text
stringlengths
31
243k
type
stringclasses
1 value
start
int64
36
275k
end
int64
286
280k
depth
int64
0
1
filepath
stringlengths
85
188
parent_class
stringclasses
3 values
class_index
int64
0
10.8k
class TFMobileBertIntermediate(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense(config.intermediate_size, name="dense") if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.config = config def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.true_hidden_size])
class_definition
4,386
5,286
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
null
6,000
class TFLayerNorm(keras.layers.LayerNormalization): def __init__(self, feat_size, *args, **kwargs): self.feat_size = feat_size super().__init__(*args, **kwargs) def build(self, input_shape=None): super().build([None, None, self.feat_size])
class_definition
5,289
5,561
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
null
6,001
class TFNoNorm(keras.layers.Layer): def __init__(self, feat_size, epsilon=None, **kwargs): super().__init__(**kwargs) self.feat_size = feat_size def build(self, input_shape): self.bias = self.add_weight("bias", shape=[self.feat_size], initializer="zeros") self.weight = self.add_weight("weight", shape=[self.feat_size], initializer="ones") super().build(input_shape) def call(self, inputs: tf.Tensor): return inputs * self.weight + self.bias
class_definition
5,564
6,067
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
null
6,002
class TFMobileBertEmbeddings(keras.layers.Layer): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.trigram_input = config.trigram_input self.embedding_size = config.embedding_size self.config = config self.hidden_size = config.hidden_size self.max_position_embeddings = config.max_position_embeddings self.initializer_range = config.initializer_range self.embedding_transformation = keras.layers.Dense(config.hidden_size, name="embedding_transformation") # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = NORM2FN[config.normalization_type]( config.hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.embedded_input_size = self.embedding_size * (3 if self.trigram_input else 1) def build(self, input_shape=None): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.config.vocab_size, self.embedding_size], initializer=get_initializer(initializer_range=self.initializer_range), ) with tf.name_scope("token_type_embeddings"): self.token_type_embeddings = self.add_weight( name="embeddings", shape=[self.config.type_vocab_size, self.hidden_size], initializer=get_initializer(initializer_range=self.initializer_range), ) with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.hidden_size], initializer=get_initializer(initializer_range=self.initializer_range), ) if self.built: return self.built = True if getattr(self, "embedding_transformation", None) is not None: with tf.name_scope(self.embedding_transformation.name): self.embedding_transformation.build([None, None, self.embedded_input_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build(None) def call(self, input_ids=None, position_ids=None, token_type_ids=None, inputs_embeds=None, training=False): """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ assert not (input_ids is None and inputs_embeds is None) if input_ids is not None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) if self.trigram_input: # From the paper MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited # Devices (https://arxiv.org/abs/2004.02984) # # The embedding table in BERT models accounts for a substantial proportion of model size. To compress # the embedding layer, we reduce the embedding dimension to 128 in MobileBERT. # Then, we apply a 1D convolution with kernel size 3 on the raw token embedding to produce a 512 # dimensional output. inputs_embeds = tf.concat( [ tf.pad(inputs_embeds[:, 1:], ((0, 0), (0, 1), (0, 0))), inputs_embeds, tf.pad(inputs_embeds[:, :-1], ((0, 0), (1, 0), (0, 0))), ], axis=2, ) if self.trigram_input or self.embedding_size != self.hidden_size: inputs_embeds = self.embedding_transformation(inputs_embeds) if position_ids is None: position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0) position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) final_embeddings = inputs_embeds + position_embeds + token_type_embeds final_embeddings = self.LayerNorm(inputs=final_embeddings) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings
class_definition
6,131
10,900
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
null
6,003
class TFMobileBertSelfAttention(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads}" ) self.num_attention_heads = config.num_attention_heads self.output_attentions = config.output_attentions assert config.hidden_size % config.num_attention_heads == 0 self.attention_head_size = int(config.true_hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" ) self.value = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob) self.config = config def transpose_for_scores(self, x, batch_size): # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] x = tf.reshape(x, (batch_size, -1, self.num_attention_heads, self.attention_head_size)) return tf.transpose(x, perm=[0, 2, 1, 3]) def call( self, query_tensor, key_tensor, value_tensor, attention_mask, head_mask, output_attentions, training=False ): batch_size = shape_list(attention_mask)[0] mixed_query_layer = self.query(query_tensor) mixed_key_layer = self.key(key_tensor) mixed_value_layer = self.value(value_tensor) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = tf.matmul( query_layer, key_layer, transpose_b=True ) # (batch size, num_heads, seq_len_q, seq_len_k) dk = tf.cast(shape_list(key_layer)[-1], dtype=attention_scores.dtype) # scale attention_scores attention_scores = attention_scores / tf.math.sqrt(dk) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in TFMobileBertModel call() function) attention_mask = tf.cast(attention_mask, dtype=attention_scores.dtype) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = stable_softmax(attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = tf.matmul(attention_probs, value_layer) context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3]) context_layer = tf.reshape( context_layer, (batch_size, -1, self.all_head_size) ) # (batch_size, seq_len_q, all_head_size) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "query", None) is not None: with tf.name_scope(self.query.name): self.query.build([None, None, self.config.true_hidden_size]) if getattr(self, "key", None) is not None: with tf.name_scope(self.key.name): self.key.build([None, None, self.config.true_hidden_size]) if getattr(self, "value", None) is not None: with tf.name_scope(self.value.name): self.value.build( [ None, None, self.config.true_hidden_size if self.config.use_bottleneck_attention else self.config.hidden_size, ] )
class_definition
10,903
15,643
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
null
6,004
class TFMobileBertSelfOutput(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.use_bottleneck = config.use_bottleneck self.dense = keras.layers.Dense( config.true_hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = NORM2FN[config.normalization_type]( config.true_hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) if not self.use_bottleneck: self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.config = config def call(self, hidden_states, residual_tensor, training=False): hidden_states = self.dense(hidden_states) if not self.use_bottleneck: hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.LayerNorm(hidden_states + residual_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.true_hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build(None)
class_definition
15,646
17,055
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
null
6,005
class TFMobileBertAttention(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.self = TFMobileBertSelfAttention(config, name="self") self.mobilebert_output = TFMobileBertSelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call( self, query_tensor, key_tensor, value_tensor, layer_input, attention_mask, head_mask, output_attentions, training=False, ): self_outputs = self.self( query_tensor, key_tensor, value_tensor, attention_mask, head_mask, output_attentions, training=training ) attention_output = self.mobilebert_output(self_outputs[0], layer_input, training=training) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self", None) is not None: with tf.name_scope(self.self.name): self.self.build(None) if getattr(self, "mobilebert_output", None) is not None: with tf.name_scope(self.mobilebert_output.name): self.mobilebert_output.build(None)
class_definition
17,058
18,412
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
null
6,006
class TFOutputBottleneck(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense(config.hidden_size, name="dense") self.LayerNorm = NORM2FN[config.normalization_type]( config.hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.config = config def call(self, hidden_states, residual_tensor, training=False): layer_outputs = self.dense(hidden_states) layer_outputs = self.dropout(layer_outputs, training=training) layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) return layer_outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.true_hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build(None)
class_definition
18,415
19,594
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
null
6,007
class TFMobileBertOutput(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.use_bottleneck = config.use_bottleneck self.dense = keras.layers.Dense( config.true_hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = NORM2FN[config.normalization_type]( config.true_hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) if not self.use_bottleneck: self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) else: self.bottleneck = TFOutputBottleneck(config, name="bottleneck") self.config = config def call(self, hidden_states, residual_tensor_1, residual_tensor_2, training=False): hidden_states = self.dense(hidden_states) if not self.use_bottleneck: hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.LayerNorm(hidden_states + residual_tensor_1) else: hidden_states = self.LayerNorm(hidden_states + residual_tensor_1) hidden_states = self.bottleneck(hidden_states, residual_tensor_2) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.intermediate_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build(None) if getattr(self, "bottleneck", None) is not None: with tf.name_scope(self.bottleneck.name): self.bottleneck.build(None)
class_definition
19,597
21,446
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
null
6,008
class TFBottleneckLayer(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense(config.intra_bottleneck_size, name="dense") self.LayerNorm = NORM2FN[config.normalization_type]( config.intra_bottleneck_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) self.config = config def call(self, inputs): hidden_states = self.dense(inputs) hidden_states = self.LayerNorm(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build(None)
class_definition
21,449
22,434
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
null
6,009
class TFBottleneck(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.key_query_shared_bottleneck = config.key_query_shared_bottleneck self.use_bottleneck_attention = config.use_bottleneck_attention self.bottleneck_input = TFBottleneckLayer(config, name="input") if self.key_query_shared_bottleneck: self.attention = TFBottleneckLayer(config, name="attention") def call(self, hidden_states): # This method can return three different tuples of values. These different values make use of bottlenecks, # which are linear layers used to project the hidden states to a lower-dimensional vector, reducing memory # usage. These linear layer have weights that are learned during training. # # If `config.use_bottleneck_attention`, it will return the result of the bottleneck layer four times for the # key, query, value, and "layer input" to be used by the attention layer. # This bottleneck is used to project the hidden. This last layer input will be used as a residual tensor # in the attention self output, after the attention scores have been computed. # # If not `config.use_bottleneck_attention` and `config.key_query_shared_bottleneck`, this will return # four values, three of which have been passed through a bottleneck: the query and key, passed through the same # bottleneck, and the residual layer to be applied in the attention self output, through another bottleneck. # # Finally, in the last case, the values for the query, key and values are the hidden states without bottleneck, # and the residual layer will be this value passed through a bottleneck. bottlenecked_hidden_states = self.bottleneck_input(hidden_states) if self.use_bottleneck_attention: return (bottlenecked_hidden_states,) * 4 elif self.key_query_shared_bottleneck: shared_attention_input = self.attention(hidden_states) return (shared_attention_input, shared_attention_input, hidden_states, bottlenecked_hidden_states) else: return (hidden_states, hidden_states, hidden_states, bottlenecked_hidden_states) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "bottleneck_input", None) is not None: with tf.name_scope(self.bottleneck_input.name): self.bottleneck_input.build(None) if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None)
class_definition
22,437
25,156
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
null
6,010
class TFFFNOutput(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense(config.true_hidden_size, name="dense") self.LayerNorm = NORM2FN[config.normalization_type]( config.true_hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) self.config = config def call(self, hidden_states, residual_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.LayerNorm(hidden_states + residual_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.intermediate_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build(None)
class_definition
25,159
26,183
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
null
6,011
class TFFFNLayer(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.intermediate = TFMobileBertIntermediate(config, name="intermediate") self.mobilebert_output = TFFFNOutput(config, name="output") def call(self, hidden_states): intermediate_output = self.intermediate(hidden_states) layer_outputs = self.mobilebert_output(intermediate_output, hidden_states) return layer_outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "mobilebert_output", None) is not None: with tf.name_scope(self.mobilebert_output.name): self.mobilebert_output.build(None)
class_definition
26,186
27,108
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
null
6,012
class TFMobileBertLayer(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.use_bottleneck = config.use_bottleneck self.num_feedforward_networks = config.num_feedforward_networks self.attention = TFMobileBertAttention(config, name="attention") self.intermediate = TFMobileBertIntermediate(config, name="intermediate") self.mobilebert_output = TFMobileBertOutput(config, name="output") if self.use_bottleneck: self.bottleneck = TFBottleneck(config, name="bottleneck") if config.num_feedforward_networks > 1: self.ffn = [TFFFNLayer(config, name=f"ffn.{i}") for i in range(config.num_feedforward_networks - 1)] def call(self, hidden_states, attention_mask, head_mask, output_attentions, training=False): if self.use_bottleneck: query_tensor, key_tensor, value_tensor, layer_input = self.bottleneck(hidden_states) else: query_tensor, key_tensor, value_tensor, layer_input = [hidden_states] * 4 attention_outputs = self.attention( query_tensor, key_tensor, value_tensor, layer_input, attention_mask, head_mask, output_attentions, training=training, ) attention_output = attention_outputs[0] s = (attention_output,) if self.num_feedforward_networks != 1: for i, ffn_module in enumerate(self.ffn): attention_output = ffn_module(attention_output) s += (attention_output,) intermediate_output = self.intermediate(attention_output) layer_output = self.mobilebert_output(intermediate_output, attention_output, hidden_states, training=training) outputs = ( (layer_output,) + attention_outputs[1:] + ( tf.constant(0), query_tensor, key_tensor, value_tensor, layer_input, attention_output, intermediate_output, ) + s ) # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "mobilebert_output", None) is not None: with tf.name_scope(self.mobilebert_output.name): self.mobilebert_output.build(None) if getattr(self, "bottleneck", None) is not None: with tf.name_scope(self.bottleneck.name): self.bottleneck.build(None) if getattr(self, "ffn", None) is not None: for layer in self.ffn: with tf.name_scope(layer.name): layer.build(None)
class_definition
27,111
30,269
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
null
6,013
class TFMobileBertEncoder(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.layer = [TFMobileBertLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] def call( self, hidden_states, attention_mask, head_mask, output_attentions, output_hidden_states, return_dict, training=False, ): all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states, attention_mask, head_mask[i], output_attentions, training=training ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None)
class_definition
30,272
32,120
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
null
6,014
class TFMobileBertPooler(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.do_activate = config.classifier_activation if self.do_activate: self.dense = keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) self.config = config def call(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] if not self.do_activate: return first_token_tensor else: pooled_output = self.dense(first_token_tensor) return pooled_output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size])
class_definition
32,123
33,249
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
null
6,015
class TFMobileBertPredictionHeadTransform(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.transform_act_fn = get_tf_activation(config.hidden_act) else: self.transform_act_fn = config.hidden_act self.LayerNorm = NORM2FN["layer_norm"](config.hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm") self.config = config def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build(None)
class_definition
33,252
34,547
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
null
6,016
class TFMobileBertLMPredictionHead(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.transform = TFMobileBertPredictionHeadTransform(config, name="transform") self.config = config def build(self, input_shape=None): self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") self.dense = self.add_weight( shape=(self.config.hidden_size - self.config.embedding_size, self.config.vocab_size), initializer="zeros", trainable=True, name="dense/weight", ) self.decoder = self.add_weight( shape=(self.config.vocab_size, self.config.embedding_size), initializer="zeros", trainable=True, name="decoder/weight", ) if self.built: return self.built = True if getattr(self, "transform", None) is not None: with tf.name_scope(self.transform.name): self.transform.build(None) def get_output_embeddings(self): return self def set_output_embeddings(self, value): self.decoder = value self.config.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.config.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = tf.matmul(hidden_states, tf.concat([tf.transpose(self.decoder), self.dense], axis=0)) hidden_states = hidden_states + self.bias return hidden_states
class_definition
34,550
36,290
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
null
6,017
class TFMobileBertMLMHead(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.predictions = TFMobileBertLMPredictionHead(config, name="predictions") def call(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "predictions", None) is not None: with tf.name_scope(self.predictions.name): self.predictions.build(None)
class_definition
36,293
36,900
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
null
6,018
class TFMobileBertMainLayer(keras.layers.Layer): config_class = MobileBertConfig def __init__(self, config, add_pooling_layer=True, **kwargs): super().__init__(**kwargs) self.config = config self.num_hidden_layers = config.num_hidden_layers self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.return_dict = config.use_return_dict self.embeddings = TFMobileBertEmbeddings(config, name="embeddings") self.encoder = TFMobileBertEncoder(config, name="encoder") self.pooler = TFMobileBertPooler(config, name="pooler") if add_pooling_layer else None def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, value): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = tf.fill(input_shape, 1) if token_type_ids is None: token_type_ids = tf.fill(input_shape, 0) embedding_output = self.embeddings(input_ids, position_ids, token_type_ids, inputs_embeds, training=training) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1])) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype) one_cst = tf.constant(1.0, dtype=embedding_output.dtype) ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.num_hidden_layers encoder_outputs = self.encoder( embedding_output, extended_attention_mask, head_mask, output_attentions, output_hidden_states, return_dict, training=training, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return ( sequence_output, pooled_output, ) + encoder_outputs[1:] return TFBaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "pooler", None) is not None: with tf.name_scope(self.pooler.name): self.pooler.build(None)
class_definition
36,923
42,198
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
null
6,019
class TFMobileBertPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MobileBertConfig base_model_prefix = "mobilebert"
class_definition
42,201
42,473
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
null
6,020
class TFMobileBertForPreTrainingOutput(ModelOutput): """ Output type of [`TFMobileBertForPreTraining`]. Args: prediction_logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`tf.Tensor` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None prediction_logits: tf.Tensor = None seq_relationship_logits: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None
class_definition
42,487
44,117
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
null
6,021
class TFMobileBertModel(TFMobileBertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[Tuple, TFBaseModelOutputWithPooling]: outputs = self.mobilebert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilebert", None) is not None: with tf.name_scope(self.mobilebert.name): self.mobilebert.build(None)
class_definition
50,016
51,904
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
null
6,022
class TFMobileBertForPreTraining(TFMobileBertPreTrainedModel, TFMobileBertPreTrainingLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") self.predictions = TFMobileBertMLMHead(config, name="predictions___cls") self.seq_relationship = TFMobileBertOnlyNSPHead(config, name="seq_relationship___cls") def get_lm_head(self): return self.predictions.predictions def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.predictions.name + "/" + self.predictions.predictions.name @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFMobileBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, next_sentence_label: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFMobileBertForPreTrainingOutput]: r""" Return: Examples: ```python >>> import tensorflow as tf >>> from transformers import AutoTokenizer, TFMobileBertForPreTraining >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") >>> model = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") >>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1 >>> outputs = model(input_ids) >>> prediction_scores, seq_relationship_scores = outputs[:2] ```""" outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output, pooled_output = outputs[:2] prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) total_loss = None if labels is not None and next_sentence_label is not None: d_labels = {"labels": labels} d_labels["next_sentence_label"] = next_sentence_label total_loss = self.hf_compute_loss(labels=d_labels, logits=(prediction_scores, seq_relationship_score)) if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return TFMobileBertForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilebert", None) is not None: with tf.name_scope(self.mobilebert.name): self.mobilebert.build(None) if getattr(self, "predictions", None) is not None: with tf.name_scope(self.predictions.name): self.predictions.build(None) if getattr(self, "seq_relationship", None) is not None: with tf.name_scope(self.seq_relationship.name): self.seq_relationship.build(None) def tf_to_pt_weight_rename(self, tf_weight): if tf_weight == "cls.predictions.decoder.weight": return tf_weight, "mobilebert.embeddings.word_embeddings.weight" else: return (tf_weight,)
class_definition
52,150
56,739
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
null
6,023
class TFMobileBertForMaskedLM(TFMobileBertPreTrainedModel, TFMaskedLanguageModelingLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"pooler", r"seq_relationship___cls", r"cls.seq_relationship", ] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mobilebert = TFMobileBertMainLayer(config, add_pooling_layer=False, name="mobilebert") self.predictions = TFMobileBertMLMHead(config, name="predictions___cls") def get_lm_head(self): return self.predictions.predictions def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.mlm.name + "/" + self.mlm.predictions.name @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, expected_output="'paris'", expected_loss=0.57, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFMaskedLMOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels """ outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] prediction_scores = self.predictions(sequence_output, training=training) loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilebert", None) is not None: with tf.name_scope(self.mobilebert.name): self.mobilebert.build(None) if getattr(self, "predictions", None) is not None: with tf.name_scope(self.predictions.name): self.predictions.build(None) def tf_to_pt_weight_rename(self, tf_weight): if tf_weight == "cls.predictions.decoder.weight": return tf_weight, "mobilebert.embeddings.word_embeddings.weight" else: return (tf_weight,)
class_definition
56,856
60,854
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
null
6,024
class TFMobileBertOnlyNSPHead(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.seq_relationship = keras.layers.Dense(2, name="seq_relationship") self.config = config def call(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "seq_relationship", None) is not None: with tf.name_scope(self.seq_relationship.name): self.seq_relationship.build([None, None, self.config.hidden_size])
class_definition
60,857
61,551
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
null
6,025
class TFMobileBertForNextSentencePrediction(TFMobileBertPreTrainedModel, TFNextSentencePredictionLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"predictions___cls", r"cls.predictions"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") self.cls = TFMobileBertOnlyNSPHead(config, name="seq_relationship___cls") @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFNextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, next_sentence_label: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFNextSentencePredictorOutput]: r""" Return: Examples: ```python >>> import tensorflow as tf >>> from transformers import AutoTokenizer, TFMobileBertForNextSentencePrediction >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") >>> model = TFMobileBertForNextSentencePrediction.from_pretrained("google/mobilebert-uncased") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors="tf") >>> logits = model(encoding["input_ids"], token_type_ids=encoding["token_type_ids"])[0] ```""" outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs[1] seq_relationship_scores = self.cls(pooled_output) next_sentence_loss = ( None if next_sentence_label is None else self.hf_compute_loss(labels=next_sentence_label, logits=seq_relationship_scores) ) if not return_dict: output = (seq_relationship_scores,) + outputs[2:] return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output return TFNextSentencePredictorOutput( loss=next_sentence_loss, logits=seq_relationship_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilebert", None) is not None: with tf.name_scope(self.mobilebert.name): self.mobilebert.build(None) if getattr(self, "cls", None) is not None: with tf.name_scope(self.cls.name): self.cls.build(None)
class_definition
61,703
65,519
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
null
6,026
class TFMobileBertForSequenceClassification(TFMobileBertPreTrainedModel, TFSequenceClassificationLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"predictions___cls", r"seq_relationship___cls", r"cls.predictions", r"cls.seq_relationship", ] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = keras.layers.Dropout(classifier_dropout) self.classifier = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, expected_loss=_SEQ_CLASS_EXPECTED_LOSS, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFSequenceClassifierOutput]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output, training=training) logits = self.classifier(pooled_output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilebert", None) is not None: with tf.name_scope(self.mobilebert.name): self.mobilebert.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size])
class_definition
65,753
69,799
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
null
6,027
class TFMobileBertForQuestionAnswering(TFMobileBertPreTrainedModel, TFQuestionAnsweringLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"pooler", r"predictions___cls", r"seq_relationship___cls", r"cls.predictions", r"cls.seq_relationship", ] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.mobilebert = TFMobileBertMainLayer(config, add_pooling_layer=False, name="mobilebert") self.qa_outputs = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_QA, output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, qa_target_start_index=_QA_TARGET_START_INDEX, qa_target_end_index=_QA_TARGET_END_INDEX, expected_output=_QA_EXPECTED_OUTPUT, expected_loss=_QA_EXPECTED_LOSS, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFQuestionAnsweringModelOutput]: r""" start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions, "end_position": end_positions} loss = self.hf_compute_loss(labels, (start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilebert", None) is not None: with tf.name_scope(self.mobilebert.name): self.mobilebert.build(None) if getattr(self, "qa_outputs", None) is not None: with tf.name_scope(self.qa_outputs.name): self.qa_outputs.build([None, None, self.config.hidden_size])
class_definition
70,098
74,774
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
null
6,028
class TFMobileBertForMultipleChoice(TFMobileBertPreTrainedModel, TFMultipleChoiceLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"predictions___cls", r"seq_relationship___cls", r"cls.predictions", r"cls.seq_relationship", ] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.classifier = keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward( MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFMultipleChoiceModelOutput]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None flat_inputs_embeds = ( tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3])) if inputs_embeds is not None else None ) outputs = self.mobilebert( flat_input_ids, flat_attention_mask, flat_token_type_ids, flat_position_ids, head_mask, flat_inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output, training=training) logits = self.classifier(pooled_output) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilebert", None) is not None: with tf.name_scope(self.mobilebert.name): self.mobilebert.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size])
class_definition
75,017
79,569
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
null
6,029
class TFMobileBertForTokenClassification(TFMobileBertPreTrainedModel, TFTokenClassificationLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"pooler", r"predictions___cls", r"seq_relationship___cls", r"cls.predictions", r"cls.seq_relationship", ] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.mobilebert = TFMobileBertMainLayer(config, add_pooling_layer=False, name="mobilebert") classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = keras.layers.Dropout(classifier_dropout) self.classifier = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION, output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT, expected_loss=_TOKEN_CLASS_EXPECTED_LOSS, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFTokenClassifierOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output, training=training) logits = self.classifier(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "mobilebert", None) is not None: with tf.name_scope(self.mobilebert.name): self.mobilebert.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size])
class_definition
79,810
83,716
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_tf_mobilebert.py
null
6,030
class NoNorm(nn.Module): def __init__(self, feat_size, eps=None): super().__init__() self.bias = nn.Parameter(torch.zeros(feat_size)) self.weight = nn.Parameter(torch.ones(feat_size)) def forward(self, input_tensor: torch.Tensor) -> torch.Tensor: return input_tensor * self.weight + self.bias
class_definition
6,025
6,358
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_mobilebert.py
null
6,031
class MobileBertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.trigram_input = config.trigram_input self.embedding_size = config.embedding_size self.hidden_size = config.hidden_size self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) embed_dim_multiplier = 3 if self.trigram_input else 1 embedded_input_size = self.embedding_size * embed_dim_multiplier self.embedding_transformation = nn.Linear(embedded_input_size, config.hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) if self.trigram_input: # From the paper MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited # Devices (https://arxiv.org/abs/2004.02984) # # The embedding table in BERT models accounts for a substantial proportion of model size. To compress # the embedding layer, we reduce the embedding dimension to 128 in MobileBERT. # Then, we apply a 1D convolution with kernel size 3 on the raw token embedding to produce a 512 # dimensional output. inputs_embeds = torch.cat( [ nn.functional.pad(inputs_embeds[:, 1:], [0, 0, 0, 1, 0, 0], value=0.0), inputs_embeds, nn.functional.pad(inputs_embeds[:, :-1], [0, 0, 1, 0, 0, 0], value=0.0), ], dim=2, ) if self.trigram_input or self.embedding_size != self.hidden_size: inputs_embeds = self.embedding_transformation(inputs_embeds) # Add positional embeddings and token type embeddings, then layer # normalize and perform dropout. position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings
class_definition
6,421
9,956
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_mobilebert.py
null
6,032
class MobileBertSelfAttention(nn.Module): def __init__(self, config): super().__init__() self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.true_hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.true_hidden_size, self.all_head_size) self.key = nn.Linear(config.true_hidden_size, self.all_head_size) self.value = nn.Linear( config.true_hidden_size if config.use_bottleneck_attention else config.hidden_size, self.all_head_size ) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, query_tensor: torch.Tensor, key_tensor: torch.Tensor, value_tensor: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(query_tensor) mixed_key_layer = self.key(key_tensor) mixed_value_layer = self.value(value_tensor) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs
class_definition
9,959
12,903
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_mobilebert.py
null
6,033
class MobileBertSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.use_bottleneck = config.use_bottleneck self.dense = nn.Linear(config.true_hidden_size, config.true_hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size, eps=config.layer_norm_eps) if not self.use_bottleneck: self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, residual_tensor: torch.Tensor) -> torch.Tensor: layer_outputs = self.dense(hidden_states) if not self.use_bottleneck: layer_outputs = self.dropout(layer_outputs) layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) return layer_outputs
class_definition
12,906
13,693
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_mobilebert.py
null
6,034
class MobileBertAttention(nn.Module): def __init__(self, config): super().__init__() self.self = MobileBertSelfAttention(config) self.output = MobileBertSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, query_tensor: torch.Tensor, key_tensor: torch.Tensor, value_tensor: torch.Tensor, layer_input: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, ) -> Tuple[torch.Tensor]: self_outputs = self.self( query_tensor, key_tensor, value_tensor, attention_mask, head_mask, output_attentions, ) # Run a linear projection of `hidden_size` then add a residual # with `layer_input`. attention_output = self.output(self_outputs[0], layer_input) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs
class_definition
13,696
15,639
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_mobilebert.py
null
6,035
class MobileBertIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.true_hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states
class_definition
15,642
16,218
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_mobilebert.py
null
6,036
class OutputBottleneck(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.true_hidden_size, config.hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, residual_tensor: torch.Tensor) -> torch.Tensor: layer_outputs = self.dense(hidden_states) layer_outputs = self.dropout(layer_outputs) layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) return layer_outputs
class_definition
16,221
16,862
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_mobilebert.py
null
6,037
class MobileBertOutput(nn.Module): def __init__(self, config): super().__init__() self.use_bottleneck = config.use_bottleneck self.dense = nn.Linear(config.intermediate_size, config.true_hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size) if not self.use_bottleneck: self.dropout = nn.Dropout(config.hidden_dropout_prob) else: self.bottleneck = OutputBottleneck(config) def forward( self, intermediate_states: torch.Tensor, residual_tensor_1: torch.Tensor, residual_tensor_2: torch.Tensor ) -> torch.Tensor: layer_output = self.dense(intermediate_states) if not self.use_bottleneck: layer_output = self.dropout(layer_output) layer_output = self.LayerNorm(layer_output + residual_tensor_1) else: layer_output = self.LayerNorm(layer_output + residual_tensor_1) layer_output = self.bottleneck(layer_output, residual_tensor_2) return layer_output
class_definition
16,865
17,918
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_mobilebert.py
null
6,038
class BottleneckLayer(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intra_bottleneck_size) self.LayerNorm = NORM2FN[config.normalization_type](config.intra_bottleneck_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: layer_input = self.dense(hidden_states) layer_input = self.LayerNorm(layer_input) return layer_input
class_definition
17,921
18,405
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_mobilebert.py
null
6,039
class Bottleneck(nn.Module): def __init__(self, config): super().__init__() self.key_query_shared_bottleneck = config.key_query_shared_bottleneck self.use_bottleneck_attention = config.use_bottleneck_attention self.input = BottleneckLayer(config) if self.key_query_shared_bottleneck: self.attention = BottleneckLayer(config) def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]: # This method can return three different tuples of values. These different values make use of bottlenecks, # which are linear layers used to project the hidden states to a lower-dimensional vector, reducing memory # usage. These linear layer have weights that are learned during training. # # If `config.use_bottleneck_attention`, it will return the result of the bottleneck layer four times for the # key, query, value, and "layer input" to be used by the attention layer. # This bottleneck is used to project the hidden. This last layer input will be used as a residual tensor # in the attention self output, after the attention scores have been computed. # # If not `config.use_bottleneck_attention` and `config.key_query_shared_bottleneck`, this will return # four values, three of which have been passed through a bottleneck: the query and key, passed through the same # bottleneck, and the residual layer to be applied in the attention self output, through another bottleneck. # # Finally, in the last case, the values for the query, key and values are the hidden states without bottleneck, # and the residual layer will be this value passed through a bottleneck. bottlenecked_hidden_states = self.input(hidden_states) if self.use_bottleneck_attention: return (bottlenecked_hidden_states,) * 4 elif self.key_query_shared_bottleneck: shared_attention_input = self.attention(hidden_states) return (shared_attention_input, shared_attention_input, hidden_states, bottlenecked_hidden_states) else: return (hidden_states, hidden_states, hidden_states, bottlenecked_hidden_states)
class_definition
18,408
20,645
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_mobilebert.py
null
6,040
class FFNOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.true_hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor, residual_tensor: torch.Tensor) -> torch.Tensor: layer_outputs = self.dense(hidden_states) layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) return layer_outputs
class_definition
20,648
21,179
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_mobilebert.py
null
6,041
class FFNLayer(nn.Module): def __init__(self, config): super().__init__() self.intermediate = MobileBertIntermediate(config) self.output = FFNOutput(config) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: intermediate_output = self.intermediate(hidden_states) layer_outputs = self.output(intermediate_output, hidden_states) return layer_outputs
class_definition
21,182
21,599
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_mobilebert.py
null
6,042
class MobileBertLayer(nn.Module): def __init__(self, config): super().__init__() self.use_bottleneck = config.use_bottleneck self.num_feedforward_networks = config.num_feedforward_networks self.attention = MobileBertAttention(config) self.intermediate = MobileBertIntermediate(config) self.output = MobileBertOutput(config) if self.use_bottleneck: self.bottleneck = Bottleneck(config) if config.num_feedforward_networks > 1: self.ffn = nn.ModuleList([FFNLayer(config) for _ in range(config.num_feedforward_networks - 1)]) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, ) -> Tuple[torch.Tensor]: if self.use_bottleneck: query_tensor, key_tensor, value_tensor, layer_input = self.bottleneck(hidden_states) else: query_tensor, key_tensor, value_tensor, layer_input = [hidden_states] * 4 self_attention_outputs = self.attention( query_tensor, key_tensor, value_tensor, layer_input, attention_mask, head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] s = (attention_output,) outputs = self_attention_outputs[1:] # add self attentions if we output attention weights if self.num_feedforward_networks != 1: for i, ffn_module in enumerate(self.ffn): attention_output = ffn_module(attention_output) s += (attention_output,) intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output, hidden_states) outputs = ( (layer_output,) + outputs + ( torch.tensor(1000), query_tensor, key_tensor, value_tensor, layer_input, attention_output, intermediate_output, ) + s ) return outputs
class_definition
21,602
23,890
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_mobilebert.py
null
6,043
class MobileBertEncoder(nn.Module): def __init__(self, config): super().__init__() self.layer = nn.ModuleList([MobileBertLayer(config) for _ in range(config.num_hidden_layers)]) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states, attention_mask, head_mask[i], output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions )
class_definition
23,893
25,494
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_mobilebert.py
null
6,044
class MobileBertPooler(nn.Module): def __init__(self, config): super().__init__() self.do_activate = config.classifier_activation if self.do_activate: self.dense = nn.Linear(config.hidden_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] if not self.do_activate: return first_token_tensor else: pooled_output = self.dense(first_token_tensor) pooled_output = torch.tanh(pooled_output) return pooled_output
class_definition
25,497
26,207
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_mobilebert.py
null
6,045
class MobileBertPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = NORM2FN["layer_norm"](config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states
class_definition
26,210
26,925
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_mobilebert.py
null
6,046
class MobileBertLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = MobileBertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.dense = nn.Linear(config.vocab_size, config.hidden_size - config.embedding_size, bias=False) self.decoder = nn.Linear(config.embedding_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def _tie_weights(self) -> None: self.decoder.bias = self.bias def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.transform(hidden_states) hidden_states = hidden_states.matmul(torch.cat([self.decoder.weight.t(), self.dense.weight], dim=0)) hidden_states += self.decoder.bias return hidden_states
class_definition
26,928
28,016
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_mobilebert.py
null
6,047
class MobileBertOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = MobileBertLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores
class_definition
28,019
28,345
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_mobilebert.py
null
6,048
class MobileBertPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = MobileBertLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output: torch.Tensor, pooled_output: torch.Tensor) -> Tuple[torch.Tensor]: prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score
class_definition
28,348
28,874
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_mobilebert.py
null
6,049
class MobileBertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MobileBertConfig load_tf_weights = load_tf_weights_in_mobilebert base_model_prefix = "mobilebert" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, (nn.LayerNorm, NoNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0)
class_definition
28,877
30,018
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_mobilebert.py
null
6,050
class MobileBertForPreTrainingOutput(ModelOutput): """ Output type of [`MobileBertForPreTraining`]. Args: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None prediction_logits: torch.FloatTensor = None seq_relationship_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None
class_definition
30,032
31,994
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_mobilebert.py
null
6,051
class MobileBertModel(MobileBertPreTrainedModel): """ https://arxiv.org/pdf/2004.02984.pdf """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = MobileBertEmbeddings(config) self.encoder = MobileBertEncoder(config) self.pooler = MobileBertPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, )
class_definition
35,689
40,426
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_mobilebert.py
null
6,052
class MobileBertForPreTraining(MobileBertPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.mobilebert = MobileBertModel(config) self.cls = MobileBertPreTrainingHeads(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding: # resize dense output embedings at first self.cls.predictions.dense = self._get_resized_lm_head( self.cls.predictions.dense, new_num_tokens=new_num_tokens, transposed=True ) return super().resize_token_embeddings(new_num_tokens=new_num_tokens) @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=MobileBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, next_sentence_label: Optional[torch.LongTensor] = None, output_attentions: Optional[torch.FloatTensor] = None, output_hidden_states: Optional[torch.FloatTensor] = None, return_dict: Optional[torch.FloatTensor] = None, ) -> Union[Tuple, MobileBertForPreTrainingOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. Returns: Examples: ```python >>> from transformers import AutoTokenizer, MobileBertForPreTraining >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") >>> model = MobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) >>> # Batch size 1 >>> outputs = model(input_ids) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) total_loss = None if labels is not None and next_sentence_label is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = masked_lm_loss + next_sentence_loss if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return MobileBertForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
40,672
45,677
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_mobilebert.py
null
6,053
class MobileBertForMaskedLM(MobileBertPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.mobilebert = MobileBertModel(config, add_pooling_layer=False) self.cls = MobileBertOnlyMLMHead(config) self.config = config # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding: # resize dense output embedings at first self.cls.predictions.dense = self._get_resized_lm_head( self.cls.predictions.dense, new_num_tokens=new_num_tokens, transposed=True ) return super().resize_token_embeddings(new_num_tokens=new_num_tokens) @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, expected_output="'paris'", expected_loss=0.57, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
45,794
49,459
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_mobilebert.py
null
6,054
class MobileBertOnlyNSPHead(nn.Module): def __init__(self, config): super().__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output: torch.Tensor) -> torch.Tensor: seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score
class_definition
49,462
49,802
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_mobilebert.py
null
6,055
class MobileBertForNextSentencePrediction(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.mobilebert = MobileBertModel(config) self.cls = MobileBertOnlyNSPHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, NextSentencePredictorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`. - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. Returns: Examples: ```python >>> from transformers import AutoTokenizer, MobileBertForNextSentencePrediction >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") >>> model = MobileBertForNextSentencePrediction.from_pretrained("google/mobilebert-uncased") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt") >>> outputs = model(**encoding, labels=torch.LongTensor([1])) >>> loss = outputs.loss >>> logits = outputs.logits ```""" if "next_sentence_label" in kwargs: warnings.warn( "The `next_sentence_label` argument is deprecated and will be removed in a future version, use" " `labels` instead.", FutureWarning, ) labels = kwargs.pop("next_sentence_label") return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] seq_relationship_score = self.cls(pooled_output) next_sentence_loss = None if labels is not None: loss_fct = CrossEntropyLoss() next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), labels.view(-1)) if not return_dict: output = (seq_relationship_score,) + outputs[2:] return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output return NextSentencePredictorOutput( loss=next_sentence_loss, logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
49,954
53,859
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_mobilebert.py
null
6,056
class MobileBertForSequenceClassification(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.mobilebert = MobileBertModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, expected_loss=_SEQ_CLASS_EXPECTED_LOSS, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
54,209
58,357
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_mobilebert.py
null
6,057
class MobileBertForQuestionAnswering(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.mobilebert = MobileBertModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_QA, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, qa_target_start_index=_QA_TARGET_START_INDEX, qa_target_end_index=_QA_TARGET_END_INDEX, expected_output=_QA_EXPECTED_OUTPUT, expected_loss=_QA_EXPECTED_LOSS, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
58,767
63,194
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_mobilebert.py
null
6,058
class MobileBertForMultipleChoice(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.mobilebert = MobileBertModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward( MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
63,545
67,227
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_mobilebert.py
null
6,059
class MobileBertForTokenClassification(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.mobilebert = MobileBertModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT, expected_loss=_TOKEN_CLASS_EXPECTED_LOSS, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
67,581
70,580
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/modeling_mobilebert.py
null
6,060
class MobileBertTokenizerFast(PreTrainedTokenizerFast): r""" Construct a "fast" MobileBERT tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece. This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. clean_text (`bool`, *optional*, defaults to `True`): Whether or not to clean the text before tokenization by removing any control characters and replacing all whitespaces by the classic one. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original MobileBERT). wordpieces_prefix (`str`, *optional*, defaults to `"##"`): The prefix for subwords. """ vocab_files_names = VOCAB_FILES_NAMES slow_tokenizer_class = MobileBertTokenizer def __init__( self, vocab_file=None, tokenizer_file=None, do_lower_case=True, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", tokenize_chinese_chars=True, strip_accents=None, **kwargs, ): super().__init__( vocab_file, tokenizer_file=tokenizer_file, do_lower_case=do_lower_case, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, **kwargs, ) normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase", do_lower_case) != do_lower_case or normalizer_state.get("strip_accents", strip_accents) != strip_accents or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars ): normalizer_class = getattr(normalizers, normalizer_state.pop("type")) normalizer_state["lowercase"] = do_lower_case normalizer_state["strip_accents"] = strip_accents normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state) self.do_lower_case = do_lower_case def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A MobileBERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id] if token_ids_1 is not None: output += token_ids_1 + [self.sep_token_id] return output def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A MobileBERT sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files)
class_definition
1,152
7,797
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/tokenization_mobilebert_fast.py
null
6,061
class MobileBertConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MobileBertModel`] or a [`TFMobileBertModel`]. It is used to instantiate a MobileBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MobileBERT [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the MobileBERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MobileBertModel`] or [`TFMobileBertModel`]. hidden_size (`int`, *optional*, defaults to 512): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 4): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 512): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`MobileBertModel`] or [`TFMobileBertModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. pad_token_id (`int`, *optional*, defaults to 0): The ID of the token in the word embedding to use as padding. embedding_size (`int`, *optional*, defaults to 128): The dimension of the word embedding vectors. trigram_input (`bool`, *optional*, defaults to `True`): Use a convolution of trigram as input. use_bottleneck (`bool`, *optional*, defaults to `True`): Whether to use bottleneck in BERT. intra_bottleneck_size (`int`, *optional*, defaults to 128): Size of bottleneck layer output. use_bottleneck_attention (`bool`, *optional*, defaults to `False`): Whether to use attention inputs from the bottleneck transformation. key_query_shared_bottleneck (`bool`, *optional*, defaults to `True`): Whether to use the same linear transformation for query&key in the bottleneck. num_feedforward_networks (`int`, *optional*, defaults to 4): Number of FFNs in a block. normalization_type (`str`, *optional*, defaults to `"no_norm"`): The normalization type in MobileBERT. classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. Examples: ```python >>> from transformers import MobileBertConfig, MobileBertModel >>> # Initializing a MobileBERT configuration >>> configuration = MobileBertConfig() >>> # Initializing a model (with random weights) from the configuration above >>> model = MobileBertModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "mobilebert" def __init__( self, vocab_size=30522, hidden_size=512, num_hidden_layers=24, num_attention_heads=4, intermediate_size=512, hidden_act="relu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, embedding_size=128, trigram_input=True, use_bottleneck=True, intra_bottleneck_size=128, use_bottleneck_attention=False, key_query_shared_bottleneck=True, num_feedforward_networks=4, normalization_type="no_norm", classifier_activation=True, classifier_dropout=None, **kwargs, ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.embedding_size = embedding_size self.trigram_input = trigram_input self.use_bottleneck = use_bottleneck self.intra_bottleneck_size = intra_bottleneck_size self.use_bottleneck_attention = use_bottleneck_attention self.key_query_shared_bottleneck = key_query_shared_bottleneck self.num_feedforward_networks = num_feedforward_networks self.normalization_type = normalization_type self.classifier_activation = classifier_activation if self.use_bottleneck: self.true_hidden_size = intra_bottleneck_size else: self.true_hidden_size = hidden_size self.classifier_dropout = classifier_dropout
class_definition
877
7,617
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/configuration_mobilebert.py
null
6,062
class MobileBertOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
class_definition
7,715
8,216
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mobilebert/configuration_mobilebert.py
null
6,063
class InformerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of an [`InformerModel`]. It is used to instantiate an Informer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Informer [huggingface/informer-tourism-monthly](https://huggingface.co/huggingface/informer-tourism-monthly) architecture. Configuration objects inherit from [`PretrainedConfig`] can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: prediction_length (`int`): The prediction length for the decoder. In other words, the prediction horizon of the model. This value is typically dictated by the dataset and we recommend to set it appropriately. context_length (`int`, *optional*, defaults to `prediction_length`): The context length for the encoder. If `None`, the context length will be the same as the `prediction_length`. distribution_output (`string`, *optional*, defaults to `"student_t"`): The distribution emission head for the model. Could be either "student_t", "normal" or "negative_binomial". loss (`string`, *optional*, defaults to `"nll"`): The loss function for the model corresponding to the `distribution_output` head. For parametric distributions it is the negative log likelihood (nll) - which currently is the only supported one. input_size (`int`, *optional*, defaults to 1): The size of the target variable which by default is 1 for univariate targets. Would be > 1 in case of multivariate targets. scaling (`string` or `bool`, *optional* defaults to `"mean"`): Whether to scale the input targets via "mean" scaler, "std" scaler or no scaler if `None`. If `True`, the scaler is set to "mean". lags_sequence (`list[int]`, *optional*, defaults to `[1, 2, 3, 4, 5, 6, 7]`): The lags of the input time series as covariates often dictated by the frequency of the data. Default is `[1, 2, 3, 4, 5, 6, 7]` but we recommend to change it based on the dataset appropriately. num_time_features (`int`, *optional*, defaults to 0): The number of time features in the input time series. num_dynamic_real_features (`int`, *optional*, defaults to 0): The number of dynamic real valued features. num_static_categorical_features (`int`, *optional*, defaults to 0): The number of static categorical features. num_static_real_features (`int`, *optional*, defaults to 0): The number of static real valued features. cardinality (`list[int]`, *optional*): The cardinality (number of different values) for each of the static categorical features. Should be a list of integers, having the same length as `num_static_categorical_features`. Cannot be `None` if `num_static_categorical_features` is > 0. embedding_dimension (`list[int]`, *optional*): The dimension of the embedding for each of the static categorical features. Should be a list of integers, having the same length as `num_static_categorical_features`. Cannot be `None` if `num_static_categorical_features` is > 0. d_model (`int`, *optional*, defaults to 64): Dimensionality of the transformer layers. encoder_layers (`int`, *optional*, defaults to 2): Number of encoder layers. decoder_layers (`int`, *optional*, defaults to 2): Number of decoder layers. encoder_attention_heads (`int`, *optional*, defaults to 2): Number of attention heads for each attention layer in the Transformer encoder. decoder_attention_heads (`int`, *optional*, defaults to 2): Number of attention heads for each attention layer in the Transformer decoder. encoder_ffn_dim (`int`, *optional*, defaults to 32): Dimension of the "intermediate" (often named feed-forward) layer in encoder. decoder_ffn_dim (`int`, *optional*, defaults to 32): Dimension of the "intermediate" (often named feed-forward) layer in decoder. activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and decoder. If string, `"gelu"` and `"relu"` are supported. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the encoder, and decoder. encoder_layerdrop (`float`, *optional*, defaults to 0.1): The dropout probability for the attention and fully connected layers for each encoder layer. decoder_layerdrop (`float`, *optional*, defaults to 0.1): The dropout probability for the attention and fully connected layers for each decoder layer. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.1): The dropout probability used between the two layers of the feed-forward networks. num_parallel_samples (`int`, *optional*, defaults to 100): The number of samples to generate in parallel for each time step of inference. init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated normal weight initialization distribution. use_cache (`bool`, *optional*, defaults to `True`): Whether to use the past key/values attentions (if applicable to the model) to speed up decoding. attention_type (`str`, *optional*, defaults to "prob"): Attention used in encoder. This can be set to "prob" (Informer's ProbAttention) or "full" (vanilla transformer's canonical self-attention). sampling_factor (`int`, *optional*, defaults to 5): ProbSparse sampling factor (only makes affect when `attention_type`="prob"). It is used to control the reduced query matrix (Q_reduce) input length. distil (`bool`, *optional*, defaults to `True`): Whether to use distilling in encoder. Example: ```python >>> from transformers import InformerConfig, InformerModel >>> # Initializing an Informer configuration with 12 time steps for prediction >>> configuration = InformerConfig(prediction_length=12) >>> # Randomly initializing a model (with random weights) from the configuration >>> model = InformerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "informer" attribute_map = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self, prediction_length: Optional[int] = None, context_length: Optional[int] = None, distribution_output: str = "student_t", loss: str = "nll", input_size: int = 1, lags_sequence: List[int] = None, scaling: Optional[Union[str, bool]] = "mean", num_dynamic_real_features: int = 0, num_static_real_features: int = 0, num_static_categorical_features: int = 0, num_time_features: int = 0, cardinality: Optional[List[int]] = None, embedding_dimension: Optional[List[int]] = None, d_model: int = 64, encoder_ffn_dim: int = 32, decoder_ffn_dim: int = 32, encoder_attention_heads: int = 2, decoder_attention_heads: int = 2, encoder_layers: int = 2, decoder_layers: int = 2, is_encoder_decoder: bool = True, activation_function: str = "gelu", dropout: float = 0.05, encoder_layerdrop: float = 0.1, decoder_layerdrop: float = 0.1, attention_dropout: float = 0.1, activation_dropout: float = 0.1, num_parallel_samples: int = 100, init_std: float = 0.02, use_cache=True, # Informer arguments attention_type: str = "prob", sampling_factor: int = 5, distil: bool = True, **kwargs, ): # time series specific configuration self.prediction_length = prediction_length self.context_length = context_length or prediction_length self.distribution_output = distribution_output self.loss = loss self.input_size = input_size self.num_time_features = num_time_features self.lags_sequence = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] self.scaling = scaling self.num_dynamic_real_features = num_dynamic_real_features self.num_static_real_features = num_static_real_features self.num_static_categorical_features = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(cardinality) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) self.cardinality = cardinality else: self.cardinality = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(embedding_dimension) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) self.embedding_dimension = embedding_dimension else: self.embedding_dimension = [min(50, (cat + 1) // 2) for cat in self.cardinality] self.num_parallel_samples = num_parallel_samples # Transformer architecture configuration self.feature_size = input_size * len(self.lags_sequence) + self._number_of_features self.d_model = d_model self.encoder_attention_heads = encoder_attention_heads self.decoder_attention_heads = decoder_attention_heads self.encoder_ffn_dim = encoder_ffn_dim self.decoder_ffn_dim = decoder_ffn_dim self.encoder_layers = encoder_layers self.decoder_layers = decoder_layers self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.activation_function = activation_function self.init_std = init_std self.use_cache = use_cache # Informer self.attention_type = attention_type self.sampling_factor = sampling_factor self.distil = distil super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs) @property def _number_of_features(self) -> int: return ( sum(self.embedding_dimension) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
class_definition
827
12,411
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/informer/configuration_informer.py
null
6,064
class InformerFeatureEmbedder(nn.Module): """ Embed a sequence of categorical features. Args: cardinalities (`list[int]`): List of cardinalities of the categorical features. embedding_dims (`list[int]`): List of embedding dimensions of the categorical features. """ def __init__(self, cardinalities: List[int], embedding_dims: List[int]) -> None: super().__init__() self.num_features = len(cardinalities) self.embedders = nn.ModuleList([nn.Embedding(c, d) for c, d in zip(cardinalities, embedding_dims)]) def forward(self, features: torch.Tensor) -> torch.Tensor: if self.num_features > 1: # we slice the last dimension, giving an array of length # self.num_features with shape (N,T) or (N) cat_feature_slices = torch.chunk(features, self.num_features, dim=-1) else: cat_feature_slices = [features] return torch.cat( [ embed(cat_feature_slice.squeeze(-1)) for embed, cat_feature_slice in zip(self.embedders, cat_feature_slices) ], dim=-1, )
class_definition
1,619
2,800
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/informer/modeling_informer.py
null
6,065
class InformerStdScaler(nn.Module): """ Standardize features by calculating the mean and scaling along the first dimension, and then normalizes it by subtracting from the mean and dividing by the standard deviation. """ def __init__(self, config: InformerConfig): super().__init__() self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1 self.keepdim = config.keepdim if hasattr(config, "keepdim") else True self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-5 def forward( self, data: torch.Tensor, observed_indicator: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Parameters: data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`): input for Batch norm calculation observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`): Calculating the scale on the observed indicator. Returns: tuple of `torch.Tensor` of shapes (`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`, `(batch_size, 1, num_input_channels)`) """ denominator = observed_indicator.sum(self.dim, keepdim=self.keepdim) denominator = denominator.clamp_min(1.0) loc = (data * observed_indicator).sum(self.dim, keepdim=self.keepdim) / denominator variance = (((data - loc) * observed_indicator) ** 2).sum(self.dim, keepdim=self.keepdim) / denominator scale = torch.sqrt(variance + self.minimum_scale) return (data - loc) / scale, loc, scale
class_definition
2,972
4,710
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/informer/modeling_informer.py
null
6,066
class InformerMeanScaler(nn.Module): """ Computes a scaling factor as the weighted average absolute value along the first dimension, and scales the data accordingly. """ def __init__(self, config: InformerConfig): super().__init__() self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1 self.keepdim = config.keepdim if hasattr(config, "keepdim") else True self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-10 self.default_scale = config.default_scale if hasattr(config, "default_scale") else None def forward( self, data: torch.Tensor, observed_indicator: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Parameters: data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`): input for Batch norm calculation observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`): Calculating the scale on the observed indicator. Returns: tuple of `torch.Tensor` of shapes (`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`, `(batch_size, 1, num_input_channels)`) """ ts_sum = (data * observed_indicator).abs().sum(self.dim, keepdim=True) num_observed = observed_indicator.sum(self.dim, keepdim=True) scale = ts_sum / torch.clamp(num_observed, min=1) # If `default_scale` is provided, we use it, otherwise we use the scale # of the batch. if self.default_scale is None: batch_sum = ts_sum.sum(dim=0) batch_observations = torch.clamp(num_observed.sum(0), min=1) default_scale = torch.squeeze(batch_sum / batch_observations) else: default_scale = self.default_scale * torch.ones_like(scale) # apply default scale where there are no observations scale = torch.where(num_observed > 0, scale, default_scale) # ensure the scale is at least `self.minimum_scale` scale = torch.clamp(scale, min=self.minimum_scale) scaled_data = data / scale if not self.keepdim: scale = scale.squeeze(dim=self.dim) return scaled_data, torch.zeros_like(scale), scale
class_definition
4,883
7,282
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/informer/modeling_informer.py
null
6,067
class InformerNOPScaler(nn.Module): """ Assigns a scaling factor equal to 1 along the first dimension, and therefore applies no scaling to the input data. """ def __init__(self, config: InformerConfig): super().__init__() self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1 self.keepdim = config.keepdim if hasattr(config, "keepdim") else True def forward( self, data: torch.Tensor, observed_indicator: torch.Tensor = None ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Parameters: data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`): input for Batch norm calculation Returns: tuple of `torch.Tensor` of shapes (`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`, `(batch_size, 1, num_input_channels)`) """ scale = torch.ones_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim) loc = torch.zeros_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim) return data, loc, scale
class_definition
7,454
8,653
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/informer/modeling_informer.py
null
6,068
class InformerSinusoidalPositionalEmbedding(nn.Embedding): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None) -> None: super().__init__(num_positions, embedding_dim) self.weight = self._init_weight(self.weight) @staticmethod def _init_weight(out: nn.Parameter) -> nn.Parameter: """ Identical to the XLM create_sinusoidal_embeddings except features are not interleaved. The cos features are in the 2nd half of the vector. [dim // 2:] """ n_pos, dim = out.shape position_enc = np.array( [[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)] ) out.requires_grad = False # set early to avoid an error in pytorch-1.8+ sentinel = dim // 2 if dim % 2 == 0 else (dim // 2) + 1 out[:, 0:sentinel] = torch.FloatTensor(np.sin(position_enc[:, 0::2])) out[:, sentinel:] = torch.FloatTensor(np.cos(position_enc[:, 1::2])) out.detach_() return out @torch.no_grad() def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0) -> torch.Tensor: """`input_ids_shape` is expected to be [bsz x seqlen].""" bsz, seq_len = input_ids_shape[:2] positions = torch.arange( past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device ) return super().forward(positions)
class_definition
10,329
11,898
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/informer/modeling_informer.py
null
6,069
class InformerValueEmbedding(nn.Module): def __init__(self, feature_size, d_model): super().__init__() self.value_projection = nn.Linear(in_features=feature_size, out_features=d_model, bias=False) def forward(self, x): return self.value_projection(x)
class_definition
12,039
12,322
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/informer/modeling_informer.py
null
6,070
class InformerAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[InformerConfig] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value
class_definition
12,412
19,810
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/informer/modeling_informer.py
null
6,071
class InformerProbSparseAttention(nn.Module): """Probabilistic Attention mechanism to select the "active" queries rather than the "lazy" queries and provides a sparse Transformer thus mitigating the quadratic compute and memory requirements of vanilla attention""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, sampling_factor: int = 5, bias: bool = True, ): super().__init__() self.factor = sampling_factor self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) key_states_time_length = key_states.size(1) # L_K log_key_states_time_length = np.ceil(np.log1p(key_states_time_length)).astype("int").item() # log_L_K query_states_time_length = query_states.size(1) # L_Q log_query_states_time_length = np.ceil(np.log1p(query_states_time_length)).astype("int").item() # log_L_Q u_part = min(self.factor * query_states_time_length * log_key_states_time_length, key_states_time_length) u = min(self.factor * log_query_states_time_length, query_states_time_length) if key_states_time_length > 0: index_sample = torch.randint(0, key_states_time_length, (u_part,)) k_sample = key_states[:, index_sample, :] else: k_sample = key_states queries_keys_sample = torch.bmm(query_states, k_sample.transpose(1, 2)) # Q_K_sampled # find the Top_k query with sparsity measurement if u > 0: sparsity_measurement = queries_keys_sample.max(dim=-1)[0] - torch.div( queries_keys_sample.sum(dim=-1), key_states_time_length ) # M top_u_sparsity_measurement = sparsity_measurement.topk(u, sorted=False)[1] # M_top # calculate q_reduce: query_states[:, top_u_sparsity_measurement] dim_for_slice = torch.arange(query_states.size(0)).unsqueeze(-1) q_reduce = query_states[dim_for_slice, top_u_sparsity_measurement] else: q_reduce = query_states top_u_sparsity_measurement = None # Use q_reduce to calculate attention weights attn_weights = torch.bmm(q_reduce, key_states.transpose(1, 2)) src_len = key_states.size(1) if attn_weights.size() != (bsz * self.num_heads, u, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, u, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) prob_mask = attention_mask.expand(bsz, self.num_heads, tgt_len, src_len).reshape( bsz * self.num_heads, tgt_len, src_len ) if top_u_sparsity_measurement is not None: dim_for_slice = torch.arange(prob_mask.size(0)).unsqueeze(-1) prob_mask = prob_mask[dim_for_slice, top_u_sparsity_measurement, :] attn_weights = attn_weights.view(bsz, self.num_heads, u, src_len) + prob_mask.view( bsz, self.num_heads, u, src_len ) attn_weights = attn_weights.view(bsz * self.num_heads, u, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, u, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, u, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, u, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, u, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) # calculate context for updating the attn_output, based on: # https://github.com/zhouhaoyi/Informer2020/blob/ac59c7447135473fb2aafeafe94395f884d5c7a5/models/attn.py#L74 if self.is_decoder: # cast to float32 before operation to avoid overflow context = value_states.cumsum(dim=-2, dtype=torch.float32).to(value_states.dtype) else: v_mean_dim_time = value_states.mean(dim=-2) context = ( v_mean_dim_time.unsqueeze(dim=1) .expand(bsz * self.num_heads, query_states_time_length, v_mean_dim_time.size(-1)) .clone() ) if top_u_sparsity_measurement is not None: # update context: copy the attention output to the context at top_u_sparsity_measurement index dim_for_slice = torch.arange(context.size(0)).unsqueeze(-1) context[dim_for_slice, top_u_sparsity_measurement, :] = attn_output attn_output = context if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value
class_definition
19,813
30,295
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/informer/modeling_informer.py
null
6,072
class InformerConvLayer(nn.Module): def __init__(self, c_in): super().__init__() self.downConv = nn.Conv1d( in_channels=c_in, out_channels=c_in, kernel_size=3, padding=1, padding_mode="circular", ) self.norm = nn.BatchNorm1d(c_in) self.activation = nn.ELU() self.maxPool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1) def forward(self, x): x = self.downConv(x.permute(0, 2, 1)) x = self.norm(x) x = self.activation(x) x = self.maxPool(x) x = x.transpose(1, 2) return x
class_definition
30,378
31,015
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/informer/modeling_informer.py
null
6,073
class InformerEncoderLayer(nn.Module): def __init__(self, config: InformerConfig): super().__init__() self.embed_dim = config.d_model if config.attention_type == "prob": self.self_attn = InformerProbSparseAttention( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, dropout=config.attention_dropout, sampling_factor=config.sampling_factor, ) else: self.self_attn = InformerAttention( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, dropout=config.attention_dropout, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.FloatTensor, attention_mask: torch.FloatTensor, layer_head_mask: torch.FloatTensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states, attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) if hidden_states.dtype == torch.float16 and ( torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() ): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs
class_definition
31,018
34,518
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/informer/modeling_informer.py
null
6,074
class InformerDecoderLayer(nn.Module): def __init__(self, config: InformerConfig): super().__init__() self.embed_dim = config.d_model if config.attention_type == "prob": self.self_attn = InformerProbSparseAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, sampling_factor=config.sampling_factor, is_decoder=True, ) else: self.self_attn = InformerAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.encoder_attn = InformerAttention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, cross_attn_layer_head_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of size `(decoder_attention_heads,)`. past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs
class_definition
34,521
40,711
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/informer/modeling_informer.py
null
6,075
class InformerPreTrainedModel(PreTrainedModel): config_class = InformerConfig base_model_prefix = "model" main_input_name = "past_values" supports_gradient_checkpointing = True def _init_weights(self, module): std = self.config.init_std if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding) and not isinstance(module, InformerSinusoidalPositionalEmbedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_()
class_definition
40,714
41,454
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/informer/modeling_informer.py
null
6,076
class InformerEncoder(InformerPreTrainedModel): """ Informer encoder consisting of *config.encoder_layers* self attention layers with distillation layers. Each attention layer is an [`InformerEncoderLayer`]. Args: config: InformerConfig """ def __init__(self, config: InformerConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.encoder_layerdrop self.gradient_checkpointing = False if config.prediction_length is None: raise ValueError("The `prediction_length` config needs to be specified.") self.value_embedding = InformerValueEmbedding(feature_size=config.feature_size, d_model=config.d_model) self.embed_positions = InformerSinusoidalPositionalEmbedding( config.context_length + config.prediction_length, config.d_model ) self.layers = nn.ModuleList([InformerEncoderLayer(config) for _ in range(config.encoder_layers)]) self.layernorm_embedding = nn.LayerNorm(config.d_model) if config.distil: self.conv_layers = nn.ModuleList( [InformerConvLayer(config.d_model) for _ in range(config.encoder_layers - 1)] ) self.conv_layers.append(None) else: self.conv_layers = [None] * config.encoder_layers # Initialize weights and apply final processing self.post_init() def forward( self, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict hidden_states = self.value_embedding(inputs_embeds) embed_pos = self.embed_positions(inputs_embeds.size()) hidden_states = self.layernorm_embedding(hidden_states + embed_pos) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: if head_mask.size()[0] != (len(self.layers)): raise ValueError( f"The head_mask should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, (encoder_layer, conv_layer) in enumerate(zip(self.layers, self.conv_layers)): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) to_drop = False if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: # skip the layer to_drop = True if to_drop: layer_outputs = (None, None) else: if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, (head_mask[idx] if head_mask is not None else None), output_attentions, ) if conv_layer is not None: output = self._gradient_checkpointing_func(conv_layer, layer_outputs[0]) layer_outputs = (output,) + layer_outputs[1:] else: layer_outputs = encoder_layer( hidden_states, attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), output_attentions=output_attentions, ) if conv_layer is not None: output = conv_layer(layer_outputs[0]) layer_outputs = (output,) + layer_outputs[1:] hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions )
class_definition
53,478
60,665
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/informer/modeling_informer.py
null
6,077
class InformerDecoder(InformerPreTrainedModel): """ Informer decoder consisting of *config.decoder_layers* layers. Each layer is a [`InformerDecoderLayer`] Args: config: InformerConfig """ def __init__(self, config: InformerConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop if config.prediction_length is None: raise ValueError("The `prediction_length` config needs to be specified.") self.value_embedding = InformerValueEmbedding(feature_size=config.feature_size, d_model=config.d_model) self.embed_positions = InformerSinusoidalPositionalEmbedding( config.context_length + config.prediction_length, config.d_model ) self.layers = nn.ModuleList([InformerDecoderLayer(config) for _ in range(config.decoder_layers)]) self.layernorm_embedding = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def forward( self, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: r""" Args: attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing cross-attention on hidden heads. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict input_shape = inputs_embeds.size()[:-1] # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 attention_mask = _prepare_4d_causal_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask( encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ) hidden_states = self.value_embedding(inputs_embeds) embed_pos = self.embed_positions(inputs_embeds.size(), past_key_values_length=self.config.context_length) hidden_states = self.layernorm_embedding(hidden_states + embed_pos) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: if attn_mask.size()[0] != (len(self.layers)): raise ValueError( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, head_mask[idx] if head_mask is not None else None, cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, None, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, )
class_definition
60,946
72,184
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/informer/modeling_informer.py
null
6,078
class InformerModel(InformerPreTrainedModel): def __init__(self, config: InformerConfig): super().__init__(config) if config.scaling == "mean" or config.scaling is True: self.scaler = InformerMeanScaler(config) elif config.scaling == "std": self.scaler = InformerStdScaler(config) else: self.scaler = InformerNOPScaler(config) if config.num_static_categorical_features > 0: self.embedder = InformerFeatureEmbedder( cardinalities=config.cardinality, embedding_dims=config.embedding_dimension, ) # transformer encoder-decoder and mask initializer self.encoder = InformerEncoder(config) self.decoder = InformerDecoder(config) # Initialize weights and apply final processing self.post_init() @property def _past_length(self) -> int: return self.config.context_length + max(self.config.lags_sequence) def get_lagged_subsequences( self, sequence: torch.Tensor, subsequences_length: int, shift: int = 0 ) -> torch.Tensor: """ Returns lagged subsequences of a given sequence. Returns a tensor of shape (N, S, C, I), where S = subsequences_length and I = len(indices), containing lagged subsequences. Specifically, lagged[i, j, :, k] = sequence[i, -indices[k]-S+j, :]. Args: sequence: Tensor The sequence from which lagged subsequences should be extracted. Shape: (N, T, C). subsequences_length : int Length of the subsequences to be extracted. shift: int Shift the lags by this amount back. """ sequence_length = sequence.shape[1] indices = [lag - shift for lag in self.config.lags_sequence] if max(indices) + subsequences_length > sequence_length: raise ValueError( f"lags cannot go further than history length, found lag {max(indices)} " f"while history length is only {sequence_length}" ) lagged_values = [] for lag_index in indices: begin_index = -lag_index - subsequences_length end_index = -lag_index if lag_index > 0 else None lagged_values.append(sequence[:, begin_index:end_index, ...]) return torch.stack(lagged_values, dim=-1) def create_network_inputs( self, past_values: torch.Tensor, past_time_features: torch.Tensor, static_categorical_features: Optional[torch.Tensor] = None, static_real_features: Optional[torch.Tensor] = None, past_observed_mask: Optional[torch.Tensor] = None, future_values: Optional[torch.Tensor] = None, future_time_features: Optional[torch.Tensor] = None, ): # time feature time_feat = ( torch.cat( ( past_time_features[:, self._past_length - self.config.context_length :, ...], future_time_features, ), dim=1, ) if future_values is not None else past_time_features[:, self._past_length - self.config.context_length :, ...] ) # target if past_observed_mask is None: past_observed_mask = torch.ones_like(past_values) context = past_values[:, -self.config.context_length :] observed_context = past_observed_mask[:, -self.config.context_length :] _, loc, scale = self.scaler(context, observed_context) inputs = ( (torch.cat((past_values, future_values), dim=1) - loc) / scale if future_values is not None else (past_values - loc) / scale ) # static features log_abs_loc = loc.abs().log1p() if self.config.input_size == 1 else loc.squeeze(1).abs().log1p() log_scale = scale.log() if self.config.input_size == 1 else scale.squeeze(1).log() static_feat = torch.cat((log_abs_loc, log_scale), dim=1) if static_real_features is not None: static_feat = torch.cat((static_real_features, static_feat), dim=1) if static_categorical_features is not None: embedded_cat = self.embedder(static_categorical_features) static_feat = torch.cat((embedded_cat, static_feat), dim=1) expanded_static_feat = static_feat.unsqueeze(1).expand(-1, time_feat.shape[1], -1) # all features features = torch.cat((expanded_static_feat, time_feat), dim=-1) # lagged features subsequences_length = ( self.config.context_length + self.config.prediction_length if future_values is not None else self.config.context_length ) lagged_sequence = self.get_lagged_subsequences(sequence=inputs, subsequences_length=subsequences_length) lags_shape = lagged_sequence.shape reshaped_lagged_sequence = lagged_sequence.reshape(lags_shape[0], lags_shape[1], -1) if reshaped_lagged_sequence.shape[1] != time_feat.shape[1]: raise ValueError( f"input length {reshaped_lagged_sequence.shape[1]} and time feature lengths {time_feat.shape[1]} does not match" ) # transformer inputs transformer_inputs = torch.cat((reshaped_lagged_sequence, features), dim=-1) return transformer_inputs, loc, scale, static_feat def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(INFORMER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqTSModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, past_values: torch.Tensor, past_time_features: torch.Tensor, past_observed_mask: torch.Tensor, static_categorical_features: Optional[torch.Tensor] = None, static_real_features: Optional[torch.Tensor] = None, future_values: Optional[torch.Tensor] = None, future_time_features: Optional[torch.Tensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[List[torch.FloatTensor]] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, use_cache: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Seq2SeqTSModelOutput, Tuple]: r""" Returns: Examples: ```python >>> from huggingface_hub import hf_hub_download >>> import torch >>> from transformers import InformerModel >>> file = hf_hub_download( ... repo_id="hf-internal-testing/tourism-monthly-batch", filename="train-batch.pt", repo_type="dataset" ... ) >>> batch = torch.load(file) >>> model = InformerModel.from_pretrained("huggingface/informer-tourism-monthly") >>> # during training, one provides both past and future values >>> # as well as possible additional features >>> outputs = model( ... past_values=batch["past_values"], ... past_time_features=batch["past_time_features"], ... past_observed_mask=batch["past_observed_mask"], ... static_categorical_features=batch["static_categorical_features"], ... static_real_features=batch["static_real_features"], ... future_values=batch["future_values"], ... future_time_features=batch["future_time_features"], ... ) >>> last_hidden_state = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_inputs, loc, scale, static_feat = self.create_network_inputs( past_values=past_values, past_time_features=past_time_features, past_observed_mask=past_observed_mask, static_categorical_features=static_categorical_features, static_real_features=static_real_features, future_values=future_values, future_time_features=future_time_features, ) if encoder_outputs is None: enc_input = transformer_inputs[:, : self.config.context_length, ...] encoder_outputs = self.encoder( inputs_embeds=enc_input, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) dec_input = transformer_inputs[:, self.config.context_length :, ...] decoder_outputs = self.decoder( inputs_embeds=dec_input, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs + (loc, scale, static_feat) return Seq2SeqTSModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, loc=loc, scale=scale, static_features=static_feat, )
class_definition
72,580
83,653
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/informer/modeling_informer.py
null
6,079
class InformerForPrediction(InformerPreTrainedModel): def __init__(self, config: InformerConfig): super().__init__(config) self.model = InformerModel(config) if config.distribution_output == "student_t": self.distribution_output = StudentTOutput(dim=config.input_size) elif config.distribution_output == "normal": self.distribution_output = NormalOutput(dim=config.input_size) elif config.distribution_output == "negative_binomial": self.distribution_output = NegativeBinomialOutput(dim=config.input_size) else: raise ValueError(f"Unknown distribution output {config.distribution_output}") self.parameter_projection = self.distribution_output.get_parameter_projection(self.model.config.d_model) self.target_shape = self.distribution_output.event_shape if config.loss == "nll": self.loss = nll else: raise ValueError(f"Unknown loss function {config.loss}") # Initialize weights of distribution_output and apply final processing self.post_init() def output_params(self, dec_output): return self.parameter_projection(dec_output) def get_encoder(self): return self.model.get_encoder() def get_decoder(self): return self.model.get_decoder() @torch.jit.ignore def output_distribution(self, params, loc=None, scale=None, trailing_n=None) -> torch.distributions.Distribution: sliced_params = params if trailing_n is not None: sliced_params = [p[:, -trailing_n:] for p in params] return self.distribution_output.distribution(sliced_params, loc=loc, scale=scale) @add_start_docstrings_to_model_forward(INFORMER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqTSModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, past_values: torch.Tensor, past_time_features: torch.Tensor, past_observed_mask: torch.Tensor, static_categorical_features: Optional[torch.Tensor] = None, static_real_features: Optional[torch.Tensor] = None, future_values: Optional[torch.Tensor] = None, future_time_features: Optional[torch.Tensor] = None, future_observed_mask: Optional[torch.Tensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[List[torch.FloatTensor]] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, use_cache: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Seq2SeqTSModelOutput, Tuple]: r""" Returns: Examples: ```python >>> from huggingface_hub import hf_hub_download >>> import torch >>> from transformers import InformerForPrediction >>> file = hf_hub_download( ... repo_id="hf-internal-testing/tourism-monthly-batch", filename="train-batch.pt", repo_type="dataset" ... ) >>> batch = torch.load(file) >>> model = InformerForPrediction.from_pretrained( ... "huggingface/informer-tourism-monthly" ... ) >>> # during training, one provides both past and future values >>> # as well as possible additional features >>> outputs = model( ... past_values=batch["past_values"], ... past_time_features=batch["past_time_features"], ... past_observed_mask=batch["past_observed_mask"], ... static_categorical_features=batch["static_categorical_features"], ... static_real_features=batch["static_real_features"], ... future_values=batch["future_values"], ... future_time_features=batch["future_time_features"], ... ) >>> loss = outputs.loss >>> loss.backward() >>> # during inference, one only provides past values >>> # as well as possible additional features >>> # the model autoregressively generates future values >>> outputs = model.generate( ... past_values=batch["past_values"], ... past_time_features=batch["past_time_features"], ... past_observed_mask=batch["past_observed_mask"], ... static_categorical_features=batch["static_categorical_features"], ... static_real_features=batch["static_real_features"], ... future_time_features=batch["future_time_features"], ... ) >>> mean_prediction = outputs.sequences.mean(dim=1) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if future_values is not None: use_cache = False outputs = self.model( past_values=past_values, past_time_features=past_time_features, past_observed_mask=past_observed_mask, static_categorical_features=static_categorical_features, static_real_features=static_real_features, future_values=future_values, future_time_features=future_time_features, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, output_hidden_states=output_hidden_states, output_attentions=output_attentions, use_cache=use_cache, return_dict=return_dict, ) prediction_loss = None params = None if future_values is not None: params = self.output_params(outputs[0]) # outputs.last_hidden_state # loc is 3rd last and scale is 2nd last output distribution = self.output_distribution(params, loc=outputs[-3], scale=outputs[-2]) loss = self.loss(distribution, future_values) if future_observed_mask is None: future_observed_mask = torch.ones_like(future_values) if len(self.target_shape) == 0: loss_weights = future_observed_mask else: loss_weights, _ = future_observed_mask.min(dim=-1, keepdim=False) prediction_loss = weighted_average(loss, weights=loss_weights) if not return_dict: outputs = ((params,) + outputs[1:]) if params is not None else outputs[1:] return ((prediction_loss,) + outputs) if prediction_loss is not None else outputs return Seq2SeqTSPredictionOutput( loss=prediction_loss, params=params, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, loc=outputs.loc, scale=outputs.scale, static_features=outputs.static_features, ) @torch.no_grad() def generate( self, past_values: torch.Tensor, past_time_features: torch.Tensor, future_time_features: torch.Tensor, past_observed_mask: Optional[torch.Tensor] = None, static_categorical_features: Optional[torch.Tensor] = None, static_real_features: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> SampleTSPredictionOutput: r""" Greedily generate sequences of sample predictions from a model with a probability distribution head. Parameters: past_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, input_size)`): Past values of the time series, that serve as context in order to predict the future. The sequence size of this tensor must be larger than the `context_length` of the model, since the model will use the larger size to construct lag features, i.e. additional values from the past which are added in order to serve as "extra context". The `sequence_length` here is equal to `config.context_length` + `max(config.lags_sequence)`, which if no `lags_sequence` is configured, is equal to `config.context_length` + 7 (as by default, the largest look-back index in `config.lags_sequence` is 7). The property `_past_length` returns the actual length of the past. The `past_values` is what the Transformer encoder gets as input (with optional additional features, such as `static_categorical_features`, `static_real_features`, `past_time_features` and lags). Optionally, missing values need to be replaced with zeros and indicated via the `past_observed_mask`. For multivariate time series, the `input_size` > 1 dimension is required and corresponds to the number of variates in the time series per time step. past_time_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_features)`): Required time features, which the model internally will add to `past_values`. These could be things like "month of year", "day of the month", etc. encoded as vectors (for instance as Fourier features). These could also be so-called "age" features, which basically help the model know "at which point in life" a time-series is. Age features have small values for distant past time steps and increase monotonically the more we approach the current time step. Holiday features are also a good example of time features. These features serve as the "positional encodings" of the inputs. So contrary to a model like BERT, where the position encodings are learned from scratch internally as parameters of the model, the Time Series Transformer requires to provide additional time features. The Time Series Transformer only learns additional embeddings for `static_categorical_features`. Additional dynamic real covariates can be concatenated to this tensor, with the caveat that these features must but known at prediction time. The `num_features` here is equal to `config.`num_time_features` + `config.num_dynamic_real_features`. future_time_features (`torch.FloatTensor` of shape `(batch_size, prediction_length, num_features)`): Required time features for the prediction window, which the model internally will add to sampled predictions. These could be things like "month of year", "day of the month", etc. encoded as vectors (for instance as Fourier features). These could also be so-called "age" features, which basically help the model know "at which point in life" a time-series is. Age features have small values for distant past time steps and increase monotonically the more we approach the current time step. Holiday features are also a good example of time features. These features serve as the "positional encodings" of the inputs. So contrary to a model like BERT, where the position encodings are learned from scratch internally as parameters of the model, the Time Series Transformer requires to provide additional time features. The Time Series Transformer only learns additional embeddings for `static_categorical_features`. Additional dynamic real covariates can be concatenated to this tensor, with the caveat that these features must but known at prediction time. The `num_features` here is equal to `config.`num_time_features` + `config.num_dynamic_real_features`. past_observed_mask (`torch.BoolTensor` of shape `(batch_size, sequence_length)` or `(batch_size, sequence_length, input_size)`, *optional*): Boolean mask to indicate which `past_values` were observed and which were missing. Mask values selected in `[0, 1]`: - 1 for values that are **observed**, - 0 for values that are **missing** (i.e. NaNs that were replaced by zeros). static_categorical_features (`torch.LongTensor` of shape `(batch_size, number of static categorical features)`, *optional*): Optional static categorical features for which the model will learn an embedding, which it will add to the values of the time series. Static categorical features are features which have the same value for all time steps (static over time). A typical example of a static categorical feature is a time series ID. static_real_features (`torch.FloatTensor` of shape `(batch_size, number of static real features)`, *optional*): Optional static real features which the model will add to the values of the time series. Static real features are features which have the same value for all time steps (static over time). A typical example of a static real feature is promotion information. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. Return: [`SampleTSPredictionOutput`] where the outputs `sequences` tensor will have shape `(batch_size, number of samples, prediction_length)` or `(batch_size, number of samples, prediction_length, input_size)` for multivariate predictions. """ outputs = self( static_categorical_features=static_categorical_features, static_real_features=static_real_features, past_time_features=past_time_features, past_values=past_values, past_observed_mask=past_observed_mask, future_time_features=future_time_features, future_values=None, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, use_cache=True, ) decoder = self.model.get_decoder() enc_last_hidden = outputs.encoder_last_hidden_state loc = outputs.loc scale = outputs.scale static_feat = outputs.static_features num_parallel_samples = self.config.num_parallel_samples repeated_loc = loc.repeat_interleave(repeats=num_parallel_samples, dim=0) repeated_scale = scale.repeat_interleave(repeats=num_parallel_samples, dim=0) repeated_past_values = ( past_values.repeat_interleave(repeats=num_parallel_samples, dim=0) - repeated_loc ) / repeated_scale expanded_static_feat = static_feat.unsqueeze(1).expand(-1, future_time_features.shape[1], -1) features = torch.cat((expanded_static_feat, future_time_features), dim=-1) repeated_features = features.repeat_interleave(repeats=num_parallel_samples, dim=0) repeated_enc_last_hidden = enc_last_hidden.repeat_interleave(repeats=num_parallel_samples, dim=0) future_samples = [] # greedy decoding for k in range(self.config.prediction_length): lagged_sequence = self.model.get_lagged_subsequences( sequence=repeated_past_values, subsequences_length=1 + k, shift=1, ) lags_shape = lagged_sequence.shape reshaped_lagged_sequence = lagged_sequence.reshape(lags_shape[0], lags_shape[1], -1) decoder_input = torch.cat((reshaped_lagged_sequence, repeated_features[:, : k + 1]), dim=-1) dec_output = decoder(inputs_embeds=decoder_input, encoder_hidden_states=repeated_enc_last_hidden) dec_last_hidden = dec_output.last_hidden_state params = self.parameter_projection(dec_last_hidden[:, -1:]) distr = self.output_distribution(params, loc=repeated_loc, scale=repeated_scale) next_sample = distr.sample() repeated_past_values = torch.cat( (repeated_past_values, (next_sample - repeated_loc) / repeated_scale), dim=1 ) future_samples.append(next_sample) concat_future_samples = torch.cat(future_samples, dim=1) return SampleTSPredictionOutput( sequences=concat_future_samples.reshape( (-1, num_parallel_samples, self.config.prediction_length) + self.target_shape, ) )
class_definition
84,029
101,495
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/informer/modeling_informer.py
null
6,080
class Kosmos2ImagesKwargs(ImagesKwargs, total=False): bboxes: Optional[List[float]] num_image_tokens: Optional[int] first_image_token_id: Optional[int]
class_definition
1,252
1,415
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/kosmos2/processing_kosmos2.py
null
6,081
class Kosmos2TextKwargs(TextKwargs, total=False): add_eos_token: Optional[bool]
class_definition
1,418
1,501
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/kosmos2/processing_kosmos2.py
null
6,082
class Kosmos2ProcessorKwargs(ProcessingKwargs, total=False): text_kwargs: Kosmos2TextKwargs images_kwargs: Kosmos2ImagesKwargs _defaults = { "text_kwargs": { "add_special_tokens": True, "padding": False, "stride": 0, "return_overflowing_tokens": False, "return_special_tokens_mask": False, "return_offsets_mapping": False, "return_token_type_ids": False, "verbose": True, "add_eos_token": False, }, "images_kwargs": { "num_image_tokens": 64, }, }
class_definition
1,504
2,118
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/kosmos2/processing_kosmos2.py
null
6,083
class Kosmos2Processor(ProcessorMixin): r""" Constructs an KOSMOS-2 processor which wraps a KOSMOS-2 image processor and a KOSMOS-2 tokenizer into a single processor. [`Kosmos2Processor`] offers all the functionalities of [`CLIPImageProcessor`] and some functionalities of [`XLMRobertaTokenizerFast`]. See the docstring of [`~Kosmos2Processor.__call__`] and [`~Kosmos2Processor.decode`] for more information. Args: image_processor (`CLIPImageProcessor`): An instance of [`CLIPImageProcessor`]. The image processor is a required input. tokenizer (`XLMRobertaTokenizerFast`): An instance of ['XLMRobertaTokenizerFast`]. The tokenizer is a required input. num_patch_index_tokens (`int`, *optional*, defaults to 1024): The number of tokens that represent patch indices. """ attributes = ["image_processor", "tokenizer"] valid_kwargs = ["num_patch_index_tokens"] image_processor_class = "CLIPImageProcessor" tokenizer_class = "AutoTokenizer" def __init__(self, image_processor, tokenizer, num_patch_index_tokens=1024, *kwargs): tokenizer.return_token_type_ids = False self.eod_token = "</doc>" self.boi_token = "<image>" self.eoi_token = "</image>" self.eoc_token = "</chunk>" self.eol_token = "</line>" self.bop_token = "<phrase>" self.eop_token = "</phrase>" self.boo_token = "<object>" self.eoo_token = "</object>" self.dom_token = "</delimiter_of_multi_objects/>" self.grd_token = "<grounding>" self.tag_tokens = [ self.eod_token, self.boi_token, self.eoi_token, self.eoc_token, self.eol_token, self.bop_token, self.eop_token, self.boo_token, self.eoo_token, self.dom_token, self.grd_token, ] self.num_patch_index_tokens = num_patch_index_tokens patch_index_tokens = [f"<patch_index_{str(x).zfill(4)}>" for x in range(self.num_patch_index_tokens)] tokens_to_add = [] for token in self.tag_tokens + patch_index_tokens: tokens_to_add.append(AddedToken(token, lstrip=True, rstrip=False, normalized=False)) tokenizer.add_tokens(tokens_to_add) super().__init__(image_processor, tokenizer) def __call__( self, images: ImageInput = None, text: Union[TextInput, List[TextInput]] = None, audio=None, videos=None, **kwargs: Unpack[Kosmos2ProcessorKwargs], ) -> BatchFeature: """ This method uses [`CLIPImageProcessor.__call__`] method to prepare image(s) for the model, and [`XLMRobertaTokenizerFast.__call__`] to prepare text for the model. Please refer to the docstring of the above two methods for more information. The rest of this documentation shows the arguments specific to `Kosmos2Processor`. Args: bboxes (`Union[List[Tuple[int]], List[Tuple[float]], List[List[Tuple[int]]], List[List[Tuple[float]]]]`, *optional*): The bounding bboxes associated to `texts`. num_image_tokens (`int`, *optional* defaults to 64): The number of (consecutive) places that are used to mark the placeholders to store image information. This should be the same as `latent_query_num` in the instance of `Kosmos2Config` you are using. first_image_token_id (`int`, *optional*): The token id that will be used for the first place of the subsequence that is reserved to store image information. If unset, will default to `self.tokenizer.unk_token_id + 1`. add_eos_token (`bool`, defaults to `False`): Whether or not to include `EOS` token id in the encoding when `add_special_tokens=True`. """ if images is None and text is None: raise ValueError("You have to specify either images or text.") output_kwargs = self._merge_kwargs( Kosmos2ProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) bboxes = output_kwargs["images_kwargs"].pop("bboxes", None) num_image_tokens = output_kwargs["images_kwargs"].pop("num_image_tokens", 64) first_image_token_id = output_kwargs["images_kwargs"].pop("first_image_token_id", None) add_eos_token = output_kwargs["text_kwargs"].pop("add_eos_token", False) add_special_tokens = output_kwargs["text_kwargs"]["add_special_tokens"] padding = output_kwargs["text_kwargs"]["padding"] return_tensors = output_kwargs["text_kwargs"].setdefault("return_tensors", None) encoding = BatchFeature() if images is not None: image_encoding = self.image_processor(images, **output_kwargs["images_kwargs"]) encoding.update(image_encoding) if text is not None: text = self.preprocess_examples(text, images, bboxes, num_image_tokens=num_image_tokens) if add_special_tokens and not add_eos_token: if isinstance(text, str): text = f"{self.tokenizer.bos_token}{text}" elif isinstance(text, list): text = [f"{self.tokenizer.bos_token}{s}" for s in text] output_kwargs["text_kwargs"]["add_special_tokens"] = ( output_kwargs["text_kwargs"]["add_special_tokens"] and add_eos_token ) output_kwargs["text_kwargs"]["padding"] = padding if images is None else False output_kwargs["text_kwargs"]["return_tensors"] = return_tensors if images is None else None text_encoding = self.tokenizer(text=text, **output_kwargs["text_kwargs"]) encoding.update(text_encoding) output_kwargs["text_kwargs"]["add_special_tokens"] = add_special_tokens output_kwargs["text_kwargs"]["padding"] = padding output_kwargs["text_kwargs"]["return_tensors"] = return_tensors if text is not None and images is not None: # Use the id of the first token after <unk> if first_image_token_id is None: first_image_token_id = self.tokenizer.unk_token_id + 1 # To see if we need one more `0` (for `<s>`) at the beginning of `image_embeds_position_mask`. with_bos = add_special_tokens # The first (actual) `<image>` token is always at the 1st or 2nd place (after `<s>` if any). Here we look # for the second `<image>` token (which indicate the first image token). start_index = int(with_bos) + 1 # Add `image_embeds_position_mask`: the leading and trailing `0` are for `boi` and `eoi` tokens. The `1` indicates # the places of image tokens. image_token_ids = list(range(first_image_token_id, first_image_token_id + num_image_tokens)) base_image_embeds_position_mask = [0] + [1] * num_image_tokens + [0] # loop over `encoding["input_ids"]` input_ids = [] image_embeds_position_mask = [] all_input_ids = encoding["input_ids"] # not batched -> (changed to) batch of size 1 if isinstance(text, str): all_input_ids = [all_input_ids] encoding["attention_mask"] = [encoding["attention_mask"]] for text_ids in all_input_ids: # change the ids for the fake `<image>` tokens in `input_ids` text_ids = text_ids[:start_index] + image_token_ids + text_ids[start_index + num_image_tokens :] input_ids.append(text_ids) mask = copy.copy(base_image_embeds_position_mask) if with_bos: # for `<s>` mask = [0] + mask # trailing part (which are not related to the image) mask += [0] * (len(text_ids) - len(mask)) image_embeds_position_mask.append(mask) if isinstance(text, list): sorted_length = sorted( [(idx, len(x)) for idx, x in enumerate(text_encoding.input_ids)], key=lambda x: x[-1] ) _, min_len_not_padded = sorted_length[0] idx, _ = sorted_length[-1] output_kwargs["text_kwargs"]["add_special_tokens"] = ( output_kwargs["text_kwargs"]["add_special_tokens"] and add_eos_token ) output_kwargs["text_kwargs"]["return_tensors"] = None text_encoding = self.tokenizer(text=[text[idx]], **output_kwargs["text_kwargs"]) max_len_padded = len(text_encoding.input_ids[0]) if min_len_not_padded != max_len_padded: if self.tokenizer.padding_side == "right": input_ids = [x + [self.tokenizer.pad_token_id] * (max_len_padded - len(x)) for x in input_ids] image_embeds_position_mask = [ x + [0] * (max_len_padded - len(x)) for x in image_embeds_position_mask ] encoding["attention_mask"] = [ x + [0] * (max_len_padded - len(x)) for x in encoding["attention_mask"] ] elif self.tokenizer.padding_side == "left": input_ids = [[self.tokenizer.pad_token_id] * (max_len_padded - len(x)) + x for x in input_ids] image_embeds_position_mask = [ [0] * (max_len_padded - len(x)) + x for x in image_embeds_position_mask ] encoding["attention_mask"] = [ [0] * (max_len_padded - len(x)) + x for x in encoding["attention_mask"] ] # un-batch if necessary if isinstance(text, str) and return_tensors is None: input_ids = input_ids[0] encoding["attention_mask"] = encoding["attention_mask"][0] image_embeds_position_mask = image_embeds_position_mask[0] # update (with the target tensor type if specified) encoding.update( BatchEncoding( data={ "input_ids": input_ids, "attention_mask": encoding["attention_mask"], "image_embeds_position_mask": image_embeds_position_mask, }, tensor_type=return_tensors, ) ) return encoding def _check_bboxes_for_single_text(self, bboxes): """ Check `bboxes` for a single text example. It could be - `None`: no bounding box associated to a text. - A list with each element being the bounding boxes associated to one `<phrase> ... </phrase>` pair found in a text. This could be: - `None`: no bounding box associated to a `<phrase> ... </phrase>` pair. - A tuple of 2 integers: A single bounding box specified by patch indices. - A tuple of 4 float point number: A single bounding box specified by (normalized) coordinates. - A list containing the above 2 tuple types: Multiple bounding boxes for a `<phrase> ... </phrase>` pair. """ if bboxes is None: return elif not isinstance(bboxes, list): raise ValueError("`bboxes` (for a single text example) should be `None` or a list.") # `bbox` is the bounding boxes for a single <phrase> </phrase> pair for bbox in bboxes: if bbox is None: continue elif not isinstance(bbox, list): bbox = [bbox] for element in bbox: if not isinstance(element, tuple) or not ( (len(element) == 2 and all(isinstance(x, int) for x in element)) or (len(element) == 4 and all(isinstance(x, float) for x in element)) ): raise ValueError( "Each element in `bboxes` (for a single text example) should be either `None`, a tuple containing " "2 integers or 4 float point numbers, or a list containing such tuples. Also " "make sure the arguments `texts` and `bboxes` passed to `preprocess_text` are both in " "batches or both for a single example." ) def _preprocess_single_example(self, text, image, bboxes, img_info_tokens): text = text.strip() if image is not None: # Add `<image> ... (fake) image tokens ... </image>` text = f"{img_info_tokens} {text}" # Add `<object> <patch_idx_xxxx> <patch_idx_yyy> </object>` after `<phrase> phrase text </phrase>` text = self._insert_patch_index_tokens(text, bboxes) return text def preprocess_examples( self, texts: Union[TextInput, List[TextInput]], images: ImageInput = None, bboxes: BboxInput = None, num_image_tokens: Optional[int] = 64, ) -> Union[str, List[str]]: """Add image and bounding box information to `texts` as image and patch index tokens. Args: texts (`Union[TextInput, List[TextInput]]`): The texts to be processed. images (`ImageInput`, *optional*): The images associated to `texts`. bboxes (`Union[List[Tuple[int]], List[Tuple[float]], List[List[Tuple[int]]], List[List[Tuple[float]]]]`, *optional*): The bounding bboxes associated to `texts`. num_image_tokens (`int`, *optional*, defaults to 64): The number of image tokens (used as latent queries). This should corresponds to the `latent_query_num` attribute in `Kosmos2Config`. Returns: `Union[TextInput, List[TextInput]]`: The processed texts with image and patch index tokens. """ # These are fake `<image>` tokens enclosed between (the actual) `<image>` token and `</image>`. img_tokens = [self.boi_token] * num_image_tokens img_info_tokens = " ".join([self.boi_token] + img_tokens + [self.eoi_token]) # make batch to simplify processing logic batched = True if isinstance(texts, str): batched = False texts = [texts] if images is None: images = [None] * len(texts) elif not is_batched(images): images = [images] if len(texts) != len(images): raise ValueError( f"The number of examples in `texts` and `images` should be the same. Got {len(texts)} v.s. {len(images)} instead." ) if not batched: self._check_bboxes_for_single_text(bboxes) bboxes = [bboxes] elif bboxes is not None: if not isinstance(bboxes, list): raise ValueError("`bboxes` should be `None` or a list (as a batch) when `texts` is passed as a batch.") for x in bboxes: self._check_bboxes_for_single_text(x) else: bboxes = [None] * len(texts) if len(bboxes) != len(texts): raise ValueError( f"The number of examples in `texts` and `bboxes` should be the same. Got {len(texts)} v.s. {len(bboxes)} instead." ) result = [ self._preprocess_single_example(text, image, bbox, img_info_tokens) for text, image, bbox in zip(texts, images, bboxes) ] # un-batch if necessary if not batched: result = result[0] return result # Copied from transformers.models.blip.processing_blip.BlipProcessor.batch_decode with BertTokenizerFast->PreTrainedTokenizer def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) # Copied from transformers.models.blip.processing_blip.BlipProcessor.decode with BertTokenizerFast->PreTrainedTokenizer def decode(self, *args, **kwargs): """ This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) def post_process_generation(self, text, cleanup_and_extract=True): caption = text.split(self.eoi_token)[-1] if cleanup_and_extract: return clean_text_and_extract_entities_with_bboxes(caption) return caption def post_process_image_text_to_text(self, generated_outputs): """ Post-process the output of the model to decode the text. Args: generated_outputs (`torch.Tensor` or `np.ndarray`): The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)` or `(sequence_length,)`. Returns: `List[str]`: The decoded text. """ generated_texts = self.batch_decode(generated_outputs, skip_special_tokens=True) return [self.post_process_generation(text, cleanup_and_extract=False) for text in generated_texts] @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) def _insert_patch_index_tokens(self, text: str, bboxes: Union[List[Tuple[int]], List[Tuple[float]]]) -> str: if bboxes is None or len(bboxes) == 0: return text matched_phrases = list(re.finditer(r"<phrase>.+?</phrase>", string=text)) if len(matched_phrases) != len(bboxes): raise ValueError( f"The number of elements in `bboxes` should be the same as the number of `<phrase> ... </phrase>` pairs in `text`. Got {len(matched_phrases)} v.s. {len(bboxes)} instead." ) # insert object's patch index tokens # the found `<phrase> ... </phrase>` pairs. curr_pos = 0 buffer = [] for matched, bbox in zip(matched_phrases, bboxes): _, end = matched.span() buffer.append(text[curr_pos:end]) curr_pos = end # A phrase without bbox if bbox is None: continue # A phrase with a single bbox if isinstance(bbox, tuple): bbox = [bbox] patch_index_strings = [] # A phrase could have multiple bboxes if not all(box is not None for box in bbox): raise ValueError( "The multiple bounding boxes for a single phrase should not contain any `None` value." ) for box in bbox: patch_index_1, patch_index_2 = self._convert_bbox_to_patch_index_tokens(box) patch_index_strings.append(f"{patch_index_1} {patch_index_2}") # `bbox` being an empty list if len(patch_index_strings) == 0: continue position_str = " </delimiter_of_multi_objects/> ".join(patch_index_strings) buffer.append(f"<object> {position_str} </object>") # remaining if curr_pos < len(text): buffer.append(text[curr_pos:]) text = "".join(buffer) return text def _convert_bbox_to_patch_index_tokens( self, bbox: Union[Tuple[int, int], Tuple[float, float, float, float]] ) -> Tuple[str, str]: # already computed patch indices if len(bbox) == 2: idx_1, idx_2 = bbox # bbox specified with (normalized) coordinates else: # use `self.tokenizer` to get `num_patches_per_side` num_patches_per_side = int(math.sqrt(self.num_patch_index_tokens)) idx_1, idx_2 = coordinate_to_patch_index(bbox, num_patches_per_side) token_1 = f"<patch_index_{str(idx_1).zfill(4)}>" token_2 = f"<patch_index_{str(idx_2).zfill(4)}>" return token_1, token_2
class_definition
2,121
22,880
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/kosmos2/processing_kosmos2.py
null
6,084
class Kosmos2ModelOutput(ModelOutput): """ Base class for text model's outputs that also contains a pooling of the last hidden states. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. image_embeds (`torch.FloatTensor` of shape `(batch_size, latent_query_num, hidden_size)`, *optional*): Sequence of hidden-states at the output of `Kosmos2ImageToTextProjection`. projection_attentions (`tuple(torch.FloatTensor)`, *optional*): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights given by `Kosmos2ImageToTextProjection`, after the attention softmax, used to compute the weighted average in the self-attention heads. vision_model_output(`BaseModelOutputWithPooling`, *optional*): The output of the [`Kosmos2VisionModel`]. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if `config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. """ last_hidden_state: torch.FloatTensor = None past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None image_embeds: Optional[torch.FloatTensor] = None projection_attentions: Optional[Tuple[torch.FloatTensor]] = None vision_model_output: BaseModelOutputWithPooling = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() for k in self.keys() )
class_definition
14,465
17,893
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/kosmos2/modeling_kosmos2.py
null
6,085
class Kosmos2ForConditionalGenerationModelOutput(ModelOutput): """ Model output class for `Kosmos2ForConditionalGeneration`. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. image_embeds (`torch.FloatTensor` of shape `(batch_size, latent_query_num, hidden_size)`, *optional*): Sequence of hidden-states at the output of `Kosmos2ImageToTextProjection`. projection_attentions (`tuple(torch.FloatTensor)`, *optional*): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights given by `Kosmos2ImageToTextProjection`, after the attention softmax, used to compute the weighted average in the self-attention heads. vision_model_output(`BaseModelOutputWithPooling`, *optional*): The output of the [`Kosmos2VisionModel`]. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if `config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None image_embeds: Optional[torch.FloatTensor] = None projection_attentions: Optional[Tuple[torch.FloatTensor]] = None vision_model_output: BaseModelOutputWithPooling = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() for k in self.keys() )
class_definition
17,907
21,545
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/kosmos2/modeling_kosmos2.py
null
6,086
class Kosmos2VisionEmbeddings(nn.Module): def __init__(self, config: Kosmos2VisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.class_embedding = nn.Parameter(torch.randn(self.embed_dim)) self.patch_embedding = nn.Conv2d( in_channels=config.num_channels, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=False, ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches + 1 self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: """ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. This method is also adapted to support torch.jit tracing. Adapted from: - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211 """ num_patches = embeddings.shape[1] - 1 position_embedding = self.position_embedding.weight.unsqueeze(0) num_positions = position_embedding.shape[1] - 1 # always interpolate when tracing to ensure the exported model works for dynamic input shapes if not torch.jit.is_tracing() and num_patches == num_positions and height == width: return self.position_embedding(self.position_ids) class_pos_embed = position_embedding[:, :1] patch_pos_embed = position_embedding[:, 1:] dim = embeddings.shape[-1] new_height = height // self.patch_size new_width = width // self.patch_size sqrt_num_positions = torch_int(num_positions**0.5) patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim) patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) patch_pos_embed = nn.functional.interpolate( patch_pos_embed, size=(new_height, new_width), mode="bicubic", align_corners=False, ) patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_pos_embed, patch_pos_embed), dim=1) def forward(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding=False) -> torch.Tensor: batch_size, _, height, width = pixel_values.shape if not interpolate_pos_encoding and (height != self.image_size or width != self.image_size): raise ValueError( f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size}*{self.image_size})." ) target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid] patch_embeds = patch_embeds.flatten(2).transpose(1, 2) class_embeds = self.class_embedding.expand(batch_size, 1, -1) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) if interpolate_pos_encoding: embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) else: embeddings = embeddings + self.position_embedding(self.position_ids) return embeddings
class_definition
21,641
25,473
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/kosmos2/modeling_kosmos2.py
null
6,087
class Kosmos2VisionAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: """Input shape: Batch x Time x Channel""" bsz, tgt_len, embed_dim = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scale key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) # apply the causal_attention_mask first if causal_attention_mask is not None: if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {causal_attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if output_attentions: # this operation is a bit akward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped
class_definition
25,568
30,307
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/kosmos2/modeling_kosmos2.py
null
6,088
class Kosmos2VisionMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states
class_definition
30,396
30,975
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/kosmos2/modeling_kosmos2.py
null
6,089
class Kosmos2VisionEncoderLayer(nn.Module): def __init__(self, config: Kosmos2VisionConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = Kosmos2VisionAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = Kosmos2VisionMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, causal_attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs
class_definition
31,085
33,066
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/kosmos2/modeling_kosmos2.py
null
6,090
class Kosmos2VisionEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`Kosmos2VisionEncoderLayer`]. Args: config: Kosmos2VisionConfig """ def __init__(self, config: Kosmos2VisionConfig): super().__init__() self.config = config self.layers = nn.ModuleList([Kosmos2VisionEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Causal mask for the text model. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, causal_attention_mask, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, causal_attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions )
class_definition
33,171
37,604
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/kosmos2/modeling_kosmos2.py
null
6,091
class Kosmos2VisionTransformer(nn.Module): # Copied from transformers.models.altclip.modeling_altclip.AltCLIPVisionTransformer.__init__ with AltCLIPVision->Kosmos2Vision,ALTCLIP_VISION->KOSMOS2_VISION,AltCLIP->Kosmos2Vision def __init__(self, config: Kosmos2VisionConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = Kosmos2VisionEmbeddings(config) self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.encoder = Kosmos2VisionEncoder(config) self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: bool = False, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) hidden_states = self.pre_layrnorm(hidden_states) encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] pooled_output = last_hidden_state[:, 0, :] pooled_output = self.post_layernorm(pooled_output) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, )
class_definition
37,719
40,069
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/kosmos2/modeling_kosmos2.py
null
6,092
class Kosmos2TextSinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length.""" # Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding.__init__ def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None): super().__init__() self.offset = 2 self.embedding_dim = embedding_dim self.padding_idx = padding_idx self.make_weights(num_positions + self.offset, embedding_dim, padding_idx) # Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding.make_weights def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx) if hasattr(self, "weights"): # in forward put the weights on the correct dtype and device of the param emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device) self.register_buffer("weights", emb_weights, persistent=False) @staticmethod # Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding.get_embedding def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None): """ Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb) emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0) emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) if embedding_dim % 2 == 1: # zero pad emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) if padding_idx is not None: emb[padding_idx, :] = 0 return emb.to(torch.get_default_dtype()) @torch.no_grad() def forward( self, input_ids: torch.Tensor = None, inputs_embeds: torch.Tensor = None, past_key_values_length: int = 0, position_ids: torch.Tensor = None, ): if input_ids is not None: bsz, seq_len = input_ids.size() if position_ids is None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids( input_ids, self.padding_idx, past_key_values_length ).to(input_ids.device) else: bsz, seq_len = inputs_embeds.size()[:-1] if position_ids is None: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds, past_key_values_length) # expand embeddings if needed max_pos = self.padding_idx + 1 + seq_len + past_key_values_length if max_pos > self.weights.size(0): self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx) return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach() # Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding.create_position_ids_from_inputs_embeds def create_position_ids_from_inputs_embeds(self, inputs_embeds, past_key_values_length): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape).contiguous() + past_key_values_length
class_definition
40,204
44,443
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/kosmos2/modeling_kosmos2.py
null
6,093
class KosmosTextAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" # Similar to transformers.models.bart.modeling_bart.BartAttention.__init__ except an additional `inner_attn_ln`. def __init__( self, config, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, add_inner_attn_layernorm: bool = False, bias: bool = True, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) # End opy self.inner_attn_ln = None if add_inner_attn_layernorm: self.inner_attn_ln = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) def _shape(self, projection: torch.Tensor) -> torch.Tensor: new_projection_shape = projection.size()[:-1] + (self.num_heads, self.head_dim) # move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D) new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3) return new_projection def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = encoder_hidden_states is not None batch_size, seq_length = hidden_states.shape[:2] # use encoder_hidden_states if cross attention current_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states # checking that the `sequence_length` of the `past_key_value` is the same as the he provided # `encoder_hidden_states` to support prefix tuning if is_cross_attention and past_key_value and past_key_value[0].shape[2] == current_states.shape[1]: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] else: key_states = self._shape(self.k_proj(current_states)) value_states = self._shape(self.v_proj(current_states)) if past_key_value is not None and not is_cross_attention: # reuse k, v, self_attention key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) query_states = self._shape(self.q_proj(hidden_states) * self.scaling) attn_weights = torch.matmul(query_states, key_states.transpose(-1, -2)) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) src_len = key_states.size(2) if attention_mask is not None: if attention_mask.size() != (batch_size, 1, seq_length, src_len): raise ValueError( f"Attention mask should be of size {(batch_size, 1, seq_length, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights + attention_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1) # Mask heads if we want to if layer_head_mask is not None: attn_weights = attn_weights * layer_head_mask attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) # attn_output = torch.bmm(attn_probs, value_states) ? context_states = torch.matmul(attn_weights, value_states) # attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) ? context_states = context_states.permute(0, 2, 1, 3).contiguous().view(batch_size, seq_length, -1) if self.inner_attn_ln is not None: context_states = self.inner_attn_ln(context_states) attn_output = self.out_proj(context_states) return attn_output, attn_weights, past_key_value
class_definition
44,446
50,041
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/kosmos2/modeling_kosmos2.py
null
6,094
class Kosmos2TextFFN(nn.Module): def __init__(self, config: Kosmos2TextConfig): super().__init__() self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(config.embed_dim, config.ffn_dim) self.fc2 = nn.Linear(config.ffn_dim, config.embed_dim) self.ffn_layernorm = nn.LayerNorm(config.ffn_dim, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.ffn_layernorm(hidden_states) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) return hidden_states
class_definition
50,044
50,986
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/kosmos2/modeling_kosmos2.py
null
6,095
class Kosmos2TextBlock(nn.Module): def __init__(self, config: Kosmos2TextConfig): super().__init__() self.embed_dim = config.embed_dim self.self_attn = KosmosTextAttention( config, embed_dim=self.embed_dim, num_heads=config.attention_heads, dropout=config.attention_dropout, is_decoder=True, add_inner_attn_layernorm=True, ) self.dropout = config.dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) if config.add_cross_attention: self.encoder_attn = KosmosTextAttention( config, embed_dim=self.embed_dim, num_heads=config.attention_heads, dropout=config.attention_dropout, is_decoder=True, add_inner_attn_layernorm=False, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.ffn = Kosmos2TextFFN(config) self.final_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, cross_attn_layer_head_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None hidden_states = self.self_attn_layer_norm(hidden_states) # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: if not hasattr(self, "encoder_attn"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) # FFN hidden_states = self.ffn(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs
class_definition
50,989
55,583
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/kosmos2/modeling_kosmos2.py
null
6,096
class Kosmos2TextTransformer(nn.Module): """ Transformer decoder consisting of `config.layers` layers. Each layer is a [`Kosmos2TextBlock`]. Args: config: Kosmos2TextConfig """ def __init__(self, config: Kosmos2TextConfig): super().__init__() self.config = config self.dropout = config.dropout self.layerdrop = config.layerdrop self.embed_scale = math.sqrt(config.embed_dim) if config.scale_embedding else 1.0 self.embed_tokens = nn.Embedding(config.vocab_size, config.embed_dim, padding_idx=config.pad_token_id) self.embed_positions = Kosmos2TextSinusoidalPositionalEmbedding( num_positions=config.max_position_embeddings, embedding_dim=config.embed_dim, padding_idx=config.pad_token_id, ) self.layers = nn.ModuleList([Kosmos2TextBlock(config) for _ in range(config.layers)]) self.layer_norm = nn.LayerNorm(config.embed_dim, config.layer_norm_eps) self.gradient_checkpointing = False def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): # create causal mask # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] combined_attention_mask = None if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask( input_shape, inputs_embeds.dtype, device=inputs_embeds.device, past_key_values_length=past_key_values_length, ) if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( inputs_embeds.device ) combined_attention_mask = ( expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask ) return combined_attention_mask def forward_embedding( self, input_ids, inputs_embeds: torch.Tensor = None, image_embeds: torch.Tensor = None, img_input_mask: torch.Tensor = None, past_key_values_length: int = 0, position_ids: torch.Tensor = None, ): # The argument `inputs_embeds` should be the one without being multiplied by `self.embed_scale`. if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if image_embeds is not None: inputs_embeds[img_input_mask.to(dtype=torch.bool)] = image_embeds.to(inputs_embeds.device).view( -1, image_embeds.size(-1) ) inputs_embeds = inputs_embeds * self.embed_scale # embed positions positions = self.embed_positions( input_ids=input_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, position_ids=position_ids, ) positions = positions.to(inputs_embeds.device) hidden_states = inputs_embeds + positions hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) return hidden_states def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, image_embeds: Optional[torch.Tensor] = None, image_embeds_position_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.shape input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 # We don't need img info. when `past_key_values_length` > 0 if past_key_values_length > 0: image_embeds = None image_embeds_position_mask = None hidden_states = self.forward_embedding( input_ids=input_ids, inputs_embeds=inputs_embeds, image_embeds=image_embeds, img_input_mask=image_embeds_position_mask, past_key_values_length=past_key_values_length, position_ids=position_ids, ) attention_mask = self._prepare_decoder_attention_mask( attention_mask, input_shape, hidden_states, past_key_values_length ) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None present_key_value_states = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: if attn_mask.size()[0] != (len(self.layers)): raise ValueError( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, head_mask[idx] if head_mask is not None else None, cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, None, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: present_key_value_states += (layer_outputs[3 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add final layer norm hidden_states = self.layer_norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, present_key_value_states, all_hidden_states, all_self_attns, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=present_key_value_states, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, )
class_definition
55,586
66,156
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/kosmos2/modeling_kosmos2.py
null
6,097
class Kosmos2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Kosmos2Config supports_gradient_checkpointing = True _no_split_modules = ["Kosmos2VisionEncoderLayer", "Kosmos2TextBlock"] def _init_weights(self, module): """Initialize the weights""" if isinstance(self, Kosmos2VisionModel): factor = self.config.initializer_factor elif isinstance(self, (Kosmos2Model, Kosmos2ForConditionalGeneration)): factor = self.config.vision_config.initializer_factor if isinstance(self, (Kosmos2TextModel, Kosmos2TextForCausalLM)): std = self.config.init_std elif isinstance(self, (Kosmos2Model, Kosmos2ForConditionalGeneration)): std = self.config.text_config.init_std if isinstance(module, Kosmos2VisionEmbeddings): nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor) nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor) nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor) elif isinstance(module, Kosmos2VisionAttention): in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor out_proj_std = (module.embed_dim**-0.5) * factor nn.init.normal_(module.q_proj.weight, std=in_proj_std) nn.init.normal_(module.k_proj.weight, std=in_proj_std) nn.init.normal_(module.v_proj.weight, std=in_proj_std) nn.init.normal_(module.out_proj.weight, std=out_proj_std) if module.q_proj.bias is not None: module.q_proj.bias.data.zero_() if module.k_proj.bias is not None: module.k_proj.bias.data.zero_() if module.v_proj.bias is not None: module.v_proj.bias.data.zero_() if module.out_proj.bias is not None: module.out_proj.bias.data.zero_() elif isinstance(module, Kosmos2VisionMLP): in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor fc_std = (2 * module.config.hidden_size) ** -0.5 * factor nn.init.normal_(module.fc1.weight, std=fc_std) nn.init.normal_(module.fc2.weight, std=in_proj_std) if module.fc1.bias is not None: module.fc1.bias.data.zero_() if module.fc2.bias is not None: module.fc2.bias.data.zero_() elif isinstance(module, Kosmos2VisionEncoderLayer): module.layer_norm1.bias.data.zero_() module.layer_norm1.weight.data.fill_(1.0) module.layer_norm2.bias.data.zero_() module.layer_norm2.weight.data.fill_(1.0) elif isinstance(module, Kosmos2VisionTransformer): module.pre_layrnorm.bias.data.zero_() module.pre_layrnorm.weight.data.fill_(1.0) module.post_layernorm.bias.data.zero_() module.post_layernorm.weight.data.fill_(1.0) elif isinstance(module, KosmosTextAttention): nn.init.normal_(module.q_proj.weight, std=std) nn.init.normal_(module.k_proj.weight, std=std) nn.init.normal_(module.v_proj.weight, std=std) nn.init.normal_(module.out_proj.weight, std=std) if module.q_proj.bias is not None: module.q_proj.bias.data.zero_() if module.k_proj.bias is not None: module.k_proj.bias.data.zero_() if module.v_proj.bias is not None: module.v_proj.bias.data.zero_() if module.out_proj.bias is not None: module.out_proj.bias.data.zero_() elif isinstance(module, Kosmos2TextFFN): nn.init.normal_(module.fc1.weight, std=std) nn.init.normal_(module.fc2.weight, std=std) if module.fc1.bias is not None: module.fc1.bias.data.zero_() if module.fc2.bias is not None: module.fc2.bias.data.zero_() elif isinstance(module, Kosmos2TextForCausalLM): nn.init.normal_(module.lm_head.weight, std=std) if module.lm_head.bias is not None: module.lm_head.bias.data.zero_() elif isinstance(module, Kosmos2ImageToTextProjection): nn.init.normal_(module.dense.weight, std=std) if module.dense.bias is not None: module.dense.bias.data.zero_() elif isinstance(module, Kosmos2TextTransformer): module.embed_tokens.weight.data.normal_(mean=0.0, std=std) if module.embed_tokens.padding_idx is not None: module.embed_tokens.weight.data[module.embed_tokens.padding_idx].zero_()
class_definition
66,159
71,119
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/kosmos2/modeling_kosmos2.py
null
6,098
class Kosmos2VisionModel(Kosmos2PreTrainedModel): config_class = Kosmos2VisionConfig main_input_name = "pixel_values" # Copied from transformers.models.clip.modeling_clip.CLIPVisionModel.__init__ with CLIP_VISION->KOSMOS2_VISION,CLIP->Kosmos2,self.vision_model->self.model def __init__(self, config: Kosmos2VisionConfig): super().__init__(config) self.model = Kosmos2VisionTransformer(config) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.clip.modeling_clip.CLIPVisionModel.get_input_embeddings with CLIP_VISION->KOSMOS2_VISION,CLIP->Kosmos2,self.vision_model->self.model def get_input_embeddings(self) -> nn.Module: return self.model.embeddings.patch_embedding @add_start_docstrings_to_model_forward(KOSMOS2_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Kosmos2VisionConfig) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: bool = False, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ return self.model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, interpolate_pos_encoding=interpolate_pos_encoding, return_dict=return_dict, )
class_definition
71,122
72,742
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/kosmos2/modeling_kosmos2.py
null
6,099