimension.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
mlp_ratio (`float`, *optional*, defaults to 4.0):
The ratio of mlp hidden dim to embedding dim.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries, keys and values.
distilled (`bool`, *optional*, defaults to `False`):
Model includes a distillation token and head as in DeiT models.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
drop_rate (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder.
attn_drop_rate (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
drop_path_rate (`float`, *optional*, defaults to 0.0):
The stochastic depth rate.
output_a3_attentions (`bool`, *optional*, defaults to `False`):
Whether or not the model should returns A^3 module attentions.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
Example:
```python
>>> from transformers import MgpstrConfig, MgpstrForSceneTextRecognition
>>> # Initializing a Mgpstr mgp-str-base style configuration
>>> configuration = MgpstrConfig()
>>> # Initializing a model (with random weights) from the mgp-str-base style configuration
>>> model = MgpstrForSceneTextRecognition(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mgp-str"
def __init__(
self,
image_size=[32, 128],
patch_size=4,
num_channels=3,
max_token_length=27,
num_character_labels=38,
num_bpe_labels=50257,
num_wordpiece_labels=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
mlp_ratio=4.0,
qkv_bias=True,
distilled=False,
layer_norm_eps=1e-5,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
output_a3_attentions=False,
initializer_range=0.02,
**kwargs,
):
super().__init__(**kwargs)
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.max_token_length = max_token_length
self.num_character_labels = num_character_labels
self.num_bpe_labels = num_bpe_labels
self.num_wordpiece_labels = num_wordpiece_labels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.mlp_ratio = mlp_ratio
self.distilled = distilled
self.layer_norm_eps = layer_norm_eps
self.drop_rate = drop_rate
self.qkv_bias = qkv_bias
self.attn_drop_rate = attn_drop_rate
self.drop_path_rate = drop_path_rate
self.output_a3_attentions = output_a3_attentions
self.initializer_range = initializer_range
|
class_definition
| 784 | 5,780 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mgp_str/configuration_mgp_str.py
| null | 5,981 |
class MgpstrTokenizer(PreTrainedTokenizer):
"""
Construct a MGP-STR char tokenizer.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
unk_token (`str`, *optional*, defaults to `"[GO]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `"[GO]"`):
The beginning of sequence token.
eos_token (`str`, *optional*, defaults to `"[s]"`):
The end of sequence token.
pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"[GO]"`):
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
attention mechanisms or loss computation.
"""
vocab_files_names = VOCAB_FILES_NAMES
def __init__(self, vocab_file, unk_token="[GO]", bos_token="[GO]", eos_token="[s]", pad_token="[GO]", **kwargs):
with open(vocab_file, encoding="utf-8") as vocab_handle:
self.vocab = json.load(vocab_handle)
self.decoder = {v: k for k, v in self.vocab.items()}
super().__init__(
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
**kwargs,
)
@property
def vocab_size(self):
return len(self.vocab)
def get_vocab(self):
vocab = dict(self.vocab).copy()
vocab.update(self.added_tokens_encoder)
return vocab
def _tokenize(self, text):
"""Tokenize a string."""
char_tokens = []
for s in text:
char_tokens.extend(s)
return char_tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.vocab.get(token, self.vocab.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
return
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
return (vocab_file,)
|
class_definition
| 884 | 3,775 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mgp_str/tokenization_mgp_str.py
| null | 5,982 |
class DecodeType(ExplicitEnum):
CHARACTER = "char"
BPE = "bpe"
WORDPIECE = "wp"
|
class_definition
| 914 | 1,005 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mgp_str/processing_mgp_str.py
| null | 5,983 |
class MgpstrProcessor(ProcessorMixin):
r"""
Constructs a MGP-STR processor which wraps an image processor and MGP-STR tokenizers into a single
[`MgpstrProcessor`] offers all the functionalities of `ViTImageProcessor`] and [`MgpstrTokenizer`]. See the
[`~MgpstrProcessor.__call__`] and [`~MgpstrProcessor.batch_decode`] for more information.
Args:
image_processor (`ViTImageProcessor`, *optional*):
An instance of `ViTImageProcessor`. The image processor is a required input.
tokenizer ([`MgpstrTokenizer`], *optional*):
The tokenizer is a required input.
"""
attributes = ["image_processor", "char_tokenizer"]
image_processor_class = "ViTImageProcessor"
char_tokenizer_class = "MgpstrTokenizer"
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
feature_extractor = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead.",
FutureWarning,
)
feature_extractor = kwargs.pop("feature_extractor")
image_processor = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
self.char_tokenizer = tokenizer
self.bpe_tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
self.wp_tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
super().__init__(image_processor, tokenizer)
def __call__(self, text=None, images=None, return_tensors=None, **kwargs):
"""
When used in normal mode, this method forwards all its arguments to ViTImageProcessor's
[`~ViTImageProcessor.__call__`] and returns its output. This method also forwards the `text` and `kwargs`
arguments to MgpstrTokenizer's [`~MgpstrTokenizer.__call__`] if `text` is not `None` to encode the text. Please
refer to the doctsring of the above methods for more information.
"""
if images is None and text is None:
raise ValueError("You need to specify either an `images` or `text` input to process.")
if images is not None:
inputs = self.image_processor(images, return_tensors=return_tensors, **kwargs)
if text is not None:
encodings = self.char_tokenizer(text, return_tensors=return_tensors, **kwargs)
if text is None:
return inputs
elif images is None:
return encodings
else:
inputs["labels"] = encodings["input_ids"]
return inputs
def batch_decode(self, sequences):
"""
Convert a list of lists of token ids into a list of strings by calling decode.
Args:
sequences (`torch.Tensor`):
List of tokenized input ids.
Returns:
`Dict[str, any]`: Dictionary of all the outputs of the decoded results.
generated_text (`List[str]`): The final results after fusion of char, bpe, and wp. scores
(`List[float]`): The final scores after fusion of char, bpe, and wp. char_preds (`List[str]`): The list
of character decoded sentences. bpe_preds (`List[str]`): The list of bpe decoded sentences. wp_preds
(`List[str]`): The list of wp decoded sentences.
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
char_preds, bpe_preds, wp_preds = sequences
batch_size = char_preds.size(0)
char_strs, char_scores = self._decode_helper(char_preds, "char")
bpe_strs, bpe_scores = self._decode_helper(bpe_preds, "bpe")
wp_strs, wp_scores = self._decode_helper(wp_preds, "wp")
final_strs = []
final_scores = []
for i in range(batch_size):
scores = [char_scores[i], bpe_scores[i], wp_scores[i]]
strs = [char_strs[i], bpe_strs[i], wp_strs[i]]
max_score_index = scores.index(max(scores))
final_strs.append(strs[max_score_index])
final_scores.append(scores[max_score_index])
out = {}
out["generated_text"] = final_strs
out["scores"] = final_scores
out["char_preds"] = char_strs
out["bpe_preds"] = bpe_strs
out["wp_preds"] = wp_strs
return out
def _decode_helper(self, pred_logits, format):
"""
Convert a list of lists of bpe token ids into a list of strings by calling bpe tokenizer.
Args:
pred_logits (`torch.Tensor`):
List of model prediction logits.
format (`Union[DecoderType, str]`):
Type of model prediction. Must be one of ['char', 'bpe', 'wp'].
Returns:
`tuple`:
dec_strs(`str`): The decode strings of model prediction. conf_scores(`List[float]`): The confidence
score of model prediction.
"""
if format == DecodeType.CHARACTER:
decoder = self.char_decode
eos_token = 1
eos_str = "[s]"
elif format == DecodeType.BPE:
decoder = self.bpe_decode
eos_token = 2
eos_str = "#"
elif format == DecodeType.WORDPIECE:
decoder = self.wp_decode
eos_token = 102
eos_str = "[SEP]"
else:
raise ValueError(f"Format {format} is not supported.")
dec_strs, conf_scores = [], []
batch_size = pred_logits.size(0)
batch_max_length = pred_logits.size(1)
_, preds_index = pred_logits.topk(1, dim=-1, largest=True, sorted=True)
preds_index = preds_index.view(-1, batch_max_length)[:, 1:]
preds_str = decoder(preds_index)
preds_max_prob, _ = torch.nn.functional.softmax(pred_logits, dim=2).max(dim=2)
preds_max_prob = preds_max_prob[:, 1:]
for index in range(batch_size):
pred_eos = preds_str[index].find(eos_str)
pred = preds_str[index][:pred_eos]
pred_index = preds_index[index].cpu().tolist()
pred_eos_index = pred_index.index(eos_token) if eos_token in pred_index else -1
pred_max_prob = preds_max_prob[index][: pred_eos_index + 1]
confidence_score = pred_max_prob.cumprod(dim=0)[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(pred)
conf_scores.append(confidence_score)
return dec_strs, conf_scores
def char_decode(self, sequences):
"""
Convert a list of lists of char token ids into a list of strings by calling char tokenizer.
Args:
sequences (`torch.Tensor`):
List of tokenized input ids.
Returns:
`List[str]`: The list of char decoded sentences.
"""
decode_strs = [seq.replace(" ", "") for seq in self.char_tokenizer.batch_decode(sequences)]
return decode_strs
def bpe_decode(self, sequences):
"""
Convert a list of lists of bpe token ids into a list of strings by calling bpe tokenizer.
Args:
sequences (`torch.Tensor`):
List of tokenized input ids.
Returns:
`List[str]`: The list of bpe decoded sentences.
"""
return self.bpe_tokenizer.batch_decode(sequences)
def wp_decode(self, sequences):
"""
Convert a list of lists of word piece token ids into a list of strings by calling word piece tokenizer.
Args:
sequences (`torch.Tensor`):
List of tokenized input ids.
Returns:
`List[str]`: The list of wp decoded sentences.
"""
decode_strs = [seq.replace(" ", "") for seq in self.wp_tokenizer.batch_decode(sequences)]
return decode_strs
|
class_definition
| 1,102 | 9,297 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mgp_str/processing_mgp_str.py
| null | 5,984 |
class MgpstrDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
|
class_definition
| 2,613 | 3,093 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mgp_str/modeling_mgp_str.py
| null | 5,985 |
class MgpstrModelOutput(ModelOutput):
"""
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
Args:
logits (`tuple(torch.FloatTensor)` of shape `(batch_size, config.num_character_labels)`):
Tuple of `torch.FloatTensor` (one for the output of character of shape `(batch_size,
config.max_token_length, config.num_character_labels)`, + one for the output of bpe of shape `(batch_size,
config.max_token_length, config.num_bpe_labels)`, + one for the output of wordpiece of shape `(batch_size,
config.max_token_length, config.num_wordpiece_labels)`) .
Classification scores (before SoftMax) of character, bpe and wordpiece.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, config.max_token_length,
sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
a3_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_a3_attentions=True` is passed or when `config.output_a3_attentions=True`):
Tuple of `torch.FloatTensor` (one for the attention of character, + one for the attention of bpe`, + one
for the attention of wordpiece) of shape `(batch_size, config.max_token_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
logits: Tuple[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
a3_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
class_definition
| 3,107 | 5,572 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mgp_str/modeling_mgp_str.py
| null | 5,986 |
class MgpstrEmbeddings(nn.Module):
"""2D Image to Patch Embedding"""
def __init__(self, config: MgpstrConfig):
super().__init__()
image_size = (
config.image_size
if isinstance(config.image_size, collections.abc.Iterable)
else (config.image_size, config.image_size)
)
patch_size = (
config.patch_size
if isinstance(config.patch_size, collections.abc.Iterable)
else (config.patch_size, config.patch_size)
)
self.image_size = image_size
self.patch_size = patch_size
self.grid_size = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
self.num_patches = self.grid_size[0] * self.grid_size[1]
self.num_tokens = 2 if config.distilled else 1
self.proj = nn.Conv2d(config.num_channels, config.hidden_size, kernel_size=patch_size, stride=patch_size)
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
self.pos_embed = nn.Parameter(torch.zeros(1, self.num_patches + self.num_tokens, config.hidden_size))
self.pos_drop = nn.Dropout(p=config.drop_rate)
def forward(self, pixel_values):
batch_size, channel, height, width = pixel_values.shape
if height != self.image_size[0] or width != self.image_size[1]:
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
)
patch_embeddings = self.proj(pixel_values)
patch_embeddings = patch_embeddings.flatten(2).transpose(1, 2) # BCHW -> BNC
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
embedding_output = torch.cat((cls_tokens, patch_embeddings), dim=1)
embedding_output = embedding_output + self.pos_embed
embedding_output = self.pos_drop(embedding_output)
return embedding_output
|
class_definition
| 5,575 | 7,513 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mgp_str/modeling_mgp_str.py
| null | 5,987 |
class MgpstrMlp(nn.Module):
"""MLP as used in Vision Transformer, MLP-Mixer and related networks"""
def __init__(self, config: MgpstrConfig, hidden_features):
super().__init__()
hidden_features = hidden_features or config.hidden_size
self.fc1 = nn.Linear(config.hidden_size, hidden_features)
self.act = nn.GELU()
self.fc2 = nn.Linear(hidden_features, config.hidden_size)
self.drop = nn.Dropout(config.drop_rate)
def forward(self, hidden_states):
hidden_states = self.fc1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.drop(hidden_states)
hidden_states = self.fc2(hidden_states)
hidden_states = self.drop(hidden_states)
return hidden_states
|
class_definition
| 7,516 | 8,294 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mgp_str/modeling_mgp_str.py
| null | 5,988 |
class MgpstrAttention(nn.Module):
def __init__(self, config: MgpstrConfig):
super().__init__()
self.num_heads = config.num_attention_heads
head_dim = config.hidden_size // config.num_attention_heads
self.scale = head_dim**-0.5
self.qkv = nn.Linear(config.hidden_size, config.hidden_size * 3, bias=config.qkv_bias)
self.attn_drop = nn.Dropout(config.attn_drop_rate)
self.proj = nn.Linear(config.hidden_size, config.hidden_size)
self.proj_drop = nn.Dropout(config.drop_rate)
def forward(self, hidden_states):
batch_size, num, channel = hidden_states.shape
qkv = (
self.qkv(hidden_states)
.reshape(batch_size, num, 3, self.num_heads, channel // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
query, key, value = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
attention_probs = (query @ key.transpose(-2, -1)) * self.scale
attention_probs = attention_probs.softmax(dim=-1)
attention_probs = self.attn_drop(attention_probs)
context_layer = (attention_probs @ value).transpose(1, 2).reshape(batch_size, num, channel)
context_layer = self.proj(context_layer)
context_layer = self.proj_drop(context_layer)
return (context_layer, attention_probs)
|
class_definition
| 8,297 | 9,660 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mgp_str/modeling_mgp_str.py
| null | 5,989 |
class MgpstrLayer(nn.Module):
def __init__(self, config: MgpstrConfig, drop_path=None):
super().__init__()
self.norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.attn = MgpstrAttention(config)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = MgpstrDropPath(drop_path) if drop_path is not None else nn.Identity()
self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
mlp_hidden_dim = int(config.hidden_size * config.mlp_ratio)
self.mlp = MgpstrMlp(config, mlp_hidden_dim)
def forward(self, hidden_states):
self_attention_outputs = self.attn(self.norm1(hidden_states))
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1]
# first residual connection
hidden_states = self.drop_path(attention_output) + hidden_states
# second residual connection is done here
layer_output = hidden_states + self.drop_path(self.mlp(self.norm2(hidden_states)))
outputs = (layer_output, outputs)
return outputs
|
class_definition
| 9,663 | 10,824 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mgp_str/modeling_mgp_str.py
| null | 5,990 |
class MgpstrEncoder(nn.Module):
def __init__(self, config: MgpstrConfig):
super().__init__()
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
self.blocks = nn.Sequential(
*[MgpstrLayer(config=config, drop_path=dpr[i]) for i in range(config.num_hidden_layers)]
)
def forward(self, hidden_states, output_attentions=False, output_hidden_states=False, return_dict=True):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for _, blk in enumerate(self.blocks):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = blk(hidden_states)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
|
class_definition
| 10,827 | 12,241 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mgp_str/modeling_mgp_str.py
| null | 5,991 |
class MgpstrA3Module(nn.Module):
def __init__(self, config: MgpstrConfig):
super().__init__()
self.token_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.tokenLearner = nn.Sequential(
nn.Conv2d(config.hidden_size, config.hidden_size, kernel_size=(1, 1), stride=1, groups=8, bias=False),
nn.Conv2d(config.hidden_size, config.max_token_length, kernel_size=(1, 1), stride=1, bias=False),
)
self.feat = nn.Conv2d(
config.hidden_size, config.hidden_size, kernel_size=(1, 1), stride=1, groups=8, bias=False
)
self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.token_norm(hidden_states)
hidden_states = hidden_states.transpose(1, 2).unsqueeze(-1)
selected = self.tokenLearner(hidden_states)
selected = selected.flatten(2)
attentions = F.softmax(selected, dim=-1)
feat = self.feat(hidden_states)
feat = feat.flatten(2).transpose(1, 2)
feat = torch.einsum("...si,...id->...sd", attentions, feat)
a3_out = self.norm(feat)
return (a3_out, attentions)
|
class_definition
| 12,244 | 13,465 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mgp_str/modeling_mgp_str.py
| null | 5,992 |
class MgpstrPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = MgpstrConfig
base_model_prefix = "mgp_str"
_no_split_modules = []
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
"""Initialize the weights"""
if isinstance(module, MgpstrEmbeddings):
nn.init.trunc_normal_(module.pos_embed, mean=0.0, std=self.config.initializer_range)
nn.init.trunc_normal_(module.cls_token, mean=0.0, std=self.config.initializer_range)
elif isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data = nn.init.trunc_normal_(module.weight.data, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
|
class_definition
| 13,468 | 14,505 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mgp_str/modeling_mgp_str.py
| null | 5,993 |
class MgpstrModel(MgpstrPreTrainedModel):
def __init__(self, config: MgpstrConfig):
super().__init__(config)
self.config = config
self.embeddings = MgpstrEmbeddings(config)
self.encoder = MgpstrEncoder(config)
def get_input_embeddings(self) -> nn.Module:
return self.embeddings.proj
@add_start_docstrings_to_model_forward(MGP_STR_INPUTS_DOCSTRING)
def forward(
self,
pixel_values: torch.FloatTensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
embedding_output = self.embeddings(pixel_values)
encoder_outputs = self.encoder(
embedding_output,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return encoder_outputs
return BaseModelOutput(
last_hidden_state=encoder_outputs.last_hidden_state,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
|
class_definition
| 16,101 | 17,796 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mgp_str/modeling_mgp_str.py
| null | 5,994 |
class MgpstrForSceneTextRecognition(MgpstrPreTrainedModel):
config_class = MgpstrConfig
main_input_name = "pixel_values"
def __init__(self, config: MgpstrConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.mgp_str = MgpstrModel(config)
self.char_a3_module = MgpstrA3Module(config)
self.bpe_a3_module = MgpstrA3Module(config)
self.wp_a3_module = MgpstrA3Module(config)
self.char_head = nn.Linear(config.hidden_size, config.num_character_labels)
self.bpe_head = nn.Linear(config.hidden_size, config.num_bpe_labels)
self.wp_head = nn.Linear(config.hidden_size, config.num_wordpiece_labels)
@add_start_docstrings_to_model_forward(MGP_STR_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=MgpstrModelOutput, config_class=MgpstrConfig)
def forward(
self,
pixel_values: torch.FloatTensor,
output_attentions: Optional[bool] = None,
output_a3_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], MgpstrModelOutput]:
r"""
output_a3_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of a3 modules. See `a3_attentions` under returned tensors
for more detail.
Returns:
Example:
```python
>>> from transformers import (
... MgpstrProcessor,
... MgpstrForSceneTextRecognition,
... )
>>> import requests
>>> from PIL import Image
>>> # load image from the IIIT-5k dataset
>>> url = "https://i.postimg.cc/ZKwLg2Gw/367-14.png"
>>> image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
>>> processor = MgpstrProcessor.from_pretrained("alibaba-damo/mgp-str-base")
>>> pixel_values = processor(images=image, return_tensors="pt").pixel_values
>>> model = MgpstrForSceneTextRecognition.from_pretrained("alibaba-damo/mgp-str-base")
>>> # inference
>>> outputs = model(pixel_values)
>>> out_strs = processor.batch_decode(outputs.logits)
>>> out_strs["generated_text"]
'["ticket"]'
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
mgp_outputs = self.mgp_str(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = mgp_outputs[0]
char_a3_out, char_attention = self.char_a3_module(sequence_output)
bpe_a3_out, bpe_attention = self.bpe_a3_module(sequence_output)
wp_a3_out, wp_attention = self.wp_a3_module(sequence_output)
char_logits = self.char_head(char_a3_out)
bpe_logits = self.bpe_head(bpe_a3_out)
wp_logits = self.wp_head(wp_a3_out)
all_a3_attentions = (char_attention, bpe_attention, wp_attention) if output_a3_attentions else None
all_logits = (char_logits, bpe_logits, wp_logits)
if not return_dict:
outputs = (all_logits, all_a3_attentions) + mgp_outputs[1:]
return tuple(output for output in outputs if output is not None)
return MgpstrModelOutput(
logits=all_logits,
hidden_states=mgp_outputs.hidden_states,
attentions=mgp_outputs.attentions,
a3_attentions=all_a3_attentions,
)
|
class_definition
| 18,062 | 21,923 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mgp_str/modeling_mgp_str.py
| null | 5,995 |
class MobileBertTokenizer(PreTrainedTokenizer):
r"""
Construct a MobileBERT tokenizer. Based on WordPiece.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
do_basic_tokenize (`bool`, *optional*, defaults to `True`):
Whether or not to do basic tokenization before WordPiece.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original MobileBERT).
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`):
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
extra spaces.
"""
vocab_files_names = VOCAB_FILES_NAMES
def __init__(
self,
vocab_file,
do_lower_case=True,
do_basic_tokenize=True,
never_split=None,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
tokenize_chinese_chars=True,
strip_accents=None,
clean_up_tokenization_spaces=True,
**kwargs,
):
if not os.path.isfile(vocab_file):
raise ValueError(
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
" model use `tokenizer = MobileBertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
self.do_basic_tokenize = do_basic_tokenize
if do_basic_tokenize:
self.basic_tokenizer = BasicTokenizer(
do_lower_case=do_lower_case,
never_split=never_split,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
)
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
super().__init__(
do_lower_case=do_lower_case,
do_basic_tokenize=do_basic_tokenize,
never_split=never_split,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**kwargs,
)
@property
def do_lower_case(self):
return self.basic_tokenizer.do_lower_case
@property
def vocab_size(self):
return len(self.vocab)
def get_vocab(self):
return dict(self.vocab, **self.added_tokens_encoder)
def _tokenize(self, text, split_special_tokens=False):
split_tokens = []
if self.do_basic_tokenize:
for token in self.basic_tokenizer.tokenize(
text, never_split=self.all_special_tokens if not split_special_tokens else None
):
# If the token is part of the never_split set
if token in self.basic_tokenizer.never_split:
split_tokens.append(token)
else:
split_tokens += self.wordpiece_tokenizer.tokenize(token)
else:
split_tokens = self.wordpiece_tokenizer.tokenize(text)
return split_tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.vocab.get(token, self.vocab.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.ids_to_tokens.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
out_string = " ".join(tokens).replace(" ##", "").strip()
return out_string
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A MobileBERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A MobileBERT sequence
pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
index = 0
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
else:
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
with open(vocab_file, "w", encoding="utf-8") as writer:
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!"
)
index = token_index
writer.write(token + "\n")
index += 1
return (vocab_file,)
|
class_definition
| 1,784 | 12,477 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/tokenization_mobilebert.py
| null | 5,996 |
class BasicTokenizer:
"""
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
Args:
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
do_split_on_punc (`bool`, *optional*, defaults to `True`):
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
the full context of the words, such as contractions.
"""
def __init__(
self,
do_lower_case=True,
never_split=None,
tokenize_chinese_chars=True,
strip_accents=None,
do_split_on_punc=True,
):
if never_split is None:
never_split = []
self.do_lower_case = do_lower_case
self.never_split = set(never_split)
self.tokenize_chinese_chars = tokenize_chinese_chars
self.strip_accents = strip_accents
self.do_split_on_punc = do_split_on_punc
def tokenize(self, text, never_split=None):
"""
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
Args:
never_split (`List[str]`, *optional*)
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
"""
# union() returns a new set by concatenating the two sets.
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
if self.tokenize_chinese_chars:
text = self._tokenize_chinese_chars(text)
# prevents treating the same character with different unicode codepoints as different characters
unicode_normalized_text = unicodedata.normalize("NFC", text)
orig_tokens = whitespace_tokenize(unicode_normalized_text)
split_tokens = []
for token in orig_tokens:
if token not in never_split:
if self.do_lower_case:
token = token.lower()
if self.strip_accents is not False:
token = self._run_strip_accents(token)
elif self.strip_accents:
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token, never_split))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text, never_split=None):
"""Splits punctuation on a piece of text."""
if not self.do_split_on_punc or (never_split is not None and text in never_split):
return [text]
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF) #
or (cp >= 0x20000 and cp <= 0x2A6DF) #
or (cp >= 0x2A700 and cp <= 0x2B73F) #
or (cp >= 0x2B740 and cp <= 0x2B81F) #
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xFFFD or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
|
class_definition
| 12,552 | 19,300 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/tokenization_mobilebert.py
| null | 5,997 |
class WordpieceTokenizer:
"""Runs WordPiece tokenization."""
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, text):
"""
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
tokenization using the given vocabulary.
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through *BasicTokenizer*.
Returns:
A list of wordpiece tokens.
"""
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens
|
class_definition
| 19,379 | 21,267 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/tokenization_mobilebert.py
| null | 5,998 |
class TFMobileBertPreTrainingLoss:
"""
Loss function suitable for BERT-like pretraining, that is, the task of pretraining a language model by combining
NSP + MLM. .. note:: Any label of -100 will be ignored (along with the corresponding logits) in the loss
computation.
"""
def hf_compute_loss(self, labels: tf.Tensor, logits: tf.Tensor) -> tf.Tensor:
loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=keras.losses.Reduction.NONE)
# Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway
unmasked_lm_losses = loss_fn(y_true=tf.nn.relu(labels["labels"]), y_pred=logits[0])
# make sure only labels that are not equal to -100
# are taken into account for the loss computation
lm_loss_mask = tf.cast(labels["labels"] != -100, dtype=unmasked_lm_losses.dtype)
masked_lm_losses = unmasked_lm_losses * lm_loss_mask
reduced_masked_lm_loss = tf.reduce_sum(masked_lm_losses) / tf.reduce_sum(lm_loss_mask)
# Clip negative labels to zero here to avoid NaNs and errors - those positions will get masked later anyway
unmasked_ns_loss = loss_fn(y_true=tf.nn.relu(labels["next_sentence_label"]), y_pred=logits[1])
ns_loss_mask = tf.cast(labels["next_sentence_label"] != -100, dtype=unmasked_ns_loss.dtype)
masked_ns_loss = unmasked_ns_loss * ns_loss_mask
reduced_masked_ns_loss = tf.reduce_sum(masked_ns_loss) / tf.reduce_sum(ns_loss_mask)
return tf.reshape(reduced_masked_lm_loss + reduced_masked_ns_loss, (1,))
|
class_definition
| 2,765 | 4,383 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
| null | 5,999 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.