text
stringlengths
31
243k
type
stringclasses
1 value
start
int64
36
275k
end
int64
286
280k
depth
int64
0
1
filepath
stringlengths
85
188
parent_class
stringclasses
3 values
class_index
int64
0
10.8k
class Data2VecTextSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states
class_definition
13,638
14,252
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_text.py
null
5,400
class Data2VecTextAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = DATA2VEC_TEXT_SELF_ATTENTION_CLASSES[config._attn_implementation]( config, position_embedding_type=position_embedding_type ) self.output = Data2VecTextSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs
class_definition
14,451
16,598
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_text.py
null
5,401
class Data2VecTextIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states
class_definition
16,671
17,244
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_text.py
null
5,402
class Data2VecTextOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states
class_definition
17,311
17,927
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_text.py
null
5,403
class Data2VecTextLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = Data2VecTextAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = Data2VecTextAttention(config, position_embedding_type="absolute") self.intermediate = Data2VecTextIntermediate(config) self.output = Data2VecTextOutput(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output
class_definition
18,017
21,964
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_text.py
null
5,404
class Data2VecTextEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([Data2VecTextLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, )
class_definition
22,056
25,862
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_text.py
null
5,405
class Data2VecTextPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output
class_definition
25,929
26,496
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_text.py
null
5,406
class Data2VecTextPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Data2VecTextConfig base_model_prefix = "data2vec_text" supports_gradient_checkpointing = True _no_split_modules = ["Data2VecTextForTextEmbeddings", "Data2VecTextLayer"] def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): if hasattr(module, "bias") and module.bias is not None: module.bias.data.zero_() if hasattr(module, "weight") and module.weight is not None: module.weight.data.fill_(1.0)
class_definition
26,499
27,855
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_text.py
null
5,407
class Data2VecTextModel(Data2VecTextPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in *Attention is all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762 """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = Data2VecTextForTextEmbeddings(config) self.encoder = Data2VecTextEncoder(config) self.pooler = Data2VecTextPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) # Copied from transformers.models.clap.modeling_clap.ClapTextModel.forward def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, )
class_definition
31,821
41,123
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_text.py
null
5,408
class Data2VecTextForCausalLM(Data2VecTextPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] def __init__(self, config): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `Data2VecTextLMHeadModel` as a standalone, add `is_decoder=True.`") self.data2vec_text = Data2VecTextModel(config, add_pooling_layer=False) self.lm_head = Data2VecTextLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings @add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Returns: Example: ```python >>> from transformers import AutoTokenizer, Data2VecTextForCausalLM, Data2VecTextConfig >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("facebook/data2vec-text-base") >>> config = Data2VecTextConfig.from_pretrained("facebook/data2vec-text-base") >>> config.is_decoder = True >>> model = Data2VecTextForCausalLM.from_pretrained("facebook/data2vec-text-base", config=config) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.data2vec_text( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) lm_loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() labels = labels.to(shifted_prediction_scores.device) lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past
class_definition
41,270
47,949
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_text.py
null
5,409
class Data2VecTextForMaskedLM(Data2VecTextPreTrainedModel): _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `Data2VecTextForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.data2vec_text = Data2VecTextModel(config, add_pooling_layer=False) self.lm_head = Data2VecTextLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings @add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, mask="<mask>", ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` kwargs (`Dict[str, any]`, *optional*, defaults to *{}*): Used to hide legacy arguments that have been deprecated. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.data2vec_text( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() labels = labels.to(prediction_scores.device) masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
48,066
51,850
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_text.py
null
5,410
class Data2VecTextLMHead(nn.Module): """Data2VecText Head for masked language modeling.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.decoder = nn.Linear(config.hidden_size, config.vocab_size) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.decoder.bias = self.bias def forward(self, features, **kwargs): x = self.dense(features) x = gelu(x) x = self.layer_norm(x) # project back to size of vocabulary with bias x = self.decoder(x) return x def _tie_weights(self): # To tie those two weights if they get disconnected (on TPU or when the bias is resized) # For accelerate compatibility and to not break backward compatibility if self.decoder.bias.device.type == "meta": self.decoder.bias = self.bias else: self.bias = self.decoder.bias
class_definition
51,953
53,025
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_text.py
null
5,411
class Data2VecTextForSequenceClassification(Data2VecTextPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.data2vec_text = Data2VecTextModel(config, add_pooling_layer=False) self.classifier = Data2VecTextClassificationHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.data2vec_text( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
53,263
57,129
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_text.py
null
5,412
class Data2VecTextForMultipleChoice(Data2VecTextPreTrainedModel): def __init__(self, config): super().__init__(config) self.data2vec_text = Data2VecTextModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward( DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None flat_inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.data2vec_text( flat_input_ids, position_ids=flat_position_ids, token_type_ids=flat_token_type_ids, attention_mask=flat_attention_mask, head_mask=head_mask, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() labels = labels.to(reshaped_logits.device) loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
57,376
61,050
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_text.py
null
5,413
class Data2VecTextForTokenClassification(Data2VecTextPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.data2vec_text = Data2VecTextModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.data2vec_text( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() labels = labels.to(logits.device) loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
61,295
64,251
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_text.py
null
5,414
class Data2VecTextClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x
class_definition
64,366
65,144
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_text.py
null
5,415
class Data2VecTextForQuestionAnswering(Data2VecTextPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.data2vec_text = Data2VecTextModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.data2vec_text( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
65,447
69,720
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_text.py
null
5,416
class Data2VecAudioConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Data2VecAudioModel`]. It is used to instantiate an Data2VecAudio model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Data2VecAudio [facebook/data2vec-audio-base-960h](https://huggingface.co/facebook/data2vec-audio-base-960h) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32): Vocabulary size of the Data2VecAudio model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Data2VecAudioModel`] or [`TFData2VecAudioModel`]. Vocabulary size of the model. Defines the different tokens that can be represented by the *inputs_ids* passed to the forward method of [`Data2VecAudioModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. activation_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for activations inside the fully connected layer. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. final_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for the final projection layer of [`Data2VecAudioForCTC`]. layerdrop (`float`, *optional*, defaults to 0.1): The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. feat_proj_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for output of the feature encoder. feat_extract_activation (`str, `optional`, defaults to `"gelu"`): The non-linear activation function (function or string) in the 1D convolutional layers of the feature extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`): A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers. conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`): A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*. conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`): A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The length of *conv_kernel* defines the number of convolutional layers and has to match the length of *conv_dim*. conv_bias (`bool`, *optional*, defaults to `False`): Whether the 1D convolutional layers have a bias. num_conv_pos_embeddings (`int`, *optional*, defaults to 128): Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional embeddings layer. num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16): Number of groups of 1D convolutional positional embeddings layer. mask_time_prob (`float`, *optional*, defaults to 0.05): Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the mask_time_length (`int`, *optional*, defaults to 10): Length of vector span along the time axis. mask_time_min_masks (`int`, *optional*, defaults to 2),: The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length < mask_time_min_masks'' mask_feature_prob (`float`, *optional*, defaults to 0.0): Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_feature_length (`int`, *optional*, defaults to 10): Length of vector span along the feature axis. mask_feature_min_masks (`int`, *optional*, defaults to 0),: The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks'' ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`): Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an instance of [`Data2VecAudioForCTC`]. ctc_zero_infinity (`bool`, *optional*, defaults to `False`): Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance of [`Data2VecAudioForCTC`]. use_weighted_layer_sum (`bool`, *optional*, defaults to `False`): Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an instance of [`Data2VecAudioForSequenceClassification`]. classifier_proj_size (`int`, *optional*, defaults to 256): Dimensionality of the projection before token mean-pooling for classification. tdnn_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 1500)`): A tuple of integers defining the number of output channels of each 1D convolutional layer in the *TDNN* module of the *XVector* model. The length of *tdnn_dim* defines the number of *TDNN* layers. tdnn_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 3, 3, 1, 1)`): A tuple of integers defining the kernel size of each 1D convolutional layer in the *TDNN* module of the *XVector* model. The length of *tdnn_kernel* has to match the length of *tdnn_dim*. tdnn_dilation (`Tuple[int]` or `List[int]`, *optional*, defaults to `(1, 2, 3, 1, 1)`): A tuple of integers defining the dilation factor of each 1D convolutional layer in *TDNN* module of the *XVector* model. The length of *tdnn_dilation* has to match the length of *tdnn_dim*. xvector_output_dim (`int`, *optional*, defaults to 512): Dimensionality of the *XVector* embedding vectors. add_adapter (`bool`, *optional*, defaults to `False`): Whether a convolutional network should be stacked on top of the Data2VecAudio Encoder. Can be very useful for warm-starting Data2VecAudio for SpeechEncoderDecoder models. adapter_kernel_size (`int`, *optional*, defaults to 3): Kernel size of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`. adapter_stride (`int`, *optional*, defaults to 2): Stride of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`. num_adapter_layers (`int`, *optional*, defaults to 3): Number of convolutional layers that should be used in the adapter network. Only relevant if `add_adapter is True`. output_hidden_size (`int`, *optional*): Dimensionality of the encoder output layer. If not defined, this defaults to *hidden-size*. Only relevant if `add_adapter is True`. Example: ```python >>> from transformers import Data2VecAudioConfig, Data2VecAudioModel >>> # Initializing a Data2VecAudio facebook/data2vec-audio-base-960h style configuration >>> configuration = Data2VecAudioConfig() >>> # Initializing a model (with random weights) from the facebook/data2vec-audio-base-960h style configuration >>> model = Data2VecAudioModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "data2vec-audio" def __init__( self, vocab_size=32, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout=0.1, activation_dropout=0.1, attention_dropout=0.1, feat_proj_dropout=0.0, final_dropout=0.1, layerdrop=0.1, initializer_range=0.02, layer_norm_eps=1e-5, feat_extract_activation="gelu", conv_dim=(512, 512, 512, 512, 512, 512, 512), conv_stride=(5, 2, 2, 2, 2, 2, 2), conv_kernel=(10, 3, 3, 3, 3, 2, 2), conv_bias=False, num_conv_pos_embedding_groups=16, conv_pos_kernel_size=19, num_conv_pos_embeddings=5, mask_time_prob=0.05, mask_time_length=10, mask_time_min_masks=2, mask_feature_prob=0.0, mask_feature_length=10, mask_feature_min_masks=0, ctc_loss_reduction="sum", ctc_zero_infinity=False, use_weighted_layer_sum=False, classifier_proj_size=256, tdnn_dim=(512, 512, 512, 512, 1500), tdnn_kernel=(5, 3, 3, 1, 1), tdnn_dilation=(1, 2, 3, 1, 1), xvector_output_dim=512, pad_token_id=0, bos_token_id=1, eos_token_id=2, add_adapter=False, adapter_kernel_size=3, adapter_stride=2, num_adapter_layers=3, output_hidden_size=None, **kwargs, ): super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id) self.hidden_size = hidden_size self.feat_extract_activation = feat_extract_activation self.conv_dim = list(conv_dim) self.conv_stride = list(conv_stride) self.conv_kernel = list(conv_kernel) self.conv_bias = conv_bias self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.conv_pos_kernel_size = conv_pos_kernel_size self.num_feat_extract_layers = len(self.conv_dim) self.num_hidden_layers = num_hidden_layers self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.num_attention_heads = num_attention_heads self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.feat_proj_dropout = feat_proj_dropout self.final_dropout = final_dropout self.layerdrop = layerdrop self.layer_norm_eps = layer_norm_eps self.initializer_range = initializer_range self.vocab_size = vocab_size self.use_weighted_layer_sum = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 self.mask_time_prob = mask_time_prob self.mask_time_length = mask_time_length self.mask_time_min_masks = mask_time_min_masks self.mask_feature_prob = mask_feature_prob self.mask_feature_length = mask_feature_length self.mask_feature_min_masks = mask_feature_min_masks # ctc loss self.ctc_loss_reduction = ctc_loss_reduction self.ctc_zero_infinity = ctc_zero_infinity # adapter self.add_adapter = add_adapter self.adapter_kernel_size = adapter_kernel_size self.adapter_stride = adapter_stride self.num_adapter_layers = num_adapter_layers self.output_hidden_size = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. self.classifier_proj_size = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. self.tdnn_dim = list(tdnn_dim) self.tdnn_kernel = list(tdnn_kernel) self.tdnn_dilation = list(tdnn_dilation) self.xvector_output_dim = xvector_output_dim @property def inputs_to_logits_ratio(self): return math.prod(self.conv_stride)
class_definition
796
16,320
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/configuration_data2vec_audio.py
null
5,417
class Data2VecAudioConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.activation(hidden_states) return hidden_states
class_definition
7,295
8,270
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_audio.py
null
5,418
class Data2VecAudioPadLayer(nn.Module): def __init__(self, num_conv_pos_embeddings): super().__init__() self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 def forward(self, hidden_states): if self.num_pad_remove > 0: hidden_states = hidden_states[:, :, : -self.num_pad_remove] return hidden_states
class_definition
8,384
8,750
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_audio.py
null
5,419
class Data2VecAudioPositionalConvLayer(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size=config.conv_pos_kernel_size, padding=config.conv_pos_kernel_size // 2, groups=config.num_conv_pos_embedding_groups, ) self.padding = Data2VecAudioPadLayer(config.conv_pos_kernel_size) self.activation = ACT2FN[config.feat_extract_activation] # no learnable parameters self.layer_norm = nn.LayerNorm(config.hidden_size, elementwise_affine=False) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.padding(hidden_states) hidden_states = hidden_states.transpose(1, 2) hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states.transpose(1, 2) hidden_states = self.activation(hidden_states) return hidden_states
class_definition
8,753
9,778
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_audio.py
null
5,420
class Data2VecAudioPositionalConvEmbedding(nn.Module): def __init__(self, config): super().__init__() self.layers = nn.ModuleList( [Data2VecAudioPositionalConvLayer(config) for _ in range(config.num_conv_pos_embeddings)] ) def forward(self, hidden_states): hidden_states = hidden_states.transpose(1, 2) for layer in self.layers: hidden_states = layer(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states
class_definition
9,781
10,302
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_audio.py
null
5,421
class Data2VecAudioFeatureEncoder(nn.Module): """Construct the features from raw audio waveform""" def __init__(self, config): super().__init__() self.conv_layers = nn.ModuleList( [Data2VecAudioConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)] ) self.gradient_checkpointing = False self._requires_grad = True # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder._freeze_parameters def _freeze_parameters(self): for param in self.parameters(): param.requires_grad = False self._requires_grad = False # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder.forward def forward(self, input_values): hidden_states = input_values[:, None] # make sure hidden_states require grad for gradient_checkpointing if self._requires_grad and self.training: hidden_states.requires_grad = True for conv_layer in self.conv_layers: if self._requires_grad and self.gradient_checkpointing and self.training: hidden_states = self._gradient_checkpointing_func( conv_layer.__call__, hidden_states, ) else: hidden_states = conv_layer(hidden_states) return hidden_states
class_definition
10,305
11,710
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_audio.py
null
5,422
class Data2VecAudioFeatureProjection(nn.Module): def __init__(self, config): super().__init__() self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps) self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size) self.dropout = nn.Dropout(config.feat_proj_dropout) def forward(self, hidden_states): # non-projected hidden states are needed for quantization norm_hidden_states = self.layer_norm(hidden_states) hidden_states = self.projection(norm_hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states, norm_hidden_states
class_definition
11,829
12,486
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_audio.py
null
5,423
class Data2VecAudioAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[Data2VecAudioConfig] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value
class_definition
12,581
19,989
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_audio.py
null
5,424
class Data2VecAudioFlashAttention2(Data2VecAudioAttention): """ Data2VecAudio flash attention module. This module inherits from `Data2VecAudioAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim) def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # Data2VecAudioFlashAttention2 attention does not support output_attentions if output_attentions: raise ValueError("Data2VecAudioFlashAttention2 attention does not support output_attentions") # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, q_len, _ = hidden_states.size() # get query proj query_states = self._reshape(self.q_proj(hidden_states), -1, bsz) # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0].transpose(1, 2) value_states = past_key_value[1].transpose(1, 2) elif is_cross_attention: # cross_attentions key_states = self._reshape(self.k_proj(key_value_states), -1, bsz) value_states = self._reshape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._reshape(self.k_proj(hidden_states), -1, bsz) value_states = self._reshape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0].transpose(1, 2), key_states], dim=1) value_states = torch.cat([past_key_value[1].transpose(1, 2), value_states], dim=1) else: # self_attention key_states = self._reshape(self.k_proj(hidden_states), -1, bsz) value_states = self._reshape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2)) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in the correct dtype just to be sure everything works as expected. # This might slowdown training & inference so it is recommended to not cast the LayerNorms # in fp32. (LlamaRMSNorm handles it correctly) input_dtype = query_states.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) attn_output = _flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, dropout=self.dropout if self.training else 0.0, is_causal=self.is_causal, use_top_left_mask=self._flash_attn_uses_top_left_mask, ) attn_output = attn_output.reshape(bsz, q_len, -1) attn_output = self.out_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value
class_definition
20,090
26,580
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_audio.py
null
5,425
class Data2VecAudioSdpaAttention(Data2VecAudioAttention): # Copied from transformers.models.bart.modeling_bart.BartSdpaAttention.forward with Bart->Data2VecAudio def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" if output_attentions or layer_head_mask is not None: # TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented. logger.warning_once( "Data2VecAudioModel is using Data2VecAudioSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention" ' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states, key_value_states=key_value_states, past_key_value=past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) query_states = self._shape(query_states, tgt_len, bsz) # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. # The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1. is_causal = True if self.is_causal and attention_mask is None and tgt_len > 1 else False # NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask, # but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577 attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=attention_mask, dropout_p=self.dropout if self.training else 0.0, is_causal=is_causal, ) if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, None, past_key_value
class_definition
26,583
32,504
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_audio.py
null
5,426
class Data2VecAudioFeedForward(nn.Module): def __init__(self, config): super().__init__() self.intermediate_dropout = nn.Dropout(config.activation_dropout) self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size) self.output_dropout = nn.Dropout(config.hidden_dropout) def forward(self, hidden_states): hidden_states = self.intermediate_dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.intermediate_dropout(hidden_states) hidden_states = self.output_dense(hidden_states) hidden_states = self.output_dropout(hidden_states) return hidden_states
class_definition
32,790
33,765
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_audio.py
null
5,427
class Data2VecAudioEncoderLayer(nn.Module): def __init__(self, config): super().__init__() self.attention = DATA2VEC2AUDIO_ATTENTION_CLASSES[config._attn_implementation]( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=False, ) self.dropout = nn.Dropout(config.hidden_dropout) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.feed_forward = Data2VecAudioFeedForward(config) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states, attention_mask=None, output_attentions=False): attn_residual = hidden_states hidden_states, attn_weights, _ = self.attention( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = self.dropout(hidden_states) hidden_states = attn_residual + hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states + self.feed_forward(hidden_states) hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs
class_definition
33,905
35,280
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_audio.py
null
5,428
class Data2VecAudioEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.pos_conv_embed = Data2VecAudioPositionalConvEmbedding(config) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) self.layers = nn.ModuleList([Data2VecAudioEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" def forward( self, hidden_states: torch.tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: # make sure padded tokens output 0 expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2]) hidden_states[~expand_attention_mask] = 0 if self._use_flash_attention_2: # 2d mask is passed through the layers attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None else: # extend attention_mask attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min attention_mask = attention_mask.expand( attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] ) position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) synced_gpus = is_deepspeed_zero3_enabled() or is_fsdp_managed_module(self) for layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False if not skip_the_layer or synced_gpus: # under fsdp or deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer.__call__, hidden_states, attention_mask, output_attentions, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, )
class_definition
35,389
39,240
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_audio.py
null
5,429
class Data2VecAudioAdapter(nn.Module): def __init__(self, config): super().__init__() # feature dim might need to be down-projected if config.output_hidden_size != config.hidden_size: self.proj = nn.Linear(config.hidden_size, config.output_hidden_size) self.proj_layer_norm = nn.LayerNorm(config.output_hidden_size) else: self.proj = self.proj_layer_norm = None self.layers = nn.ModuleList(Data2VecAudioAdapterLayer(config) for _ in range(config.num_adapter_layers)) self.layerdrop = config.layerdrop def forward(self, hidden_states): # down project hidden_states if necessary if self.proj is not None and self.proj_layer_norm is not None: hidden_states = self.proj(hidden_states) hidden_states = self.proj_layer_norm(hidden_states) hidden_states = hidden_states.transpose(1, 2) for layer in self.layers: layerdrop_prob = np.random.random() if not self.training or (layerdrop_prob > self.layerdrop): hidden_states = layer(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states
class_definition
39,349
40,562
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_audio.py
null
5,430
class Data2VecAudioAdapterLayer(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.output_hidden_size, 2 * config.output_hidden_size, config.adapter_kernel_size, stride=config.adapter_stride, padding=1, ) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = nn.functional.glu(hidden_states, dim=1) return hidden_states
class_definition
40,676
41,188
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_audio.py
null
5,431
class Data2VecAudioPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Data2VecAudioConfig base_model_prefix = "data2vec_audio" main_input_name = "input_values" supports_gradient_checkpointing = True _supports_flash_attn_2 = True _supports_sdpa = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, Data2VecAudioFeatureProjection): k = math.sqrt(1 / module.projection.in_features) nn.init.uniform_(module.projection.weight, a=-k, b=k) nn.init.uniform_(module.projection.bias, a=-k, b=k) elif isinstance(module, Data2VecAudioPositionalConvLayer): nn.init.constant_(module.conv.bias, 0) elif isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): if module.bias is not None: module.bias.data.zero_() if module.weight is not None: module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): nn.init.kaiming_normal_(module.weight) if module.bias is not None: k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) nn.init.uniform_(module.bias, a=-k, b=k) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PreTrainedModel._get_feat_extract_output_lengths with def _get_feat_extract_output_lengths( self, input_lengths: Union[torch.LongTensor, int], add_adapter: Optional[bool] = None ): """ Computes the output length of the convolutional layers """ add_adapter = self.config.add_adapter if add_adapter is None else add_adapter def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) if add_adapter: for _ in range(self.config.num_adapter_layers): input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride) return input_lengths # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PreTrainedModel._get_feature_vector_attention_mask def _get_feature_vector_attention_mask( self, feature_vector_length: int, attention_mask: torch.LongTensor, add_adapter=None ): # Effectively attention_mask.sum(-1), but not inplace to be able to run # on inference mode. non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1] output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter) output_lengths = output_lengths.to(torch.long) batch_size = attention_mask.shape[0] attention_mask = torch.zeros( (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device ) # these two operations makes sure that all values before the output lengths idxs are attended to attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() return attention_mask
class_definition
41,191
45,057
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_audio.py
null
5,432
class Data2VecAudioModel(Data2VecAudioPreTrainedModel): def __init__(self, config: Data2VecAudioConfig): super().__init__(config) self.config = config self.feature_extractor = Data2VecAudioFeatureEncoder(config) self.feature_projection = Data2VecAudioFeatureProjection(config) # model only needs masking vector if mask prob is > 0.0 if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: self.masked_spec_embed = nn.Parameter(torch.Tensor(config.hidden_size).uniform_()) self.encoder = Data2VecAudioEncoder(config) self.adapter = Data2VecAudioAdapter(config) if config.add_adapter else None # Initialize weights and apply final processing self.post_init() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.feature_extractor._freeze_parameters() def _mask_hidden_states( self, hidden_states: torch.FloatTensor, mask_time_indices: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): """ Masks extracted features along time axis and/or along feature axis according to [SpecAugment](https://arxiv.org/abs/1904.08779). """ # `config.apply_spec_augment` can set masking to False if not getattr(self.config, "apply_spec_augment", True): return hidden_states # generate indices & apply SpecAugment along time axis batch_size, sequence_length, hidden_size = hidden_states.size() if mask_time_indices is not None: # apply SpecAugment along time axis with given mask_time_indices hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) elif self.config.mask_time_prob > 0 and self.training: mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.config.mask_time_prob, mask_length=self.config.mask_time_length, attention_mask=attention_mask, min_masks=self.config.mask_time_min_masks, ) mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) if self.config.mask_feature_prob > 0 and self.training: # generate indices & apply SpecAugment along feature axis mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), mask_prob=self.config.mask_feature_prob, mask_length=self.config.mask_feature_length, min_masks=self.config.mask_feature_min_masks, ) mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) hidden_states[mask_feature_indices] = 0 return hidden_states @add_start_docstrings_to_model_forward(DATA2VEC_AUDIO_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=Wav2Vec2BaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Wav2Vec2BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict extract_features = self.feature_extractor(input_values) extract_features = extract_features.transpose(1, 2) if attention_mask is not None: # compute reduced attention_mask corresponding to feature vectors attention_mask = self._get_feature_vector_attention_mask( extract_features.shape[1], attention_mask, add_adapter=False ) hidden_states, extract_features = self.feature_projection(extract_features) hidden_states = self._mask_hidden_states( hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask ) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] if self.adapter is not None: hidden_states = self.adapter(hidden_states) if not return_dict: return (hidden_states, extract_features) + encoder_outputs[1:] return Wav2Vec2BaseModelOutput( last_hidden_state=hidden_states, extract_features=extract_features, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, )
class_definition
48,480
54,203
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_audio.py
null
5,433
class Data2VecAudioForCTC(Data2VecAudioPreTrainedModel): def __init__(self, config): super().__init__(config) self.data2vec_audio = Data2VecAudioModel(config) self.dropout = nn.Dropout(config.final_dropout) if config.vocab_size is None: raise ValueError( f"You are trying to instantiate {self.__class__} with a configuration that " "does not define the vocabulary size of the language model head. Please " "instantiate the model as follows: `Data2VecAudioForCTC.from_pretrained(..., vocab_size=vocab_size)`. " "or define `vocab_size` of your model's configuration." ) output_hidden_size = ( config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size ) self.lm_head = nn.Linear(output_hidden_size, config.vocab_size) # Initialize weights and apply final processing self.post_init() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.data2vec_audio.feature_extractor._freeze_parameters() @add_start_docstrings_to_model_forward(DATA2VEC_AUDIO_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC, expected_output=_CTC_EXPECTED_OUTPUT, expected_loss=_CTC_EXPECTED_LOSS, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.forward with wav2vec2->data2vec_audio def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, CausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None and labels.max() >= self.config.vocab_size: raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") outputs = self.data2vec_audio( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states) logits = self.lm_head(hidden_states) loss = None if labels is not None: # retrieve loss input_lengths from attention_mask attention_mask = ( attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long) ) input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) # assuming that padded tokens are filled with -100 # when not being attended to labels_mask = labels >= 0 target_lengths = labels_mask.sum(-1) flattened_targets = labels.masked_select(labels_mask) # ctc_loss doesn't support fp16 log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) with torch.backends.cudnn.flags(enabled=False): loss = nn.functional.ctc_loss( log_probs, flattened_targets, input_lengths, target_lengths, blank=self.config.pad_token_id, reduction=self.config.ctc_loss_reduction, zero_infinity=self.config.ctc_zero_infinity, ) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return CausalLMOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions )
class_definition
54,386
59,696
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_audio.py
null
5,434
class Data2VecAudioForSequenceClassification(Data2VecAudioPreTrainedModel): def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Sequence classification does not support the use of Data2VecAudio adapters (config.add_adapter=True)" ) self.data2vec_audio = Data2VecAudioModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.data2vec_audio.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.data2vec_audio.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(DATA2VEC_AUDIO_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.forward with wav2vec2->data2vec_audio def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.data2vec_audio( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) if attention_mask is None: pooled_output = hidden_states.mean(dim=1) else: padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) expand_padding_mask = padding_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2]) hidden_states[~expand_padding_mask] = 0.0 pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
59,928
65,117
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_audio.py
null
5,435
class Data2VecAudioForAudioFrameClassification(Data2VecAudioPreTrainedModel): def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Audio frame classification does not support the use of Data2VecAudio adapters" " (config.add_adapter=True)" ) self.data2vec_audio = Data2VecAudioModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.num_labels = config.num_labels self.init_weights() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.data2vec_audio.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.data2vec_audio.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(DATA2VEC_AUDIO_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification.forward with wav2vec2->data2vec_audio def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.data2vec_audio( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] logits = self.classifier(hidden_states) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), torch.argmax(labels.view(-1, self.num_labels), axis=1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
65,298
69,881
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_audio.py
null
5,436
class AMSoftmaxLoss(nn.Module): def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4): super(AMSoftmaxLoss, self).__init__() self.scale = scale self.margin = margin self.num_labels = num_labels self.weight = nn.Parameter(torch.randn(input_dim, num_labels), requires_grad=True) self.loss = nn.CrossEntropyLoss() def forward(self, hidden_states, labels): labels = labels.flatten() weight = nn.functional.normalize(self.weight, dim=0) hidden_states = nn.functional.normalize(hidden_states, dim=1) cos_theta = torch.mm(hidden_states, weight) psi = cos_theta - self.margin onehot = nn.functional.one_hot(labels, self.num_labels) logits = self.scale * torch.where(onehot.bool(), psi, cos_theta) loss = self.loss(logits, labels) return loss
class_definition
69,959
70,835
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_audio.py
null
5,437
class TDNNLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.tdnn_dim[layer_id - 1] if layer_id > 0 else config.tdnn_dim[layer_id] self.out_conv_dim = config.tdnn_dim[layer_id] self.kernel_size = config.tdnn_kernel[layer_id] self.dilation = config.tdnn_dilation[layer_id] self.kernel = nn.Linear(self.in_conv_dim * self.kernel_size, self.out_conv_dim) self.activation = nn.ReLU() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: if is_peft_available(): from peft.tuners.lora import LoraLayer if isinstance(self.kernel, LoraLayer): warnings.warn( "Detected LoRA on TDNNLayer. LoRA weights won't be applied due to optimization. " "You should exclude TDNNLayer from LoRA's target modules.", ) # for backward compatibility, we keep nn.Linear but call F.conv1d for speed up hidden_states = hidden_states.transpose(1, 2) weight = self.kernel.weight.view(self.out_conv_dim, self.kernel_size, self.in_conv_dim).transpose(1, 2) hidden_states = nn.functional.conv1d(hidden_states, weight, self.kernel.bias, dilation=self.dilation) hidden_states = hidden_states.transpose(1, 2) hidden_states = self.activation(hidden_states) return hidden_states
class_definition
70,909
72,339
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_audio.py
null
5,438
class Data2VecAudioForXVector(Data2VecAudioPreTrainedModel): def __init__(self, config): super().__init__(config) self.data2vec_audio = Data2VecAudioModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.tdnn_dim[0]) tdnn_layers = [TDNNLayer(config, i) for i in range(len(config.tdnn_dim))] self.tdnn = nn.ModuleList(tdnn_layers) self.feature_extractor = nn.Linear(config.tdnn_dim[-1] * 2, config.xvector_output_dim) self.classifier = nn.Linear(config.xvector_output_dim, config.xvector_output_dim) self.objective = AMSoftmaxLoss(config.xvector_output_dim, config.num_labels) self.init_weights() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. " "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.data2vec_audio.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.data2vec_audio.parameters(): param.requires_grad = False def _get_tdnn_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): """ Computes the output length of the TDNN layers """ def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return (input_length - kernel_size) // stride + 1 for kernel_size in self.config.tdnn_kernel: input_lengths = _conv_out_length(input_lengths, kernel_size, 1) return input_lengths @add_start_docstrings_to_model_forward(DATA2VEC_AUDIO_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=XVectorOutput, config_class=_CONFIG_FOR_DOC, modality="audio", ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector.forward with wav2vec2->data2vec_audio def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, XVectorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.data2vec_audio( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) for tdnn_layer in self.tdnn: hidden_states = tdnn_layer(hidden_states) # Statistic Pooling if attention_mask is None: mean_features = hidden_states.mean(dim=1) std_features = hidden_states.std(dim=1) else: feat_extract_output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(dim=1)) tdnn_output_lengths = self._get_tdnn_output_lengths(feat_extract_output_lengths) mean_features = [] std_features = [] for i, length in enumerate(tdnn_output_lengths): mean_features.append(hidden_states[i, :length].mean(dim=0)) std_features.append(hidden_states[i, :length].std(dim=0)) mean_features = torch.stack(mean_features) std_features = torch.stack(std_features) statistic_pooling = torch.cat([mean_features, std_features], dim=-1) output_embeddings = self.feature_extractor(statistic_pooling) logits = self.classifier(output_embeddings) loss = None if labels is not None: loss = self.objective(logits, labels) if not return_dict: output = (logits, output_embeddings) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return XVectorOutput( loss=loss, logits=logits, embeddings=output_embeddings, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
72,528
78,814
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_audio.py
null
5,439
class DinatEncoderOutput(ModelOutput): """ Dinat encoder's outputs, with potential hidden states and attentions. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, hidden_size, height, width)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions. """ last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
class_definition
2,183
4,150
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinat/modeling_dinat.py
null
5,440
class DinatModelOutput(ModelOutput): """ Dinat model's outputs that also contains a pooling of the last hidden states. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed): Average pooling of the last layer hidden-state. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, hidden_size, height, width)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions. """ last_hidden_state: torch.FloatTensor = None pooler_output: Optional[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
class_definition
4,164
6,395
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinat/modeling_dinat.py
null
5,441
class DinatImageClassifierOutput(ModelOutput): """ Dinat outputs for image classification. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Classification (or regression if config.num_labels==1) loss. logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, hidden_size, height, width)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
class_definition
6,409
8,547
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinat/modeling_dinat.py
null
5,442
class DinatEmbeddings(nn.Module): """ Construct the patch and position embeddings. """ def __init__(self, config): super().__init__() self.patch_embeddings = DinatPatchEmbeddings(config) self.norm = nn.LayerNorm(config.embed_dim) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor]: embeddings = self.patch_embeddings(pixel_values) embeddings = self.norm(embeddings) embeddings = self.dropout(embeddings) return embeddings
class_definition
8,550
9,148
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinat/modeling_dinat.py
null
5,443
class DinatPatchEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, height, width, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config): super().__init__() patch_size = config.patch_size num_channels, hidden_size = config.num_channels, config.embed_dim self.num_channels = num_channels if patch_size == 4: pass else: # TODO: Support arbitrary patch sizes. raise ValueError("Dinat only supports patch size of 4 at the moment.") self.projection = nn.Sequential( nn.Conv2d(self.num_channels, hidden_size // 2, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)), nn.Conv2d(hidden_size // 2, hidden_size, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)), ) def forward(self, pixel_values: Optional[torch.FloatTensor]) -> torch.Tensor: _, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) embeddings = self.projection(pixel_values) embeddings = embeddings.permute(0, 2, 3, 1) return embeddings
class_definition
9,151
10,598
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinat/modeling_dinat.py
null
5,444
class DinatDownsampler(nn.Module): """ Convolutional Downsampling Layer. Args: dim (`int`): Number of input channels. norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`): Normalization layer class. """ def __init__(self, dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None: super().__init__() self.dim = dim self.reduction = nn.Conv2d(dim, 2 * dim, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) self.norm = norm_layer(2 * dim) def forward(self, input_feature: torch.Tensor) -> torch.Tensor: input_feature = self.reduction(input_feature.permute(0, 3, 1, 2)).permute(0, 2, 3, 1) input_feature = self.norm(input_feature) return input_feature
class_definition
10,601
11,396
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinat/modeling_dinat.py
null
5,445
class DinatDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob)
class_definition
12,637
13,116
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinat/modeling_dinat.py
null
5,446
class NeighborhoodAttention(nn.Module): def __init__(self, config, dim, num_heads, kernel_size, dilation): super().__init__() if dim % num_heads != 0: raise ValueError( f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})" ) self.num_attention_heads = num_heads self.attention_head_size = int(dim / num_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.kernel_size = kernel_size self.dilation = dilation # rpb is learnable relative positional biases; same concept is used Swin. self.rpb = nn.Parameter(torch.zeros(num_heads, (2 * self.kernel_size - 1), (2 * self.kernel_size - 1))) self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 3, 1, 2, 4) def forward( self, hidden_states: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: query_layer = self.transpose_for_scores(self.query(hidden_states)) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) # Apply the scale factor before computing attention weights. It's usually more efficient because # attention weights are typically a bigger tensor compared to query. # It gives identical results because scalars are commutable in matrix multiplication. query_layer = query_layer / math.sqrt(self.attention_head_size) # Compute NA between "query" and "key" to get the raw attention scores, and add relative positional biases. attention_scores = natten2dqkrpb(query_layer, key_layer, self.rpb, self.kernel_size, self.dilation) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = natten2dav(attention_probs, value_layer, self.kernel_size, self.dilation) context_layer = context_layer.permute(0, 2, 3, 1, 4).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs
class_definition
13,119
16,184
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinat/modeling_dinat.py
null
5,447
class NeighborhoodAttentionOutput(nn.Module): def __init__(self, config, dim): super().__init__() self.dense = nn.Linear(dim, dim) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states
class_definition
16,187
16,637
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinat/modeling_dinat.py
null
5,448
class NeighborhoodAttentionModule(nn.Module): def __init__(self, config, dim, num_heads, kernel_size, dilation): super().__init__() self.self = NeighborhoodAttention(config, dim, num_heads, kernel_size, dilation) self.output = NeighborhoodAttentionOutput(config, dim) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self(hidden_states, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs
class_definition
16,640
18,227
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinat/modeling_dinat.py
null
5,449
class DinatIntermediate(nn.Module): def __init__(self, config, dim): super().__init__() self.dense = nn.Linear(dim, int(config.mlp_ratio * dim)) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states
class_definition
18,230
18,789
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinat/modeling_dinat.py
null
5,450
class DinatOutput(nn.Module): def __init__(self, config, dim): super().__init__() self.dense = nn.Linear(int(config.mlp_ratio * dim), dim) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states
class_definition
18,792
19,212
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinat/modeling_dinat.py
null
5,451
class DinatLayer(nn.Module): def __init__(self, config, dim, num_heads, dilation, drop_path_rate=0.0): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.kernel_size = config.kernel_size self.dilation = dilation self.window_size = self.kernel_size * self.dilation self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps) self.attention = NeighborhoodAttentionModule( config, dim, num_heads, kernel_size=self.kernel_size, dilation=self.dilation ) self.drop_path = DinatDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps) self.intermediate = DinatIntermediate(config, dim) self.output = DinatOutput(config, dim) self.layer_scale_parameters = ( nn.Parameter(config.layer_scale_init_value * torch.ones((2, dim)), requires_grad=True) if config.layer_scale_init_value > 0 else None ) def maybe_pad(self, hidden_states, height, width): window_size = self.window_size pad_values = (0, 0, 0, 0, 0, 0) if height < window_size or width < window_size: pad_l = pad_t = 0 pad_r = max(0, window_size - width) pad_b = max(0, window_size - height) pad_values = (0, 0, pad_l, pad_r, pad_t, pad_b) hidden_states = nn.functional.pad(hidden_states, pad_values) return hidden_states, pad_values def forward( self, hidden_states: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor, torch.Tensor]: batch_size, height, width, channels = hidden_states.size() shortcut = hidden_states hidden_states = self.layernorm_before(hidden_states) # pad hidden_states if they are smaller than kernel size x dilation hidden_states, pad_values = self.maybe_pad(hidden_states, height, width) _, height_pad, width_pad, _ = hidden_states.shape attention_outputs = self.attention(hidden_states, output_attentions=output_attentions) attention_output = attention_outputs[0] was_padded = pad_values[3] > 0 or pad_values[5] > 0 if was_padded: attention_output = attention_output[:, :height, :width, :].contiguous() if self.layer_scale_parameters is not None: attention_output = self.layer_scale_parameters[0] * attention_output hidden_states = shortcut + self.drop_path(attention_output) layer_output = self.layernorm_after(hidden_states) layer_output = self.output(self.intermediate(layer_output)) if self.layer_scale_parameters is not None: layer_output = self.layer_scale_parameters[1] * layer_output layer_output = hidden_states + self.drop_path(layer_output) layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,) return layer_outputs
class_definition
19,215
22,293
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinat/modeling_dinat.py
null
5,452
class DinatStage(nn.Module): def __init__(self, config, dim, depth, num_heads, dilations, drop_path_rate, downsample): super().__init__() self.config = config self.dim = dim self.layers = nn.ModuleList( [ DinatLayer( config=config, dim=dim, num_heads=num_heads, dilation=dilations[i], drop_path_rate=drop_path_rate[i], ) for i in range(depth) ] ) # patch merging layer if downsample is not None: self.downsample = downsample(dim=dim, norm_layer=nn.LayerNorm) else: self.downsample = None self.pointing = False def forward( self, hidden_states: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: _, height, width, _ = hidden_states.size() for i, layer_module in enumerate(self.layers): layer_outputs = layer_module(hidden_states, output_attentions) hidden_states = layer_outputs[0] hidden_states_before_downsampling = hidden_states if self.downsample is not None: hidden_states = self.downsample(hidden_states_before_downsampling) stage_outputs = (hidden_states, hidden_states_before_downsampling) if output_attentions: stage_outputs += layer_outputs[1:] return stage_outputs
class_definition
22,296
23,816
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinat/modeling_dinat.py
null
5,453
class DinatEncoder(nn.Module): def __init__(self, config): super().__init__() self.num_levels = len(config.depths) self.config = config dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] self.levels = nn.ModuleList( [ DinatStage( config=config, dim=int(config.embed_dim * 2**i_layer), depth=config.depths[i_layer], num_heads=config.num_heads[i_layer], dilations=config.dilations[i_layer], drop_path_rate=dpr[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])], downsample=DinatDownsampler if (i_layer < self.num_levels - 1) else None, ) for i_layer in range(self.num_levels) ] ) def forward( self, hidden_states: torch.Tensor, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, output_hidden_states_before_downsampling: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple, DinatEncoderOutput]: all_hidden_states = () if output_hidden_states else None all_reshaped_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if output_hidden_states: # rearrange b h w c -> b c h w reshaped_hidden_state = hidden_states.permute(0, 3, 1, 2) all_hidden_states += (hidden_states,) all_reshaped_hidden_states += (reshaped_hidden_state,) for i, layer_module in enumerate(self.levels): layer_outputs = layer_module(hidden_states, output_attentions) hidden_states = layer_outputs[0] hidden_states_before_downsampling = layer_outputs[1] if output_hidden_states and output_hidden_states_before_downsampling: # rearrange b h w c -> b c h w reshaped_hidden_state = hidden_states_before_downsampling.permute(0, 3, 1, 2) all_hidden_states += (hidden_states_before_downsampling,) all_reshaped_hidden_states += (reshaped_hidden_state,) elif output_hidden_states and not output_hidden_states_before_downsampling: # rearrange b h w c -> b c h w reshaped_hidden_state = hidden_states.permute(0, 3, 1, 2) all_hidden_states += (hidden_states,) all_reshaped_hidden_states += (reshaped_hidden_state,) if output_attentions: all_self_attentions += layer_outputs[2:] if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return DinatEncoderOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, reshaped_hidden_states=all_reshaped_hidden_states, )
class_definition
23,819
26,932
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinat/modeling_dinat.py
null
5,454
class DinatPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DinatConfig base_model_prefix = "dinat" main_input_name = "pixel_values" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0)
class_definition
26,935
27,808
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinat/modeling_dinat.py
null
5,455
class DinatModel(DinatPreTrainedModel): def __init__(self, config, add_pooling_layer=True): super().__init__(config) requires_backends(self, ["natten"]) self.config = config self.num_levels = len(config.depths) self.num_features = int(config.embed_dim * 2 ** (self.num_levels - 1)) self.embeddings = DinatEmbeddings(config) self.encoder = DinatEncoder(config) self.layernorm = nn.LayerNorm(self.num_features, eps=config.layer_norm_eps) self.pooler = nn.AdaptiveAvgPool1d(1) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(DINAT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=DinatModelOutput, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, DinatModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") embedding_output = self.embeddings(pixel_values) encoder_outputs = self.encoder( embedding_output, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = None if self.pooler is not None: pooled_output = self.pooler(sequence_output.flatten(1, 2).transpose(1, 2)) pooled_output = torch.flatten(pooled_output, 1) if not return_dict: output = (sequence_output, pooled_output) + encoder_outputs[1:] return output return DinatModelOutput( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, reshaped_hidden_states=encoder_outputs.reshaped_hidden_states, )
class_definition
29,397
32,560
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinat/modeling_dinat.py
null
5,456
class DinatForImageClassification(DinatPreTrainedModel): def __init__(self, config): super().__init__(config) requires_backends(self, ["natten"]) self.num_labels = config.num_labels self.dinat = DinatModel(config) # Classifier head self.classifier = ( nn.Linear(self.dinat.num_features, config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DINAT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=DinatImageClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, DinatImageClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.dinat( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return DinatImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, reshaped_hidden_states=outputs.reshaped_hidden_states, )
class_definition
32,793
36,272
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinat/modeling_dinat.py
null
5,457
class DinatBackbone(DinatPreTrainedModel, BackboneMixin): def __init__(self, config): super().__init__(config) super()._init_backbone(config) requires_backends(self, ["natten"]) self.embeddings = DinatEmbeddings(config) self.encoder = DinatEncoder(config) self.num_features = [config.embed_dim] + [int(config.embed_dim * 2**i) for i in range(len(config.depths))] # Add layer norms to hidden states of out_features hidden_states_norms = {} for stage, num_channels in zip(self._out_features, self.channels): hidden_states_norms[stage] = nn.LayerNorm(num_channels) self.hidden_states_norms = nn.ModuleDict(hidden_states_norms) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(DINAT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.Tensor, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> BackboneOutput: """ Returns: Examples: ```python >>> from transformers import AutoImageProcessor, AutoBackbone >>> import torch >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> processor = AutoImageProcessor.from_pretrained("shi-labs/nat-mini-in1k-224") >>> model = AutoBackbone.from_pretrained( ... "shi-labs/nat-mini-in1k-224", out_features=["stage1", "stage2", "stage3", "stage4"] ... ) >>> inputs = processor(image, return_tensors="pt") >>> outputs = model(**inputs) >>> feature_maps = outputs.feature_maps >>> list(feature_maps[-1].shape) [1, 512, 7, 7] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions embedding_output = self.embeddings(pixel_values) outputs = self.encoder( embedding_output, output_attentions=output_attentions, output_hidden_states=True, output_hidden_states_before_downsampling=True, return_dict=True, ) hidden_states = outputs.reshaped_hidden_states feature_maps = () for stage, hidden_state in zip(self.stage_names, hidden_states): if stage in self.out_features: batch_size, num_channels, height, width = hidden_state.shape hidden_state = hidden_state.permute(0, 2, 3, 1).contiguous() hidden_state = hidden_state.view(batch_size, height * width, num_channels) hidden_state = self.hidden_states_norms[stage](hidden_state) hidden_state = hidden_state.view(batch_size, height, width, num_channels) hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous() feature_maps += (hidden_state,) if not return_dict: output = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=feature_maps, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, )
class_definition
36,401
40,323
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinat/modeling_dinat.py
null
5,458
class DinatConfig(BackboneConfigMixin, PretrainedConfig): r""" This is the configuration class to store the configuration of a [`DinatModel`]. It is used to instantiate a Dinat model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Dinat [shi-labs/dinat-mini-in1k-224](https://huggingface.co/shi-labs/dinat-mini-in1k-224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: patch_size (`int`, *optional*, defaults to 4): The size (resolution) of each patch. NOTE: Only patch size of 4 is supported at the moment. num_channels (`int`, *optional*, defaults to 3): The number of input channels. embed_dim (`int`, *optional*, defaults to 64): Dimensionality of patch embedding. depths (`List[int]`, *optional*, defaults to `[3, 4, 6, 5]`): Number of layers in each level of the encoder. num_heads (`List[int]`, *optional*, defaults to `[2, 4, 8, 16]`): Number of attention heads in each layer of the Transformer encoder. kernel_size (`int`, *optional*, defaults to 7): Neighborhood Attention kernel size. dilations (`List[List[int]]`, *optional*, defaults to `[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]]`): Dilation value of each NA layer in the Transformer encoder. mlp_ratio (`float`, *optional*, defaults to 3.0): Ratio of MLP hidden dimensionality to embedding dimensionality. qkv_bias (`bool`, *optional*, defaults to `True`): Whether or not a learnable bias should be added to the queries, keys and values. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings and encoder. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. drop_path_rate (`float`, *optional*, defaults to 0.1): Stochastic depth rate. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. layer_scale_init_value (`float`, *optional*, defaults to 0.0): The initial value for the layer scale. Disabled if <=0. out_features (`List[str]`, *optional*): If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. (depending on how many stages the model has). If unset and `out_indices` is set, will default to the corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. out_indices (`List[int]`, *optional*): If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. If unset and `out_features` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. Example: ```python >>> from transformers import DinatConfig, DinatModel >>> # Initializing a Dinat shi-labs/dinat-mini-in1k-224 style configuration >>> configuration = DinatConfig() >>> # Initializing a model (with random weights) from the shi-labs/dinat-mini-in1k-224 style configuration >>> model = DinatModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "dinat" attribute_map = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self, patch_size=4, num_channels=3, embed_dim=64, depths=[3, 4, 6, 5], num_heads=[2, 4, 8, 16], kernel_size=7, dilations=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]], mlp_ratio=3.0, qkv_bias=True, hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, drop_path_rate=0.1, hidden_act="gelu", initializer_range=0.02, layer_norm_eps=1e-5, layer_scale_init_value=0.0, out_features=None, out_indices=None, **kwargs, ): super().__init__(**kwargs) self.patch_size = patch_size self.num_channels = num_channels self.embed_dim = embed_dim self.depths = depths self.num_layers = len(depths) self.num_heads = num_heads self.kernel_size = kernel_size self.dilations = dilations self.mlp_ratio = mlp_ratio self.qkv_bias = qkv_bias self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.drop_path_rate = drop_path_rate self.hidden_act = hidden_act self.layer_norm_eps = layer_norm_eps self.initializer_range = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model self.hidden_size = int(embed_dim * 2 ** (len(depths) - 1)) self.layer_scale_init_value = layer_scale_init_value self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)] self._out_features, self._out_indices = get_aligned_output_features_output_indices( out_features=out_features, out_indices=out_indices, stage_names=self.stage_names )
class_definition
919
7,327
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/dinat/configuration_dinat.py
null
5,459
class ZambaConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ZambaModel`]. It is used to instantiate a Zamba model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Zamba-v0.1 model. [Zyphra/Zamba-7B-v1](https://huggingface.co/Zyphra/Zamba-7B-v1) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the Zamba model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`ZambaModel`] tie_word_embeddings (`bool`, *optional*, defaults to `True`): Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the model has a output word embedding layer. hidden_size (`int`, *optional*, defaults to 3712): Dimension of the hidden representations. attention_hidden_size (`int`, *optional*): Dimension of the hidden representations of the inputs to the Attention layer. intermediate_size (`int`, *optional*, defaults to 14848): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 76): Number of hidden layers in the model. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer decoder. attention_head_dim (`int`, *optional*): Dimension of the attention head in the Transformer decoder. num_key_value_heads (`int`, *optional*, defaults to 16): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=None`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). n_mamba_heads (`int`, *optional*, defaults to 2): Number of mamba heads for each mamba layer. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the decoder. hidden_mamba_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the mamba layer. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. num_logits_to_keep (`int` or `None`, *optional*, defaults to 1): Number of prompt logits to calculate during generation. If `None`, all logits will be calculated. If an integer value, only last `num_logits_to_keep` logits will be calculated. Default is 1 because only the logits of the last prompt token are needed for generation. For long sequences, the logits for the entire sequence may use a lot of memory so, setting `num_logits_to_keep=1` will reduce memory footprint significantly. pad_token_id (`int`, *optional*, defaults to 0): The id of the padding token. bos_token_id (`int`, *optional*, defaults to 1): The id of the "beginning-of-sequence" token. eos_token_id (`int`, *optional*, defaults to 2): The id of the "end-of-sequence" token. max_position_embeddings (`int`, *optional*, defaults to 4096): This value doesn't have any real effect. The maximum sequence length that this model is intended to be used with. It can be used with longer sequences, but performance may degrade. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. attn_layer_period (`int`, *optional*, defaults to 6): Once in this many layers, we will have a shared attention layer attn_layer_offset (`int`, *optional*, defaults to 4): Offset of the shared attention layer use_mamba_kernels (`bool`, *optional*, defaults to `True`): Flag indicating whether or not to use the fast mamba kernels. These are available only if `mamba-ssm` and `causal-conv1d` are installed, and the mamba modules are running on a CUDA device. Raises ValueError if `True` and kernels are not available mamba_d_state (`int`, *optional*, defaults to 16): The dimension the mamba state space latents mamba_d_conv (`int`, *optional*, defaults to 4): The size of the mamba convolution kernel mamba_expand (`int`, *optional*, defaults to 2): Expanding factor (relative to hidden_size) used to determine the mamba intermediate size mamba_dt_rank (`Union[int,str]`, *optional*, defaults to `"auto"`): Rank of the mamba discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)` time_step_min (`float`, *optional*, defaults to 0.001): Minimum `time_step` used to bound `dt_proj_bias`. time_step_max (`float`, *optional*, defaults to 0.1): Maximum `time_step` used to bound `dt_proj_bias`. time_step_floor (`float`, *optional*, defaults to 0.0001): Minimum clamping value of the `dt_proj.bias` layer initialization. mamba_conv_bias (`bool`, *optional*, defaults to `True`): Flag indicating whether or not to use bias in the convolution layer of the mamba mixer block. mamba_proj_bias (`bool`, *optional*, defaults to `False`): Flag indicating whether or not to use bias in the input and output projections (["in_proj", "out_proj"]) of the mamba mixer block """ model_type = "zamba" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=32000, tie_word_embeddings=True, hidden_size=3712, attention_hidden_size=None, intermediate_size=14848, num_hidden_layers=76, num_attention_heads=16, attention_head_dim=None, num_key_value_heads=16, n_mamba_heads=2, hidden_act="gelu", hidden_mamba_act="silu", initializer_range=0.02, rms_norm_eps=1e-5, use_cache=True, num_logits_to_keep=1, pad_token_id=0, bos_token_id=1, eos_token_id=2, max_position_embeddings=4096, attention_dropout=0.0, attn_layer_period=6, attn_layer_offset=4, use_mamba_kernels=True, mamba_d_state=16, mamba_d_conv=4, mamba_expand=2, mamba_dt_rank="auto", time_step_min=0.001, time_step_max=0.1, time_step_floor=1e-4, mamba_conv_bias=True, mamba_proj_bias=False, **kwargs, ): self.vocab_size = vocab_size self.tie_word_embeddings = tie_word_embeddings self.hidden_size = hidden_size if attention_hidden_size is None: self.attention_hidden_size = 2 * hidden_size else: self.attention_hidden_size = attention_hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads if attention_head_dim is None: self.attention_head_dim = 2 * self.hidden_size // self.num_attention_heads else: self.attention_head_dim = attention_head_dim self.max_position_embeddings = max_position_embeddings self.attention_dropout = attention_dropout self.num_key_value_heads = num_key_value_heads self.n_mamba_heads = n_mamba_heads self.hidden_act = hidden_act self.hidden_mamba_act = hidden_mamba_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.num_logits_to_keep = num_logits_to_keep self.attn_layer_period = attn_layer_period self.attn_layer_offset = attn_layer_offset self.use_mamba_kernels = use_mamba_kernels self.mamba_d_state = mamba_d_state self.mamba_d_conv = mamba_d_conv self.mamba_expand = mamba_expand self.mamba_dt_rank = math.ceil(self.hidden_size / 16) if mamba_dt_rank == "auto" else mamba_dt_rank self.time_step_min = time_step_min self.time_step_max = time_step_max self.time_step_floor = time_step_floor self.mamba_conv_bias = mamba_conv_bias self.mamba_proj_bias = mamba_proj_bias self.layers_block_type = self._layers_block_type(num_hidden_layers, attn_layer_period, attn_layer_offset) assert ( self.mamba_expand * self.hidden_size ) % self.n_mamba_heads == 0, "`intermediate_size` should be divisible by `n_mamba_heads`." super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) def _layers_block_type(self, num_hidden_layers, attn_layer_period, attn_layer_offset): layers = [ "mamba", "mamba", "hybrid", ] + ["hybrid" if i % attn_layer_period == attn_layer_offset else "mamba" for i in range(num_hidden_layers - 3)] return layers
class_definition
819
11,255
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/zamba/configuration_zamba.py
null
5,460
class ZambaRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ ZambaRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class_definition
2,768
3,488
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/zamba/modeling_zamba.py
null
5,461
class ZambaHybridDynamicCache(DynamicCache): """ A dynamic cache that can handle both the attention cache (which has a seq_len dimension) and the mamba cache (which has a constant shape regardless of seq_len). This cache has two sets of lists of tensors: `key_cache` and `value_cache` for attention cache and `conv_states` and `ssm_states` for mamba cache. Each of these lists has `num_layers` tensors. The expected shape for each tensor For attention layers, `key_cache` and `value_cache` have a shape of `(batch_size, num_heads, seq_len, head_dim)`, while `conv_states` and `ssm_states` have a shape of `(batch_size, 0)` (empty tensors). For mamba layers, `key_cache` and `value_cache` have a shape of `(batch_size, 0)` (empty tensors), while `conv_states` represents the convolution state and has a shape of `(batch_size, d_inner, d_conv)`, and `ssm_states` represents the ssm state and has a shape of `(batch_size, d_inner, d_state)`. """ def __init__(self, config, batch_size, dtype=torch.float16, device=None): self.dtype = dtype self.layers_block_type = config.layers_block_type self.has_previous_state = False # only used by mamba self.intermediate_size = config.mamba_expand * config.hidden_size self.ssm_state_size = config.mamba_d_state self.conv_kernel_size = config.mamba_d_conv self.n_mamba_heads = config.n_mamba_heads self.conv_states = [] self.ssm_states = [] self.transformer_layers = [] self._modules = {} self._parameters = {} self._buffers = {} for i in range(config.num_hidden_layers): self.conv_states += [ torch.zeros(batch_size, self.intermediate_size, self.conv_kernel_size, device=device, dtype=dtype) ] cache_shape = ( batch_size, self.n_mamba_heads, self.intermediate_size // self.n_mamba_heads, self.ssm_state_size, ) self.ssm_states += [torch.zeros(cache_shape, device=device, dtype=dtype)] if self.layers_block_type[i] == "hybrid": self.transformer_layers.append(i) self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)] self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)] # Copied from transformers.models.jamba.modeling_jamba.HybridMambaAttentionDynamicCache.update def update( self, key_states: torch.Tensor, value_states: torch.Tensor, layer_idx: int, cache_kwargs: Optional[Dict[str, Any]] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: # Update the cache if self.key_cache[layer_idx].shape[-1] == 0: self.key_cache[layer_idx] = key_states self.value_cache[layer_idx] = value_states else: self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=2) self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=2) return self.key_cache[layer_idx], self.value_cache[layer_idx] # Copied from transformers.models.jamba.modeling_jamba.HybridMambaAttentionDynamicCache.reorder_cache def reorder_cache(self, beam_idx: torch.LongTensor): """Reorders the cache for beam search, given the selected beam indices.""" for layer_idx in range(len(self.key_cache)): device = self.key_cache[layer_idx].device self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device)) device = self.value_cache[layer_idx].device self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device)) device = self.conv_states[layer_idx].device self.conv_states[layer_idx] = self.conv_states[layer_idx].index_select(0, beam_idx.to(device)) device = self.ssm_states[layer_idx].device self.ssm_states[layer_idx] = self.ssm_states[layer_idx].index_select(0, beam_idx.to(device)) # Copied from transformers.models.jamba.modeling_jamba.HybridMambaAttentionDynamicCache.get_seq_length def get_seq_length(self, layer_idx: Optional[int] = 0) -> int: """Returns the sequence length of the cached states. A layer index can be optionally passed.""" # take any layer that contains cache and not empty tensor layer_idx = self.transformer_layers[0] if layer_idx not in self.transformer_layers else layer_idx if len(self.key_cache) <= layer_idx: return 0 return self.key_cache[layer_idx].shape[-2] def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]: raise NotImplementedError("ZambaHybridDynamicCache does not have a legacy cache equivalent.") @classmethod def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache": raise NotImplementedError("ZambaHybridDynamicCache does not have a legacy cache equivalent.")
class_definition
4,209
9,400
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/zamba/modeling_zamba.py
null
5,462
class ZambaAttention(nn.Module): """ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer and "Generating Long Sequences with Sparse Transformers". Adapted from transformers.models.mistral.modeling_mistral.MistralAttention: The input dimension here is attention_hidden_size = 2 * hidden_size, and head_dim = attention_hidden_size // num_heads. The extra factor of 2 comes from the input being the concatenation of original_hidden_states with the output of the previous (mamba) layer (see fig. 2 in https://arxiv.org/pdf/2405.16712). Additionally, replaced attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) with attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim/2) """ def __init__(self, config: ZambaConfig, layer_idx: int): super().__init__() self.config = config self.layer_idx = layer_idx self.attention_hidden_size = config.attention_hidden_size self.head_dim = config.attention_head_dim self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.max_position_embeddings = config.max_position_embeddings self.scaling = (self.head_dim / 2) ** -0.5 self.is_causal = True self.attention_dropout = config.attention_dropout self.q_proj = nn.Linear(config.attention_hidden_size, config.num_attention_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(config.attention_hidden_size, config.num_key_value_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(config.attention_hidden_size, config.num_key_value_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False) def forward( self, hidden_states: torch.Tensor, layer_idx: int, attention_mask: Optional[torch.Tensor], past_key_value: Optional[ZambaHybridDynamicCache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) if past_key_value is not None: key_states, value_states = past_key_value.update(key_states, value_states, layer_idx) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights
class_definition
10,345
14,290
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/zamba/modeling_zamba.py
null
5,463
class ZambaMambaMixer(nn.Module): """ Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`. A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective) ∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4, and is why Mamba is called **selective** state spaces) This module differs from `transformers.models.mamba.modeling_mamba.MambaMixer` in two ways: - Added multi-head: the output of `self.in_proj` is split into `self.n_mamba_heads` heads, and each head undergoes an independent forward pass, identical to the original `MambaMixer`, up until the pre-activations of `self.out_proj`. The pre-activations, coming from different mamba heads, are then concatenated and fed into `self.out_proj`. """ def __init__(self, config: ZambaConfig, layer_idx): super().__init__() self.config = config self.layer_idx = layer_idx self.hidden_size = config.hidden_size self.ssm_state_size = config.mamba_d_state self.conv_kernel_size = config.mamba_d_conv self.intermediate_size = config.mamba_expand * config.hidden_size self.time_step_rank = config.mamba_dt_rank self.n_mamba_heads = config.n_mamba_heads self.mamba_head_dim = self.intermediate_size // self.n_mamba_heads self.use_conv_bias = config.mamba_conv_bias self.use_bias = config.mamba_proj_bias self.conv1d = nn.Conv1d( in_channels=self.intermediate_size, out_channels=self.intermediate_size, bias=self.use_conv_bias, kernel_size=self.conv_kernel_size, groups=self.intermediate_size, padding=self.conv_kernel_size - 1, ) self.activation = config.hidden_mamba_act self.act = ACT2FN[config.hidden_mamba_act] self.use_fast_kernels = config.use_mamba_kernels # projection of the input hidden states self.in_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=self.use_bias) # weight associated to the selective projection used to make dt, B and C input dependent # each mamba head is processed independently self.x_proj_weight = nn.Parameter( ( torch.zeros( self.n_mamba_heads, self.time_step_rank + self.ssm_state_size * 2, self.mamba_head_dim, ) ) ) # time step projection (discretization) self.dt_proj_weight = nn.Parameter( (torch.zeros(self.n_mamba_heads, self.mamba_head_dim, self.time_step_rank) - 0.5) * 2 / self.time_step_rank**0.5 ) self.dt_proj_bias = nn.Parameter(torch.zeros(self.n_mamba_heads, self.mamba_head_dim)) # S4D real initialization. These are not discretized! # The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded A = torch.arange(1, self.ssm_state_size + 1, dtype=torch.float32)[None, :] A = A.expand(self.intermediate_size, -1).contiguous() self.A_log = nn.Parameter(torch.log(A).reshape(self.n_mamba_heads, self.mamba_head_dim, -1)) self.D = nn.Parameter(torch.ones(self.n_mamba_heads, self.mamba_head_dim)) self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=self.use_bias) if not is_fast_path_available: logger.warning_once( "The fast path is not available because on of `(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)`" " is None. To install follow https://github.com/state-spaces/mamba/#installation and" " https://github.com/Dao-AILab/causal-conv1d. If you want to use the naive implementation, set `use_mamba_kernels=False` in the model config" ) def cuda_kernels_forward( self, hidden_states: torch.Tensor, cache_params: ZambaHybridDynamicCache = None, attention_mask=None ): batch_size, seq_len, _ = hidden_states.shape use_precomputed_states = cache_params is not None and cache_params.has_previous_state and seq_len == 1 # 1. Gated linear projection projected_states = self.in_proj(hidden_states).transpose(1, 2) hidden_states, gate = projected_states.view(batch_size, -1, 2, seq_len).chunk(2, dim=2) hidden_states = hidden_states.squeeze(2).contiguous() gate = gate.squeeze(2) gate = gate.reshape(batch_size, self.n_mamba_heads, -1, seq_len).transpose(0, 1) # 2. Convolution sequence transformation conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2)) if use_precomputed_states: hidden_states = causal_conv1d_update( hidden_states.squeeze(-1), cache_params.conv_states[self.layer_idx], conv_weights, self.conv1d.bias, self.activation, ) hidden_states = hidden_states.unsqueeze(-1) else: if attention_mask is not None and not torch.all(attention_mask == 1): hidden_states = hidden_states * attention_mask.unsqueeze(1) if cache_params is not None: conv_states = nn.functional.pad(hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0)) cache_params.conv_states[self.layer_idx].copy_(conv_states) hidden_states = causal_conv1d_fn(hidden_states, conv_weights, self.conv1d.bias, activation=self.activation) if attention_mask is not None and not torch.all(attention_mask == 1): hidden_states = hidden_states * attention_mask.unsqueeze(1) # 3. SSM sequence transformation # 3.a. input varying initialization of time_step, B and C hidden_states = hidden_states.reshape(-1, self.n_mamba_heads, self.mamba_head_dim, seq_len).transpose(0, 1) ssm_parameters = (self.x_proj_weight[:, None, :, :] @ hidden_states).transpose(-1, -2) time_step, B, C = torch.split( ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1 ) discrete_time_step = self.dt_proj_weight[:, None] @ time_step.transpose(-1, -2) A = -torch.exp(self.A_log.float()) # 3.c perform the recurrence y ← SSM(A, B, C)(x) time_proj_bias = self.dt_proj_bias.float() if self.dt_proj_bias is not None else None scan_outputs = torch.empty((batch_size, 0, seq_len), device=hidden_states.device, dtype=hidden_states.dtype) if use_precomputed_states: for n in range(self.n_mamba_heads): scan_outputs_ = selective_state_update( cache_params.ssm_states[self.layer_idx][:, n], hidden_states[n, ..., 0], discrete_time_step[n, ..., 0], A[n], B[n, :, 0], C[n, :, 0], self.D[n], gate[n, ..., 0], time_proj_bias[n], dt_softplus=True, ).unsqueeze(-1) scan_outputs = torch.cat((scan_outputs, scan_outputs_), dim=1) else: ssm_state = torch.empty( (batch_size, 0, self.mamba_head_dim, self.ssm_state_size), device=hidden_states.device, dtype=hidden_states.dtype, ) for n in range(self.n_mamba_heads): scan_outputs_, ssm_state_ = selective_scan_fn( hidden_states[n], discrete_time_step[n], A[n], B[n].transpose(1, 2), C[n].transpose(1, 2), self.D[n].float(), gate[n], time_proj_bias[n], delta_softplus=True, return_last_state=True, ) scan_outputs = torch.cat((scan_outputs, scan_outputs_), dim=1).contiguous() ssm_state = torch.cat((ssm_state, ssm_state_.unsqueeze(1)), dim=1) if ssm_state is not None and cache_params is not None: cache_params.ssm_states[self.layer_idx].copy_(ssm_state) # 4. Final linear projection contextualized_states = self.out_proj(scan_outputs.transpose(1, 2)) return contextualized_states def slow_forward(self, input_states, cache_params: ZambaHybridDynamicCache = None, attention_mask=None): batch_size, seq_len, _ = input_states.shape dtype = input_states.dtype # 1. Gated linear projection projected_states = self.in_proj(input_states).transpose(1, 2) hidden_states, gate = projected_states.view(batch_size, -1, 2, seq_len).chunk(2, dim=2) hidden_states = hidden_states.squeeze(2).contiguous() gate = gate.squeeze(2) gate = gate.reshape(batch_size, self.n_mamba_heads, -1, seq_len).transpose(0, 1) use_cache = isinstance(cache_params, ZambaHybridDynamicCache) # 2. Convolution sequence transformation if use_cache and cache_params.ssm_states[self.layer_idx].shape[0] == batch_size: if self.training: # In training mode, we don't want to perform in-place operations on ssm_state so we can compute the backwards pass ssm_state = cache_params.ssm_states[self.layer_idx].clone() else: ssm_state = cache_params.ssm_states[self.layer_idx] ssm_state = ssm_state.to(hidden_states.device) if ( cache_params.has_previous_state and seq_len == 1 and cache_params.conv_states[self.layer_idx].shape[0] == batch_size ): conv_state = cache_params.conv_states[self.layer_idx] conv_state = torch.roll(conv_state, shifts=-1, dims=-1) conv_state[:, :, -1] = hidden_states[:, :, 0] cache_params.conv_states[self.layer_idx] = conv_state hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1) if self.use_conv_bias: hidden_states += self.conv1d.bias hidden_states = self.act(hidden_states).to(dtype).unsqueeze(-1) else: if attention_mask is not None and not torch.all(attention_mask == 1): hidden_states = hidden_states * attention_mask[:, -hidden_states.shape[-1] :].unsqueeze(1) conv_state = nn.functional.pad(hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0)) cache_params.conv_states[self.layer_idx] = conv_state hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) if attention_mask is not None and not torch.all(attention_mask == 1): hidden_states = hidden_states * attention_mask[:, -hidden_states.shape[-1] :].unsqueeze(1) else: ssm_state = torch.zeros( (batch_size, self.n_mamba_heads, self.mamba_head_dim, self.ssm_state_size), device=hidden_states.device, dtype=dtype, ) if attention_mask is not None and not torch.all(attention_mask == 1): hidden_states = hidden_states * attention_mask.unsqueeze(1) hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) if attention_mask is not None and not torch.all(attention_mask == 1): hidden_states = hidden_states * attention_mask.unsqueeze(1) # 3. State Space Model sequence transformation # 3.a. Selection: [batch, seq_len, self.time_step_rank + self.ssm_state_size * 2] hidden_states = hidden_states.reshape(-1, self.n_mamba_heads, self.mamba_head_dim, seq_len).transpose(0, 1) ssm_parameters = (self.x_proj_weight[:, None, :, :] @ hidden_states).transpose(-1, -2) time_step, B, C = torch.split( ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1 ) discrete_time_step = (self.dt_proj_weight[:, None] @ time_step.transpose(-1, -2)) + self.dt_proj_bias[ :, None, :, None ] discrete_time_step = nn.functional.softplus(discrete_time_step) # 3.b. Discretization: B and C to [batch, seq_len, intermediate_size, ssm_state_size] (SRAM) A = -torch.exp(self.A_log.float()) discrete_A = torch.exp(A[:, None, :, None, :] * discrete_time_step[:, :, :, :, None]) discrete_B = discrete_time_step[:, :, :, :, None] * B[:, :, None, :, :].float() deltaB_u = discrete_B * hidden_states[:, :, :, :, None].float() # 3.c perform the recurrence y ← SSM(A, B, C)(x) scan_outputs = [] for i in range(seq_len): ssm_state = discrete_A[:, :, :, i, :].transpose(0, 1) * ssm_state + deltaB_u[:, :, :, i, :].transpose(0, 1) scan_output = torch.matmul(ssm_state.transpose(0, 1).to(dtype), C[:, :, i, :].unsqueeze(-1)) scan_outputs.append(scan_output[:, :, :, 0]) scan_output = torch.stack(scan_outputs, dim=-1) scan_output = scan_output + (hidden_states * self.D[:, None, :, None]) scan_output = scan_output * self.act(gate) if use_cache: cache_params.ssm_states[self.layer_idx] = ssm_state # 4. Final linear projection contextualized_states = self.out_proj( scan_output.transpose(0, 1).reshape(batch_size, -1, seq_len).transpose(1, 2) ) return contextualized_states def forward(self, hidden_states, cache_params: ZambaHybridDynamicCache = None, attention_mask=None): if self.use_fast_kernels: if not is_fast_path_available or "cuda" not in self.x_proj_weight.device.type: raise ValueError( "Fast Mamba kernels are not available. Make sure to they are installed and that " "the mamba module is on a CUDA device. lease run 'pip install causal-conv1d>=1.2.0' " "and 'pip install mamba-ssm', or set use_mamba_kernels=False in the model's config." ) return self.cuda_kernels_forward(hidden_states, cache_params, attention_mask=attention_mask) return self.slow_forward(hidden_states, cache_params, attention_mask=attention_mask)
class_definition
14,293
28,993
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/zamba/modeling_zamba.py
null
5,464
class ZambaMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj
class_definition
29,086
29,754
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/zamba/modeling_zamba.py
null
5,465
class ZambaAttentionDecoderLayer(nn.Module): def __init__(self, config: ZambaConfig, layer_idx: Optional[int] = None): super().__init__() self.self_attn = ZambaAttention(config, layer_idx) self.feed_forward = ZambaMLP(config) self.input_layernorm = ZambaRMSNorm(config.attention_hidden_size, eps=config.rms_norm_eps) self.pre_ff_layernorm = ZambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, original_hidden_states: torch.Tensor, layer_idx: int, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[ZambaHybridDynamicCache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): output of previous Mamba layer of shape `(batch, seq_len, embed_dim)` original_hidden_states (`torch.FloatTensor`): word embedding output of shape `(batch, seq_len, embed_dim)`. This is concatenated with `hidden_states` (which is the output of the previous (mamba) layer). The concatenated tensor is then used as input of the pre-attention RMSNorm (see fig. 2 in https://arxiv.org/pdf/2405.16712). layer_idx (`int`): layer_idx in the forward pass. Used to distinguish Zamba's tied transformer layers. attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. position_ids (`torch.LongTensor`, *optional*): token positions of shape `(batch, seq_len)`. Used for positional encodings. past_key_value (`ZambaHybridDynamicCache`, *optional*): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. """ hidden_states = torch.concatenate([hidden_states, original_hidden_states], dim=-1) hidden_states = self.input_layernorm(hidden_states) hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, layer_idx=layer_idx, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, **kwargs, ) # feed-forward (MLP) hidden_states = self.pre_ff_layernorm(hidden_states) hidden_states = self.feed_forward(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs
class_definition
29,757
33,335
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/zamba/modeling_zamba.py
null
5,466
class ZambaMambaDecoderLayer(nn.Module): def __init__(self, config: ZambaConfig, layer_idx: int): super().__init__() self.mamba = ZambaMambaMixer(config=config, layer_idx=layer_idx) self.input_layernorm = ZambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.layer_idx = layer_idx def forward( self, hidden_states: torch.Tensor, original_hidden_states: Optional[torch.Tensor] = None, layer_idx: int = None, attention_mask: Optional[torch.Tensor] = None, causal_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[ZambaHybridDynamicCache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, transformer_hidden_states: Optional[torch.Tensor] = None, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. past_key_value (`ZambaHybridDynamicCache`, *optional*): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. """ residual = hidden_states # `transformer_hidden_states` is the output from shared transformer + linear layer (see fig. 2 in https://arxiv.org/pdf/2405.16712). # `transformer_hidden_states` is then added to the input to the mamba layer below (as described in eq. (6) of https://arxiv.org/pdf/2405.16712). hidden_states = ( hidden_states + transformer_hidden_states if transformer_hidden_states is not None else hidden_states ) hidden_states = self.input_layernorm(hidden_states) hidden_states = self.mamba( hidden_states=hidden_states, cache_params=past_key_value, attention_mask=attention_mask, ) self_attn_weights = None # residual connection after mamba hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (past_key_value,) return outputs
class_definition
33,338
36,430
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/zamba/modeling_zamba.py
null
5,467
class ZambaHybridLayer(nn.Module): def __init__(self, shared_transf: ZambaAttentionDecoderLayer, linear: nn.Linear, mamba: ZambaMambaDecoderLayer): super().__init__() self.shared_transf = shared_transf self.linear = linear self.mamba_decoder = mamba def forward( self, hidden_states: torch.Tensor, original_hidden_states: Optional[torch.Tensor] = None, layer_idx: int = None, attention_mask: Optional[torch.Tensor] = None, causal_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[ZambaHybridDynamicCache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` original_hidden_states (`torch.FloatTensor`): word embedding output that will be concatenated with hidden activations to form the input of the shared transformer layer. layer_idx (`int`): layer number. attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. past_key_value (`ZambaHybridDynamicCache`, *optional*): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. """ layer_outputs = self.shared_transf( hidden_states, original_hidden_states=original_hidden_states, layer_idx=layer_idx, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) transformer_hidden_states = layer_outputs[0] if output_attentions: self_attn_weights = layer_outputs[1] transformer_hidden_states = self.linear(transformer_hidden_states) layer_outputs = self.mamba_decoder( hidden_states, transformer_hidden_states=transformer_hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) if output_attentions: layer_outputs = (layer_outputs[0], self_attn_weights) + layer_outputs[2:] return layer_outputs
class_definition
36,433
39,796
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/zamba/modeling_zamba.py
null
5,468
class ZambaPreTrainedModel(PreTrainedModel): config_class = ZambaConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["ZambaAttentionDecoderLayer", "ZambaMambaDecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = False _supports_sdpa = False _supports_cache_class = True # Note: only supports ZambaHybridDynamicCache _is_stateful = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, ZambaMambaMixer): module.A_log._no_weight_decay = True module.D._no_weight_decay = True module.x_proj_weight.data.normal_(mean=0.0, std=std) dt_init_std = self.config.mamba_dt_rank**-0.5 nn.init.uniform_(module.dt_proj_weight, -dt_init_std, dt_init_std) mamba_head_dim = self.config.mamba_expand * self.config.hidden_size // self.config.n_mamba_heads dt = torch.exp( torch.rand(self.config.n_mamba_heads, mamba_head_dim) * (math.log(self.config.time_step_max) - math.log(self.config.time_step_min)) + math.log(self.config.time_step_min) ).clamp(min=self.config.time_step_floor) # # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759 inv_dt = dt + torch.log(-torch.expm1(-dt)) with torch.no_grad(): module.dt_proj_bias.copy_(inv_dt) module.dt_proj_bias._no_reinit = True @classmethod @classmethod def _check_and_enable_flash_attn_2( cls, config, torch_dtype: Optional[torch.dtype] = None, device_map: Optional[Union[str, Dict[str, int]]] = None, hard_check_only: bool = False, check_device_map: bool = False, ): """ Overloads `PreTrainedModel._check_and_enable_flash_attn_2` so as to DISABLE Flash Attention 2 by default on Zamba models. Flash attention 2 is currently not supported in the HuggingFace implementation of Zamba v1. """ config = super()._check_and_enable_flash_attn_2( config, torch_dtype, device_map, hard_check_only=hard_check_only, check_device_map=check_device_map ) # if using the default path -> swap sdpa by eager if not hard_check_only and config._attn_implementation == "flash_attention_2": config._attn_implementation = "eager" return config
class_definition
40,818
43,747
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/zamba/modeling_zamba.py
null
5,469
class ZambaModel(ZambaPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`ZambaDecoderLayer`] Args: config: ZambaConfig """ def __init__(self, config: ZambaConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) block = ZambaAttentionDecoderLayer(config) mamba_layers = [] linear_layers = [] self.layers_block_type = config.layers_block_type for i in range(config.num_hidden_layers): if config.layers_block_type[i] == "mamba": mamba_layers.append(ZambaMambaDecoderLayer(config, layer_idx=i)) elif config.layers_block_type[i] == "hybrid": linear_layers.append(nn.Linear(self.config.hidden_size, self.config.hidden_size, bias=False)) mamba_layers.append(ZambaMambaDecoderLayer(config, layer_idx=i)) mamba_layers = iter(mamba_layers) linear_layers = iter(linear_layers) layers = [] self._tied_weights_keys = [] for layer_id, layer_type in enumerate(self.layers_block_type): if layer_type == "hybrid": prefix_name = f"layers.{layer_id}." tied_keys = [ "shared_transf.self_attn.q_proj.weight", "shared_transf.self_attn.k_proj.weight", "shared_transf.self_attn.v_proj.weight", "shared_transf.self_attn.o_proj.weight", "shared_transf.feed_forward.gate_proj.weight", "shared_transf.feed_forward.up_proj.weight", "shared_transf.feed_forward.down_proj.weight", "shared_transf.input_layernorm.weight", "shared_transf.pre_ff_layernorm.weight", ] self._tied_weights_keys = [*self._tied_weights_keys, *[prefix_name + key for key in tied_keys]] layers.append(ZambaHybridLayer(block, next(linear_layers), next(mamba_layers))) else: layers.append(next(mamba_layers)) self.layers = nn.ModuleList(layers) self._attn_implementation = config._attn_implementation self.final_layernorm = ZambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(ZAMBA_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[ZambaHybridDynamicCache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError( "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" ) if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) hidden_states = inputs_embeds original_hidden_states = torch.clone(inputs_embeds) # original_hidden_states: word embedding output that will be concatenated with hidden activations to form the input of the shared transformer layer if use_cache and past_key_values is None: logger.warning_once( "Zamba requires an initialized `ZambaHybridDynamicCache` to return a cache. None was " "provided, so no cache will be returned." ) if cache_position is None: cache_position = torch.arange(hidden_states.shape[1], device=hidden_states.device) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position) all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for layer_idx, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer.__call__, hidden_states, original_hidden_states, layer_idx, attention_mask, causal_mask, position_ids, past_key_values, output_attentions, use_cache, cache_position, ) else: layer_outputs = layer( hidden_states, original_hidden_states=original_hidden_states, layer_idx=layer_idx, attention_mask=attention_mask, causal_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) hidden_states = layer_outputs[0] if output_attentions: if layer_outputs[1] is not None: # append attentions only of attention layers. Mamba layers return `None` as the attention weights all_self_attns += (layer_outputs[1],) hidden_states = self.final_layernorm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) if past_key_values and not past_key_values.has_previous_state: past_key_values.has_previous_state = True output = BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, hidden_states=all_hidden_states, attentions=all_self_attns, ) return output if return_dict else output.to_tuple() # Copied from transformers.models.jamba.modeling_jamba.JambaModel._update_causal_mask def _update_causal_mask(self, attention_mask, input_tensor, cache_position): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and 0.0 in attention_mask: return attention_mask return None dtype, device = input_tensor.dtype, input_tensor.device min_dtype = torch.finfo(dtype).min sequence_length = input_tensor.shape[1] target_length = cache_position[-1] + 1 causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit if attention_mask.dim() == 2: mask_length = attention_mask.shape[-1] padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0) causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type == "cuda" ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask
class_definition
48,258
57,870
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/zamba/modeling_zamba.py
null
5,470
class ZambaForCausalLM(ZambaPreTrainedModel, GenerationMixin): def __init__(self, config: ZambaConfig): super().__init__(config) self.model = ZambaModel(config) self._tied_weights_keys = ["lm_head.weight", *self.model._tied_weights_keys] self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @add_start_docstrings_to_model_forward(ZAMBA_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[ZambaHybridDynamicCache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, num_logits_to_keep: int = 0, **loss_kwargs, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. num_logits_to_keep (`int` or `None`, *optional*): Calculate logits for the last `num_logits_to_keep` tokens. If `None`, calculate logits for all `input_ids`. Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences. Returns: Example: ```python >>> from transformers import AutoTokenizer, ZambaForCausalLM >>> model = ZambaForCausalLM.from_pretrained("Zyphra/Zamba-7B-v1") >>> tokenizer = AutoTokenizer.from_pretrained("Zyphra/Zamba-7B-v1") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, cache_position=cache_position, return_dict=return_dict, ) hidden_states = outputs[0] # Only compute necessary logits, and do not upcast them to float if we are not computing the loss logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]) loss = None if labels is not None: loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, position_ids=None, use_cache=True, **kwargs, ): # Overwitten -- has a unique cache type, `ZambaHybridDynamicCache` empty_past_kv = past_key_values is None # Omit tokens covered by past_key_values if not empty_past_kv: # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens # Exception 1: when passing input_embeds, input_ids may be missing entries # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here if inputs_embeds is not None: # Exception 1 input_ids = input_ids[:, -cache_position.shape[0] :] elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2) input_ids = input_ids[:, cache_position] else: past_key_values = ZambaHybridDynamicCache( self.config, input_ids.shape[0], dtype=self.dtype, device=self.device ) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if not empty_past_kv: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and empty_past_kv: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": use_cache, "attention_mask": attention_mask, "num_logits_to_keep": self.config.num_logits_to_keep, "cache_position": cache_position, } ) return model_inputs
class_definition
57,978
65,358
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/zamba/modeling_zamba.py
null
5,471
class ZambaForSequenceClassification(ZambaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = ZambaModel(config) self._tied_weights_keys = self.model._tied_weights_keys self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(ZAMBA_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
class_definition
66,139
71,057
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/zamba/modeling_zamba.py
null
5,472
class MambaMixer(nn.Module): """ Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`. A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective) ∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4, and is why Mamba is called **selective** state spaces) """ def __init__(self, config: MambaConfig, layer_idx: int): super().__init__() self.config = config self.hidden_size = config.hidden_size self.ssm_state_size = config.state_size self.conv_kernel_size = config.conv_kernel self.intermediate_size = config.intermediate_size self.time_step_rank = int(config.time_step_rank) self.layer_idx = layer_idx self.use_conv_bias = config.use_conv_bias self.conv1d = nn.Conv1d( in_channels=self.intermediate_size, out_channels=self.intermediate_size, bias=config.use_conv_bias, kernel_size=config.conv_kernel, groups=self.intermediate_size, padding=config.conv_kernel - 1, ) self.activation = config.hidden_act self.act = ACT2FN[config.hidden_act] self.use_mambapy = config.use_mambapy # projection of the input hidden states self.in_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=config.use_bias) # selective projection used to make dt, B and C input dependant self.x_proj = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False) # time step projection (discretization) self.dt_proj = nn.Linear(self.time_step_rank, self.intermediate_size, bias=True) # S4D real initialization. These are not discretized! # The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded A = torch.arange(1, self.ssm_state_size + 1, dtype=torch.float32)[None, :] A = A.expand(self.intermediate_size, -1).contiguous() self.A_log = nn.Parameter(torch.log(A)) self.D = nn.Parameter(torch.ones(self.intermediate_size)) self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias) self.use_bias = config.use_bias if not is_fast_path_available: if self.use_mambapy: if is_mambapy_available(): logger.warning_once( "The fast path is not available because one of `(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)`" " is None. Falling back to the mamba.py backend. To install follow https://github.com/state-spaces/mamba/#installation and" " https://github.com/Dao-AILab/causal-conv1d" ) else: raise ImportError( "use_mambapy is set to True but the mambapy package is not installed. To install it follow https://github.com/alxndrTL/mamba.py." ) else: logger.warning_once( "The fast path is not available because one of `(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)`" " is None. Falling back to the sequential implementation of Mamba, as use_mambapy is set to False. To install follow https://github.com/state-spaces/mamba/#installation and" " https://github.com/Dao-AILab/causal-conv1d. For the mamba.py backend, follow https://github.com/alxndrTL/mamba.py." ) def cuda_kernels_forward( self, hidden_states: torch.Tensor, cache_params: Optional[MambaCache] = None, cache_position: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): # 1. Gated MLP's linear projection projected_states = self.in_proj(hidden_states).transpose(1, 2) if self.training and cache_params is None: # Doesn't support outputting the states -> used for training contextualized_states = mamba_inner_fn( projected_states, self.conv1d.weight, self.conv1d.bias if self.use_conv_bias else None, self.x_proj.weight, self.dt_proj.weight, self.out_proj.weight, self.out_proj.bias.float() if self.use_bias else None, -torch.exp(self.A_log.float()), None, # input-dependent B None, # input-dependent C self.D.float(), delta_bias=self.dt_proj.bias.float(), delta_softplus=True, ) else: hidden_states, gate = projected_states.chunk(2, dim=1) if attention_mask is not None: hidden_states = hidden_states * attention_mask.unsqueeze(1) # 2. Convolution sequence transformation conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2)) if cache_params is not None and cache_position[0] > 0: hidden_states = causal_conv1d_update( hidden_states.squeeze(-1), cache_params.conv_states[self.layer_idx], conv_weights, self.conv1d.bias, self.activation, ) hidden_states = hidden_states.unsqueeze(-1) else: if cache_params is not None: conv_states = nn.functional.pad( hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0) ) cache_params.update_conv_state(self.layer_idx, conv_states, cache_position) hidden_states = causal_conv1d_fn( hidden_states, conv_weights, self.conv1d.bias, activation=self.activation ) if attention_mask is not None: hidden_states = hidden_states * attention_mask.unsqueeze(1) # 3. State Space Model sequence transformation # 3.a. input varying initialization of time_step, B and C ssm_parameters = self.x_proj(hidden_states.transpose(1, 2)) time_step, B, C = torch.split( ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1 ) discrete_time_step = self.dt_proj.weight @ time_step.transpose(1, 2) A = -torch.exp(self.A_log.float()) # 3.c perform the recurrence y ← SSM(A, B, C)(x) time_proj_bias = self.dt_proj.bias.float() if hasattr(self.dt_proj, "bias") else None if cache_params is not None and cache_position[0] > 0: scan_outputs = selective_state_update( cache_params.ssm_states[self.layer_idx], hidden_states[..., 0], discrete_time_step[..., 0], A, B[:, 0], C[:, 0], self.D, gate[..., 0], time_proj_bias, dt_softplus=True, ).unsqueeze(-1) else: scan_outputs, ssm_state = selective_scan_fn( hidden_states, discrete_time_step, A, B.transpose(1, 2), C.transpose(1, 2), self.D.float(), gate, time_proj_bias, delta_softplus=True, return_last_state=True, ) if ssm_state is not None and cache_params is not None: cache_params.update_ssm_state(self.layer_idx, ssm_state) # 4. Final linear projection contextualized_states = self.out_proj(scan_outputs.transpose(1, 2)) return contextualized_states # fmt: off def slow_forward(self, input_states, cache_params: Optional[MambaCache]=None, cache_position:Optional[torch.LongTensor]=None, attention_mask: Optional[torch.LongTensor] = None): batch_size, seq_len, _ = input_states.shape dtype = input_states.dtype # 1. Gated MLP's linear projection projected_states = self.in_proj(input_states).transpose(1, 2) # [batch, 2 * intermediate_size, seq_len] hidden_states, gate = projected_states.chunk(2, dim=1) if attention_mask is not None: hidden_states = hidden_states * attention_mask.unsqueeze(1) # 2. Convolution sequence transformation if cache_params is not None: ssm_state = cache_params.ssm_states[self.layer_idx].clone() ssm_state = ssm_state.to(hidden_states.device) # use `cache_position.shape[0]` to check whether we are in prefill # stage, it's equivalent to check `cache_position[0] == 0`, which # breaks dynamo fullgraph constraints if cache_position.shape[0] == self.conv_kernel_size: conv_state = nn.functional.pad( hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0) ) cache_params.update_conv_state(self.layer_idx, conv_state, cache_position) hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len] else: conv_state = cache_params.update_conv_state(self.layer_idx, hidden_states, cache_position) hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1) if self.use_conv_bias: hidden_states += self.conv1d.bias hidden_states = self.act(hidden_states).to(dtype).unsqueeze(-1) # [batch, intermediate_size, 1] : decoding else: ssm_state = torch.zeros( (batch_size, self.intermediate_size, self.ssm_state_size), device=hidden_states.device, dtype=dtype ) hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len] if attention_mask is not None: hidden_states = hidden_states * attention_mask.unsqueeze(1) # 3. State Space Model sequence transformation # 3.a. Selection: [batch, seq_len, self.time_step_rank + self.ssm_state_size * 2] ssm_parameters = self.x_proj(hidden_states.transpose(1, 2)) time_step, B, C = torch.split( ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1 ) discrete_time_step = self.dt_proj(time_step) # [batch, seq_len, intermediate_size] discrete_time_step = nn.functional.softplus(discrete_time_step).transpose(1, 2) # [batch, intermediate_size, seq_len] # 3.b. Discretization: B and C to [batch, seq_len, intermediate_size, ssm_state_size] (SRAM) A = -torch.exp(self.A_log.float()) # [intermediate_size, ssm_state_size] discrete_A = torch.exp(A[None, :, None, :] * discrete_time_step[:, :, :, None]) # [batch, intermediate_size, seq_len, ssm_state_size] discrete_B = discrete_time_step[:, :, :, None] * B[:, None, :, :].float() # [batch, intermediate_size, seq_len, ssm_state_size] deltaB_u = discrete_B * hidden_states[:, :, :, None].float() # 3.c perform the recurrence y ← SSM(A, B, C)(x) if self.use_mambapy and self.training and cache_params is None: hs = pscan(discrete_A.transpose(1, 2), deltaB_u.transpose(1, 2)) # [batch, seq_len, intermediate_size, ssm_state_size] scan_output = (hs @ C.unsqueeze(-1)).squeeze(3).transpose(1, 2) # [batch, intermediate_size, seq_len] scan_output = scan_output + hidden_states * self.D[None, :, None] scan_output = scan_output * self.act(gate) else: scan_outputs = [] for i in range(seq_len): ssm_state = discrete_A[:, :, i, :] * ssm_state + deltaB_u[:, :, i, :] # [batch, intermediade_size, ssm_state] scan_output = torch.matmul(ssm_state.to(dtype), C[:, i, :].unsqueeze(-1)) # [batch, intermediade_size, 1] scan_outputs.append(scan_output[:, :, 0]) scan_output = torch.stack(scan_outputs, dim=-1) # [batch, seq_len, intermediade_size] scan_output = scan_output + (hidden_states * self.D[None, :, None]) scan_output = (scan_output * self.act(gate)) if cache_params is not None: cache_params.ssm_states[self.layer_idx].copy_(ssm_state) # 4. Final linear projection contextualized_states = self.out_proj(scan_output.transpose(1, 2)) # [batch, seq_len, hidden_size] return contextualized_states # fmt: on def forward( self, hidden_states, cache_params: Optional[MambaCache] = None, cache_position: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): if is_fast_path_available and "cuda" in self.x_proj.weight.device.type and not torch._dynamo.is_compiling(): return self.cuda_kernels_forward(hidden_states, cache_params, cache_position, attention_mask) return self.slow_forward(hidden_states, cache_params, cache_position, attention_mask)
class_definition
2,131
15,977
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mamba/modeling_mamba.py
null
5,473
class MambaRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ MambaRMSNorm is equivalent to T5LayerNorm and LlamaRMSNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{self.weight.shape[0]}, eps={self.variance_epsilon}"
class_definition
15,980
16,713
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mamba/modeling_mamba.py
null
5,474
class MambaBlock(nn.Module): def __init__(self, config, layer_idx): super().__init__() self.config = config self.layer_idx = layer_idx self.residual_in_fp32 = config.residual_in_fp32 self.norm = MambaRMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) self.mixer = MambaMixer(config, layer_idx=layer_idx) def forward( self, hidden_states, cache_params: Optional[MambaCache] = None, cache_position: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): residual = hidden_states hidden_states = self.norm(hidden_states.to(dtype=self.norm.weight.dtype)) if self.residual_in_fp32: residual = residual.to(torch.float32) hidden_states = self.mixer( hidden_states, cache_params=cache_params, cache_position=cache_position, attention_mask=attention_mask ) hidden_states = residual + hidden_states return hidden_states
class_definition
16,716
17,749
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mamba/modeling_mamba.py
null
5,475
class MambaPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MambaConfig base_model_prefix = "backbone" _no_split_modules = ["MambaBlock", "MambaMixer"] supports_gradient_checkpointing = True _is_stateful = True def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, MambaMixer): module.A_log._no_weight_decay = True module.D._no_weight_decay = True dt_init_std = self.config.time_step_rank**-0.5 * self.config.time_step_scale if self.config.time_step_init_scheme == "constant": nn.init.constant_(module.dt_proj.weight, dt_init_std) elif self.config.time_step_init_scheme == "random": nn.init.uniform_(module.dt_proj.weight, -dt_init_std, dt_init_std) dt = torch.exp( torch.rand(self.config.intermediate_size) * (math.log(self.config.time_step_max) - math.log(self.config.time_step_min)) + math.log(self.config.time_step_min) ).clamp(min=self.config.time_step_floor) # # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759 inv_dt = dt + torch.log(-torch.expm1(-dt)) with torch.no_grad(): module.dt_proj.bias.copy_(inv_dt) module.dt_proj.bias._no_reinit = True if isinstance(module, nn.Linear): if module.bias is not None: if not getattr(module.bias, "_no_reinit", False): nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): nn.init.normal_(module.weight, std=self.config.initializer_range) if self.config.rescale_prenorm_residual: # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme: # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers. # > -- GPT-2 :: https://openai.com/blog/better-language-models/ # # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py for name, p in module.named_parameters(): if name in ["out_proj.weight"]: # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block # Following Pytorch init, except scale by 1/sqrt(2 * n_layer) # We need to reinit p since this code could be called multiple times # Having just p *= scale would repeatedly scale it down nn.init.kaiming_uniform_(p, a=math.sqrt(5)) with torch.no_grad(): p /= math.sqrt(self.config.num_hidden_layers)
class_definition
17,752
20,819
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mamba/modeling_mamba.py
null
5,476
class MambaOutput(ModelOutput): """ Class for the MAMBA model outputs. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. cache_params (`MambaCache`): The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to avoid providing the old `input_ids`. Includes both the State space model state matrices after the selective scan, and the Convolutional states hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. """ last_hidden_state: Optional[torch.FloatTensor] = None cache_params: Optional[MambaCache] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None
class_definition
20,833
22,100
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mamba/modeling_mamba.py
null
5,477
class MambaCausalLMOutput(ModelOutput): """ Base class for causal language model (or autoregressive) outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). cache_params (`MambaCache`): The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to avoid providing the old `input_ids`. Includes both the State space model state matrices after the selective scan, and the Convolutional states hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. """ loss: Optional[torch.FloatTensor] = None logits: Optional[torch.FloatTensor] = None cache_params: Optional[MambaCache] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None
class_definition
22,114
23,640
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mamba/modeling_mamba.py
null
5,478
class MambaModel(MambaPreTrainedModel): def __init__(self, config): super().__init__(config) self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size) self.layers = nn.ModuleList([MambaBlock(config, layer_idx=idx) for idx in range(config.num_hidden_layers)]) self.gradient_checkpointing = False self.norm_f = MambaRMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) # Initialize weights and apply final processing self._register_load_state_dict_pre_hook(self.load_hook) self.post_init() def load_hook(self, state_dict, prefix, *args): for k in state_dict: if "embedding." in k: state_dict[k.replace("embedding.", "embeddings.")] = state_dict.pop(k) break def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, new_embeddings): self.embeddings = new_embeddings @add_start_docstrings_to_model_forward(MAMBA_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MambaOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.LongTensor] = None, cache_params: Optional[MambaCache] = None, use_cache: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ) -> Union[Tuple, MambaOutput]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): # ^ is python for xor raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embeddings(input_ids) if self.gradient_checkpointing and self.training and use_cache: use_cache = False if use_cache: if cache_params is None: cache_params = MambaCache( self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype ) cache_position = torch.arange(0, self.config.conv_kernel, device=inputs_embeds.device) elif cache_position is None: # cases when we do manual forward instead of using `model.generate` which will initiate # `cache_position` and makes sure it is not None, throw error here instead of doing some # hack to conjecture the current cache position raise ValueError( "You have to specify the `cache_position` manually when `use_cache=True` and `cache_params` is passed, " "you don't have to pass a `cache_params` if you are in prefilling stage because in that case it will " "be initialized for you automatically" ) else: cache_params = None hidden_states = inputs_embeds all_hidden_states = () if output_hidden_states else None for mixer_block in self.layers: if self.gradient_checkpointing and self.training: hidden_states = self._gradient_checkpointing_func( mixer_block.__call__, hidden_states, cache_params, cache_position, attention_mask ) else: hidden_states = mixer_block( hidden_states, cache_params=cache_params, cache_position=cache_position, attention_mask=attention_mask, ) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) hidden_states = self.norm_f(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, cache_params, all_hidden_states] if v is not None) return MambaOutput( last_hidden_state=hidden_states, cache_params=cache_params if use_cache else None, hidden_states=all_hidden_states, )
class_definition
26,731
31,429
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mamba/modeling_mamba.py
null
5,479
class MambaForCausalLM(MambaPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.backbone = MambaModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def get_input_embeddings(self): return self.backbone.get_input_embeddings() def set_input_embeddings(self, new_embeddings): return self.backbone.set_input_embeddings(new_embeddings) def _update_model_kwargs_for_generation( self, outputs: ModelOutput, model_kwargs: Dict[str, Any], num_new_tokens: int = 1, **kwargs ) -> Dict[str, Any]: model_kwargs["cache_params"] = outputs.get("cache_params", None) if ( model_kwargs.get("use_cache", True) and "cache_position" in model_kwargs and model_kwargs["cache_position"] is not None ): model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + num_new_tokens if "attention_mask" in model_kwargs: attention_mask = model_kwargs["attention_mask"] model_kwargs["attention_mask"] = torch.cat( [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1 ) return model_kwargs def prepare_inputs_for_generation( self, input_ids, inputs_embeds=None, use_cache=None, cache_params: Optional[MambaCache] = None, cache_position: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, **kwargs, ): # Overwitten -- uses `cache_params` as opposed to `past_key_values` if use_cache: # `cache_position` should have been initialized in `generate` if cache_position is None: raise ValueError( "`cache_position` should not be None as it should have been initialized in " "`model.generate`, you are responsible for passing in a valid `cache_position` if " "you are calling `prepare_inputs_for_generation` directly with `use_cache=True`" ) if cache_position[0] > 0: input_ids = input_ids[:, -1].unsqueeze(-1) if attention_mask is not None: attention_mask = None else: # we initialize the `cache_position` to full size of `conv_states` at prefill stage # considering padding will be applied when input length is shorter, and truncation # will be applied when it is longer, so it will be equivalent to always have it match # the length of `cache_params.conv_states`, which is `config.conv_kernel` cache_position = torch.arange(0, self.config.conv_kernel, device=input_ids.device) if inputs_embeds is not None and cache_params is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids.contiguous()} model_inputs.update( { "cache_params": cache_params, "use_cache": use_cache, "cache_position": cache_position, "attention_mask": attention_mask, } ) return model_inputs @add_start_docstrings_to_model_forward(MAMBA_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MambaCausalLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, cache_params: Optional[MambaCache] = None, labels: Optional[torch.LongTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.Tensor] = None, **kwargs, # for now we need this for generation ) -> Union[Tuple, MambaCausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict mamba_outputs = self.backbone( input_ids, cache_params=cache_params, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, use_cache=use_cache, cache_position=cache_position, attention_mask=attention_mask, ) hidden_states = mamba_outputs[0] logits = self.lm_head(hidden_states.to(self.lm_head.weight.dtype)).float() loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) if not return_dict: output = (logits,) + mamba_outputs[1:] return ((loss,) + output) if loss is not None else output return MambaCausalLMOutput( loss=loss, logits=logits, cache_params=mamba_outputs.cache_params, hidden_states=mamba_outputs.hidden_states, )
class_definition
31,632
37,989
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mamba/modeling_mamba.py
null
5,480
class MambaConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`MambaModel`]. It is used to instantiate a MAMBA model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MAMBA [state-spaces/mamba-2.8b](https://huggingface.co/state-spaces/mamba-2.8b) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50280): Vocabulary size of the MAMBA model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MambaModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the embeddings and hidden states. state_size (`int`, *optional*, defaults to 16): shape of the state space latents. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the model. layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): The epsilon to use in the layer normalization layers. pad_token_id (`int`, *optional*, defaults to 0): Padding token id. bos_token_id (`int`, *optional*, defaults to 0): The id of the beginning of sentence token in the vocabulary. eos_token_id (`int`, *optional*, defaults to 0): The id of the end of sentence token in the vocabulary. expand (`int`, *optional*, defaults to 2): Expanding factor used to determine the intermediate size. conv_kernel (`int`, *optional*, defaults to 4): Size of the convolution kernel. use_bias (`bool`, *optional*, defaults to `False`): Whether or not to use bias in ["in_proj", "out_proj"] of the mixer block use_conv_bias (`bool`, *optional*, defaults to `True`): Whether or not to use bias in the convolution layer of the mixer block. hidden_act (`str`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. initializer_range (`float`, *optional*, defaults to 0.1): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. residual_in_fp32 (`bool`, *optional*, defaults to `True`): Whether or not residuals should be in `float32`. If set to `False` residuals will keep the same `dtype` as the rest of the model time_step_rank (`Union[int,str]`, *optional*, defaults to `"auto"`): Rank of the discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)` time_step_scale (`float`, *optional*, defaults to 1.0): Scale used used to scale `dt_proj.bias`. time_step_min (`float`, *optional*, defaults to 0.001): Minimum `time_step` used to bound `dt_proj.bias`. time_step_max (`float`, *optional*, defaults to 0.1): Maximum `time_step` used to bound `dt_proj.bias`. time_step_init_scheme (`float`, *optional*, defaults to `"random"`): Init scheme used for `dt_proj.weight`. Should be one of `["random","uniform"]` time_step_floor (`float`, *optional*, defaults to 0.0001): Minimum clamping value of the `dt_proj.bias` layer initialization. rescale_prenorm_residual (`bool`, *optional*, defaults to `False`): Whether or not to rescale `out_proj` weights when initializing. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the cache should be used. use_mambapy (`bool`, *optional*, defaults to `False`): Determines the fallback strategy during training if the CUDA-based official implementation of Mamba is not avaiable. If `True`, the mamba.py implementation is used. If `False`, the naive and slower implementation is used. Consider switching to the naive version if memory is limited. Example: ```python >>> from transformers import MambaConfig, MambaModel >>> # Initializing a Mamba configuration >>> configuration = MambaConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = MambaModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mamba" def __init__( self, vocab_size=50280, hidden_size=768, state_size=16, num_hidden_layers=32, layer_norm_epsilon=1e-5, pad_token_id=0, bos_token_id=0, eos_token_id=0, expand=2, conv_kernel=4, use_bias=False, use_conv_bias=True, hidden_act="silu", initializer_range=0.1, residual_in_fp32=True, time_step_rank="auto", time_step_scale=1.0, time_step_min=0.001, time_step_max=0.1, time_step_init_scheme="random", time_step_floor=1e-4, rescale_prenorm_residual=False, use_cache=True, use_mambapy=False, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.state_size = state_size self.num_hidden_layers = num_hidden_layers self.layer_norm_epsilon = layer_norm_epsilon self.conv_kernel = conv_kernel self.expand = expand self.intermediate_size = int(expand * self.hidden_size) self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.use_bias = use_bias self.use_conv_bias = use_conv_bias self.hidden_act = hidden_act self.initializer_range = initializer_range self.time_step_rank = math.ceil(self.hidden_size / 16) if time_step_rank == "auto" else time_step_rank self.time_step_scale = time_step_scale self.time_step_min = time_step_min self.time_step_max = time_step_max self.time_step_init_scheme = time_step_init_scheme self.time_step_floor = time_step_floor self.rescale_prenorm_residual = rescale_prenorm_residual self.residual_in_fp32 = residual_in_fp32 self.use_cache = use_cache self.use_mambapy = use_mambapy super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, pad_token_id=pad_token_id, **kwargs)
class_definition
768
7,403
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mamba/configuration_mamba.py
null
5,481
class StableLmConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`~StableLmModel`]. It is used to instantiate an StableLM model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the StableLM [stabilityai/stablelm-3b-4e1t](https://huggingface.co/stabilityai/stablelm-3b-4e1t) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50304): Vocabulary size of the StableLM model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`StableLmModel`]. intermediate_size (`int`, *optional*, defaults to 6912): Dimension of the MLP representations. hidden_size (`int`, *optional*, defaults to 2560): Number of hidden layers in the Transformer decoder. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer encoder. num_key_value_heads (`int`, *optional*, defaults to 32): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string). max_position_embeddings (`int`, *optional*, defaults to 4096): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether the model's input and output word embeddings should be tied. rope_theta (`float`, *optional*, defaults to `10000.0`): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value accordingly. Expected contents: `rope_type` (`str`): The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', 'llama3'], with 'default' being the original RoPE implementation. `factor` (`float`, *optional*): Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In most scaling types, a `factor` of x will enable the model to handle sequences of length x * original maximum pre-trained length. `original_max_position_embeddings` (`int`, *optional*): Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during pretraining. `attention_factor` (`float`, *optional*): Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention computation. If unspecified, it defaults to value recommended by the implementation, using the `factor` field to infer the suggested value. `beta_fast` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear ramp function. If unspecified, it defaults to 32. `beta_slow` (`float`, *optional*): Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear ramp function. If unspecified, it defaults to 1. `short_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to short contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `long_factor` (`List[float]`, *optional*): Only used with 'longrope'. The scaling factor to be applied to long contexts (< `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2 `low_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE `high_freq_factor` (`float`, *optional*): Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE use_qkv_bias (`bool`, *optional*, defaults to `False`): Whether or not the model should use bias for qkv layers. qk_layernorm (`bool`, *optional*, defaults to `False`): Whether or not to normalize, per head, the Queries and Keys after projecting the hidden states. use_parallel_residual (`bool`, *optional*, defaults to `False`): Whether to use a "parallel" formulation in each Transformer layer, which can provide a slight training speedup at large scales. hidden_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio after applying the MLP to the hidden states. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. partial_rotary_factor (`float`, *optional*, defaults to 0.25): Percentage of the query and keys which will have rotary embedding. bos_token_id (int, *optional*, defaults to 0): The id of the `BOS` token in the vocabulary. eos_token_id (int, *optional*, defaults to 0): The id of the `EOS` token in the vocabulary. Example: ```python >>> from transformers import StableLmModel, StableLmConfig >>> # Initializing a StableLM stablelm-3b style configuration >>> configuration = StableLmConfig() ```""" model_type = "stablelm" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=50304, intermediate_size=6912, hidden_size=2560, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=32, hidden_act="silu", max_position_embeddings=4096, initializer_range=0.02, layer_norm_eps=1.0e-5, use_cache=True, tie_word_embeddings=False, rope_theta=10_000, rope_scaling=None, use_qkv_bias=False, qk_layernorm=False, use_parallel_residual=False, hidden_dropout=0.0, attention_dropout=0.0, partial_rotary_factor=0.25, bos_token_id=0, eos_token_id=0, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.use_qkv_bias = use_qkv_bias self.qk_layernorm = qk_layernorm self.use_parallel_residual = use_parallel_residual self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.partial_rotary_factor = partial_rotary_factor # Validate the correctness of rotary position embeddings parameters # BC: if there is a 'type' field, move it to 'rope_type'. if self.rope_scaling is not None and "type" in self.rope_scaling: self.rope_scaling["rope_type"] = self.rope_scaling["type"] rope_config_validation(self) super().__init__( bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, )
class_definition
860
10,805
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/stablelm/configuration_stablelm.py
null
5,482
class StableLmRotaryEmbedding(nn.Module): def __init__(self, config: StableLmConfig, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and config.rope_scaling is not None: self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq def _dynamic_frequency_update(self, position_ids, device): """ dynamic RoPE layers should recompute `inv_freq` in the following situations: 1 - growing beyond the cached sequence length (allow scaling) 2 - the current sequence length is in the original scale (avoid losing precision with small sequences) """ seq_len = torch.max(position_ids) + 1 if seq_len > self.max_seq_len_cached: # growth inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len) self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation self.max_seq_len_cached = seq_len if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset # This .to() is needed if the model has been moved to a device after being initialized (because # the buffer is automatically moved, but not the original copy) self.original_inv_freq = self.original_inv_freq.to(device) self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) self.max_seq_len_cached = self.original_max_seq_len @torch.no_grad() def forward(self, x, position_ids): if "dynamic" in self.rope_type: self._dynamic_frequency_update(position_ids, device=x.device) # Core RoPE block inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() # Force float32 (see https://github.com/huggingface/transformers/pull/29285) device_type = x.device.type device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() sin = emb.sin() # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention cos = cos * self.attention_scaling sin = sin * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
class_definition
2,214
5,415
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/stablelm/modeling_stablelm.py
null
5,483
class StableLmMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj
class_definition
7,379
8,050
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/stablelm/modeling_stablelm.py
null
5,484
class StableLmLayerNormPerHead(nn.Module): def __init__(self, dim, num_heads, eps=1e-5, bias=False): super().__init__() self.dim = dim self.num_heads = num_heads self.norms = nn.ModuleList([nn.LayerNorm(dim, eps=eps, bias=bias) for _ in range(self.num_heads)]) def forward(self, hidden_states: torch.Tensor): # Split along the num_heads axis to get per-head inputs # [batch_size, num_heads, seq_len, head_dim] -> [batch_size, 1, seq_len, head_dim] * num_heads states_per_heads = torch.split(hidden_states, 1, dim=1) # Normalize and merge the heads back together return torch.cat([norm(hidden_states) for norm, hidden_states in zip(self.norms, states_per_heads)], dim=1)
class_definition
8,053
8,803
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/stablelm/modeling_stablelm.py
null
5,485
class StableLmAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: StableLmConfig, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx if layer_idx is None: logger.warning_once( f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.rope_theta = config.rope_theta self.rotary_ndims = int(self.head_dim * config.partial_rotary_factor) self.is_causal = True if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.use_qkv_bias) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.use_qkv_bias) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.use_qkv_bias) self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) self.qk_layernorm = config.qk_layernorm if self.qk_layernorm: self.q_layernorm = StableLmLayerNormPerHead(self.head_dim, self.num_heads, eps=config.layer_norm_eps) self.k_layernorm = StableLmLayerNormPerHead( self.head_dim, self.num_key_value_heads, eps=config.layer_norm_eps ) self.attention_dropout = nn.Dropout(config.attention_dropout) self.rotary_emb = StableLmRotaryEmbedding(config=self.config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) if self.qk_layernorm: query_states = self.q_layernorm(query_states) key_states = self.k_layernorm(key_states) cos, sin = position_embeddings # Partial rotary embedding query_rot, query_pass = ( query_states[..., : self.rotary_ndims], query_states[..., self.rotary_ndims :], ) key_rot, key_pass = ( key_states[..., : self.rotary_ndims], key_states[..., self.rotary_ndims :], ) # [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor] query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin) # [batch_size, seq_length, num_heads, head_dim] query_states = torch.cat((query_rot, query_pass), dim=-1) key_states = torch.cat((key_rot, key_pass), dim=-1) if past_key_value is not None: # Specific to RoPE models with partial rotation cache_kwargs = { "sin": sin, "cos": cos, "partial_rotation_size": self.rotary_ndims, "cache_position": cache_position, } key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # Repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights += causal_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dtype=torch.float32, dim=-1).to(query_states.dtype) attn_weights = self.attention_dropout(attn_weights) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value
class_definition
9,480
15,454
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/stablelm/modeling_stablelm.py
null
5,486
class StableLmSdpaAttention(StableLmAttention): def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if output_attentions: # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. logger.warning_once( "StableLmModel is using StableLmSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, ) bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) if self.qk_layernorm: query_states = self.q_layernorm(query_states) key_states = self.k_layernorm(key_states) cos, sin = position_embeddings # Partial rotary embedding query_rot, query_pass = ( query_states[..., : self.rotary_ndims], query_states[..., self.rotary_ndims :], ) key_rot, key_pass = ( key_states[..., : self.rotary_ndims], key_states[..., self.rotary_ndims :], ) # [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor] query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin) # [batch_size, seq_length, num_heads, head_dim] query_states = torch.cat((query_rot, query_pass), dim=-1) key_states = torch.cat((key_rot, key_pass), dim=-1) if past_key_value is not None: # Specific to RoPE models with partial rotation cache_kwargs = { "sin": sin, "cos": cos, "partial_rotation_size": self.rotary_ndims, "cache_position": cache_position, } key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # Repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) causal_mask = attention_mask if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, # Reference: https://github.com/pytorch/pytorch/issues/112577. if query_states.device.type == "cuda" and attention_mask is not None: query_states = query_states.contiguous() key_states = key_states.contiguous() value_states = value_states.contiguous() # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. is_causal = True if causal_mask is None and q_len > 1 else False attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=causal_mask, dropout_p=self.attention_dropout.p if self.training else 0.0, is_causal=is_causal, ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) return attn_output, None, past_key_value
class_definition
15,457
20,793
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/stablelm/modeling_stablelm.py
null
5,487
class StableLmFlashAttention2(StableLmAttention): """ StableLM flash attention module. This module inherits from `StableLmAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # StableLmFlashAttention2 attention does not support output_attentions output_attentions = False bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) # Flash attention requires the input to have the shape # batch_size x seq_length x head_dim x hidden_dim # therefore we just need to keep the original shape query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) if self.qk_layernorm: query_states = self.q_layernorm(query_states) key_states = self.k_layernorm(key_states) cos, sin = position_embeddings # Partial rotary embedding query_rot, query_pass = ( query_states[..., : self.rotary_ndims], query_states[..., self.rotary_ndims :], ) key_rot, key_pass = ( key_states[..., : self.rotary_ndims], key_states[..., self.rotary_ndims :], ) query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin) # [batch_size, seq_length, num_heads, head_dim] query_states = torch.cat((query_rot, query_pass), dim=-1) key_states = torch.cat((key_rot, key_pass), dim=-1) if past_key_value is not None: cache_kwargs = { "sin": sin, "cos": cos, "partial_rotation_size": self.rotary_ndims, "cache_position": cache_position, } key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache # to be able to avoid many of these transpose/reshape/view. query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) dropout_rate = self.attention_dropout.p if self.training else 0.0 attn_output = _flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, position_ids=position_ids, dropout=dropout_rate, use_top_left_mask=self._flash_attn_uses_top_left_mask, is_causal=self.is_causal, ) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value
class_definition
20,796
25,499
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/stablelm/modeling_stablelm.py
null
5,488
class StableLmDecoderLayer(nn.Module): def __init__(self, config: StableLmConfig, layer_idx: int): super().__init__() self.use_parallel_residual = config.use_parallel_residual self.hidden_size = config.hidden_size self.self_attn = ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx) self.mlp = StableLmMLP(config) self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.post_attention_layernorm = None if not self.use_parallel_residual: self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, with `head_dim` being the embedding dimension of each attention head. """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention self_attn_output, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, ) # copied from transformers.models.gpt_neox.modeling_gpt_neox.GPTNeoXLayer.forward if self.use_parallel_residual: # x = x + attn(ln1(x)) + mlp(ln1(x)) # Fully Connected mlp_output = self.mlp(hidden_states) mlp_output = self.dropout(mlp_output) hidden_states = residual + self_attn_output + mlp_output else: # x = x + attn(ln1(x)) # x = x + mlp(ln2(x)) residual = residual + self_attn_output # Fully Connected mlp_output = self.mlp(self.post_attention_layernorm(residual)) mlp_output = self.dropout(mlp_output) hidden_states = residual + mlp_output outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs
class_definition
25,645
30,122
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/stablelm/modeling_stablelm.py
null
5,489
class StableLmPreTrainedModel(PreTrainedModel): config_class = StableLmConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["StableLmDecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True _supports_cache_class = True _supports_sdpa = True _supports_quantized_cache = True _supports_static_cache = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_()
class_definition
31,156
32,055
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/stablelm/modeling_stablelm.py
null
5,490
class StableLmModel(StableLmPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`StableLmDecoderLayer`] Args: config: StableLmConfig """ def __init__(self, config: StableLmConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [StableLmDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.rotary_emb = StableLmRotaryEmbedding(config=config) self._attn_implementation = config._attn_implementation self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(STABLELM_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # kept for BC (non `Cache` `past_key_values` inputs) return_legacy_cache = False if use_cache and not isinstance(past_key_values, Cache): return_legacy_cache = True if past_key_values is None: past_key_values = DynamicCache() else: past_key_values = DynamicCache.from_legacy_cache(past_key_values) logger.warning_once( "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and " "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class " "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)" ) if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, causal_mask, position_ids, past_key_values, output_attentions, use_cache, cache_position, position_embeddings, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache = layer_outputs[2 if output_attentions else 1] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if return_legacy_cache: next_cache = next_cache.to_legacy_cache() if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) # Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool, ): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and (attention_mask == 0.0).any(): return attention_mask return None # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_static_cache = isinstance(past_key_values, StaticCache) # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, is_training=self.training, ): return None dtype, device = input_tensor.dtype, input_tensor.device sequence_length = input_tensor.shape[1] if using_static_cache: target_length = past_key_values.get_max_cache_shape() else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1 ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, device=device, cache_position=cache_position, batch_size=input_tensor.shape[0], ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type == "cuda" and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 min_dtype = torch.finfo(dtype).min causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask @staticmethod # Copied from transformers.models.llama.modeling_llama.LlamaModel._prepare_4d_causal_attention_mask_with_cache_position def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, device: torch.device, cache_position: torch.Tensor, batch_size: int, **kwargs, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. device (`torch.device`): The device to plcae the 4D attention mask on. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device ) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask
class_definition
36,876
49,342
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/stablelm/modeling_stablelm.py
null
5,491
class StableLmForCausalLM(StableLmPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with LLAMA->STABLELM,Llama->StableLm def __init__(self, config): super().__init__(config) self.model = StableLmModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings def get_input_embeddings(self): return self.model.embed_tokens # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings def set_input_embeddings(self, value): self.model.embed_tokens = value # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings def get_output_embeddings(self): return self.lm_head # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder def set_decoder(self, decoder): self.model = decoder # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder def get_decoder(self): return self.model @add_start_docstrings_to_model_forward(STABLELM_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) # Ignore copy def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, num_logits_to_keep: int = 0, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. num_logits_to_keep (`int`, *optional*): Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. Returns: Example: ```python >>> from transformers import AutoTokenizer, StableLmForCausalLM >>> model = StableLmForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t") >>> tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t") >>> prompt = "The weather is always wonderful in" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] 'The weather is always wonderful in the summer in the city of San Diego. The city is located on the coast of the Pacific Ocean and is surrounded by' ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, ) hidden_states = outputs[0] # No upscaling to float was ever done for StableLm logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]) loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
49,474
55,535
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/stablelm/modeling_stablelm.py
null
5,492
class StableLmForSequenceClassification(StableLmPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = StableLmModel(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(STABLELM_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
class_definition
56,454
60,278
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/stablelm/modeling_stablelm.py
null
5,493
class StableLmForTokenClassification(StableLmPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = StableLmModel(config) if getattr(config, "classifier_dropout", None) is not None: classifier_dropout = config.classifier_dropout elif getattr(config, "hidden_dropout", None) is not None: classifier_dropout = config.hidden_dropout else: classifier_dropout = 0.1 self.dropout = nn.Dropout(classifier_dropout) self.score = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(STABLELM_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.score(sequence_output) loss = None if labels is not None: loss = self.loss_function(logits, labels, self.config) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
60,652
63,876
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/stablelm/modeling_stablelm.py
null
5,494
class SpeechEncoderDecoderConfig(PretrainedConfig): r""" [`SpeechEncoderDecoderConfig`] is the configuration class to store the configuration of a [`SpeechEncoderDecoderModel`]. It is used to instantiate an Encoder Decoder model according to the specified arguments, defining the encoder and decoder configs. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: kwargs (*optional*): Dictionary of keyword arguments. Notably: - **encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines the encoder config. - **decoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines the decoder config. Examples: ```python >>> from transformers import BertConfig, Wav2Vec2Config, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel >>> # Initializing a Wav2Vec2 & BERT style configuration >>> config_encoder = Wav2Vec2Config() >>> config_decoder = BertConfig() >>> config = SpeechEncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder) >>> # Initializing a Wav2Vec2Bert model from a Wav2Vec2 & google-bert/bert-base-uncased style configurations >>> model = SpeechEncoderDecoderModel(config=config) >>> # Accessing the model configuration >>> config_encoder = model.config.encoder >>> config_decoder = model.config.decoder >>> # set decoder config to causal lm >>> config_decoder.is_decoder = True >>> config_decoder.add_cross_attention = True >>> # Saving the model, including its configuration >>> model.save_pretrained("my-model") >>> # loading model and config from pretrained folder >>> encoder_decoder_config = SpeechEncoderDecoderConfig.from_pretrained("my-model") >>> model = SpeechEncoderDecoderModel.from_pretrained("my-model", config=encoder_decoder_config) ```""" model_type = "speech-encoder-decoder" sub_configs = {"encoder": AutoConfig, "decoder": AutoConfig} is_composition = True def __init__(self, **kwargs): super().__init__(**kwargs) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"A configuraton of type {self.model_type} cannot be instantiated because not both `encoder` and" f" `decoder` sub-configurations are passed, but only {kwargs}" ) encoder_config = kwargs.pop("encoder") encoder_model_type = encoder_config.pop("model_type") decoder_config = kwargs.pop("decoder") decoder_model_type = decoder_config.pop("model_type") self.encoder = AutoConfig.for_model(encoder_model_type, **encoder_config) self.decoder = AutoConfig.for_model(decoder_model_type, **decoder_config) self.is_encoder_decoder = True @classmethod def from_encoder_decoder_configs( cls, encoder_config: PretrainedConfig, decoder_config: PretrainedConfig, **kwargs ) -> PretrainedConfig: r""" Instantiate a [`SpeechEncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model configuration and decoder model configuration. Returns: [`SpeechEncoderDecoderConfig`]: An instance of a configuration object """ logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config") decoder_config.is_decoder = True decoder_config.add_cross_attention = True return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **kwargs)
class_definition
843
4,639
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/speech_encoder_decoder/configuration_speech_encoder_decoder.py
null
5,495
class FlaxSpeechEncoderDecoderModule(nn.Module): config: SpeechEncoderDecoderConfig dtype: jnp.dtype = jnp.float32 def setup(self): encoder_config = self.config.encoder decoder_config = self.config.decoder # Copied from `modeling_hybrid_clip.py` with modifications. from ...models.auto.modeling_flax_auto import FLAX_MODEL_FOR_CAUSAL_LM_MAPPING, FLAX_MODEL_MAPPING encoder_module = FLAX_MODEL_MAPPING[encoder_config.__class__].module_class decoder_module = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING[decoder_config.__class__].module_class self.encoder = encoder_module(encoder_config, dtype=self.dtype) self.decoder = decoder_module(decoder_config, dtype=self.dtype) # encoder outputs might need to be projected to different dimension for decoder if ( self.encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): self.enc_to_dec_proj = nn.Dense( self.decoder.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.decoder.config.initializer_range), dtype=self.dtype, ) else: self.enc_to_dec_proj = None def _get_feat_extract_output_lengths( self, input_lengths: Union[jnp.ndarray, int], add_adapter: Optional[bool] = None ): """ Computes the output length of the convolutional layers """ add_adapter = self.config.encoder.add_adapter if add_adapter is None else add_adapter def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return (input_length - kernel_size) // stride + 1 for kernel_size, stride in zip(self.config.encoder.conv_kernel, self.config.encoder.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) if add_adapter: for _ in range(self.config.encoder.num_adapter_layers): input_lengths = _conv_out_length(input_lengths, 1, self.config.encoder.adapter_stride) return input_lengths def _get_encoder_module(self): return self.encoder def _get_projection_module(self): return self.enc_to_dec_proj def _get_decoder_module(self): return self.decoder def __call__( self, inputs, attention_mask, decoder_input_ids, decoder_attention_mask, decoder_position_ids, encoder_outputs=None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, freeze_feature_encoder: bool = False, ): if encoder_outputs is None: encoder_outputs = self.encoder( inputs, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, freeze_feature_encoder=freeze_feature_encoder, ) encoder_hidden_states = encoder_outputs[0] # optionally project encoder_hidden_states if self.enc_to_dec_proj is not None: encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) # compute correct encoder attention mask if attention_mask is not None: encoder_attention_mask = self.encoder._get_feature_vector_attention_mask( encoder_hidden_states.shape[1], attention_mask ) else: encoder_attention_mask = None # flax script modeling_flax_wav2vec2.py decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) if not return_dict: return decoder_outputs + encoder_outputs return FlaxSeq2SeqLMOutput( logits=decoder_outputs.logits, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_hidden_states, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, )
class_definition
12,071
17,018
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/speech_encoder_decoder/modeling_flax_speech_encoder_decoder.py
null
5,496
class FlaxSpeechEncoderDecoderModel(FlaxPreTrainedModel): r""" [`FlaxSpeechEncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with the module (flax.nn.Module) of one of the base model classes of the library as encoder module and another one as decoder module when created with the :meth*~transformers.FlaxAutoModel.from_pretrained* class method for the encoder and :meth*~transformers.FlaxAutoModelForCausalLM.from_pretrained* class method for the decoder. """ config_class = SpeechEncoderDecoderConfig base_model_prefix: str = "speech_encoder_decoder" module_class = FlaxSpeechEncoderDecoderModule def __init__( self, config: SpeechEncoderDecoderConfig, input_shape: Optional[Tuple] = None, seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): if not _do_init: raise ValueError( "`FlaxSpeechEncoderDecoderModel` cannot be created without initializing, `_do_init` must be `True`." ) if config.decoder.cross_attention_hidden_size is not None: # Raise ValueError or option to project enc to dec hidden_size (eg EncAdapterLayer) if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size: raise ValueError( "If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal" f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for" f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for" " `config.encoder.hidden_size`." ) # make sure input & output embeddings are not tied config.tie_word_embeddings = False module = self.module_class(config=config, dtype=dtype, **kwargs) if input_shape is None: # speech encoders almost always downsample the sequence length dimension encoder_input_length = 1024 decoder_input_length = module._get_feat_extract_output_lengths(encoder_input_length) input_shape = ((1, encoder_input_length), (1, decoder_input_length)) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: encoder_input_shape, decoder_input_shape = input_shape # init input DeviceArrays inputs = jnp.zeros(encoder_input_shape, dtype="f4") attention_mask = jnp.ones_like(inputs, dtype="i4") decoder_input_ids = jnp.zeros(decoder_input_shape, dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) batch_size, sequence_length = inputs.shape decoder_batch_size, decoder_sequence_length = decoder_input_ids.shape if not decoder_batch_size == batch_size: raise ValueError( f"The inputs of encoder and decoder should have the same batch size, but got {batch_size} for encoder" f" and {decoder_batch_size} for decoder." ) decoder_position_ids = jnp.broadcast_to( jnp.arange(decoder_sequence_length)[None, :], (decoder_batch_size, decoder_sequence_length) ) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init( rngs, inputs, attention_mask, decoder_input_ids, decoder_attention_mask, decoder_position_ids, )["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params def init_cache(self, batch_size, max_length, encoder_outputs): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. """ # init input variables to retrieve cache decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) decoder_position_ids = jnp.broadcast_to( jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape ) def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, **kwargs, ) init_variables = self.module.init( jax.random.PRNGKey(0), decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], init_cache=True, method=_decoder_forward, # we only need to call the decoder to init the cache ) return unfreeze(init_variables["cache"]) def _get_feat_extract_output_lengths( self, input_lengths: Union[jnp.ndarray, int], add_adapter: Optional[bool] = None ): return self.module._get_feat_extract_output_lengths(input_lengths, add_adapter=add_adapter) @add_start_docstrings(SPEECH_ENCODER_DECODER_ENCODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=_CONFIG_FOR_DOC) def encode( self, inputs: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, freeze_feature_encoder: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import FlaxSpeechEncoderDecoderModel >>> # initialize a wav2vec2-2-bart from pretrained wav2vec2 and bart models. Note that the cross-attention layers will be randomly initialized >>> model = FlaxSpeechEncoderDecoderModel.from_encoder_decoder_pretrained( ... "facebook/wav2vec2-large-lv60", "facebook/bart-large" ... ) >>> inputs = jnp.ones((2, 5000), dtype=jnp.float32) >>> encoder_outputs = model.encode(inputs) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if attention_mask is None: attention_mask = jnp.ones_like(inputs, dtype="i4") # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _encoder_forward(module, inputs, attention_mask, **kwargs): encode_module = module._get_encoder_module() return encode_module(inputs, attention_mask, **kwargs) outputs = self.module.apply( {"params": params or self.params}, inputs=jnp.array(inputs, dtype="f4"), attention_mask=jnp.array(attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, freeze_feature_encoder=freeze_feature_encoder, rngs=rngs, method=_encoder_forward, ) if return_dict: outputs = FlaxBaseModelOutput( last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) return outputs @add_start_docstrings(SPEECH_ENCODER_DECODER_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import FlaxSpeechEncoderDecoderModel >>> import jax.numpy as jnp >>> # initialize a wav2vec2-2-bart from pretrained wav2vec2 and bart models. Note that the cross-attention layers will be randomly initialized >>> model = FlaxSpeechEncoderDecoderModel.from_encoder_decoder_pretrained( ... "facebook/wav2vec2-large-lv60", "facebook/bart-large" ... ) >>> inputs = jnp.ones((2, 5000), dtype=jnp.float32) >>> encoder_outputs = model.encode(inputs) >>> decoder_start_token_id = model.config.decoder.bos_token_id >>> decoder_input_ids = jnp.ones((inputs.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> logits = outputs.logits ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng params = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxBartAttention module if past_key_values: params["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward( module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, encoder_hidden_states, **kwargs ): projection_module = module._get_projection_module() decoder_module = module._get_decoder_module() # optionally project encoder_hidden_states if projection_module is not None: encoder_hidden_states = projection_module(encoder_hidden_states) return decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, encoder_hidden_states=encoder_hidden_states, **kwargs, ) outputs = self.module.apply( params, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past = outputs outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past = outputs outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs @add_start_docstrings_to_model_forward(SPEECH_ENCODER_DECODER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def __call__( self, inputs: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, decoder_input_ids: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, freeze_feature_encoder: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Examples: ```python >>> from transformers import FlaxSpeechEncoderDecoderModel, AutoTokenizer >>> # load a fine-tuned wav2vec2-2-bart model >>> model = FlaxSpeechEncoderDecoderModel.from_pretrained("patrickvonplaten/wav2vec2-2-bart-large") >>> # load output tokenizer >>> tokenizer_output = AutoTokenizer.from_pretrained("facebook/bart-large") >>> inputs = jnp.ones((2, 5000), dtype=jnp.float32) >>> # use bart's special bos, pad and eos tokens >>> model.config.decoder_start_token_id = model.decoder.config.bos_token_id >>> model.config.pad_token_id = model.decoder.config.pad_token_id >>> model.config.eos_token_id = model.decoder.config.eos_token_id >>> outputs = model.generate(inputs) # Assert something? More interesting input? dtype correct? ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # prepare encoder inputs if attention_mask is None: attention_mask = jnp.ones_like(inputs, dtype="i4") # prepare decoder inputs if decoder_input_ids is None: raise ValueError( "`decoder_input_ids` cannot be `None`. For sequence to sequence training, `decoder_position_ids` must" " be specified as an input argument." ) if decoder_attention_mask is None: decoder_attention_mask = jnp.ones_like(decoder_input_ids) if decoder_position_ids is None: batch_size, sequence_length = decoder_input_ids.shape decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} return self.module.apply( {"params": params or self.params}, inputs=jnp.array(inputs, dtype="f4"), attention_mask=jnp.array(attention_mask, dtype="i4"), decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, freeze_feature_encoder=freeze_feature_encoder, rngs=rngs, ) def prepare_inputs_for_generation( self, decoder_input_ids, max_length, attention_mask: Optional[jax.Array] = None, decoder_attention_mask: Optional[jax.Array] = None, encoder_outputs=None, **kwargs, ): # initializing the cache batch_size, seq_length = decoder_input_ids.shape past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) # Note that usually one would have to put 0's in the attention_mask for x > input.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if decoder_attention_mask is not None: decoder_position_ids = decoder_attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0)) else: decoder_position_ids = jnp.broadcast_to( jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length) ) return { "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "encoder_attention_mask": attention_mask, "decoder_attention_mask": extended_attention_mask, "decoder_position_ids": decoder_position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1 return model_kwargs @classmethod def from_encoder_decoder_pretrained( cls, encoder_pretrained_model_name_or_path: Optional[Union[str, os.PathLike]] = None, decoder_pretrained_model_name_or_path: Optional[Union[str, os.PathLike]] = None, *model_args, **kwargs, ) -> FlaxPreTrainedModel: r""" Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model checkpoints. Params: encoder_pretrained_model_name_or_path (`Union[str, os.PathLike]`, *optional*): Information necessary to initiate the encoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. - A path to a *directory* containing model weights saved using [`~FlaxPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. decoder_pretrained_model_name_or_path (`Union[str, os.PathLike]`, *optional*, defaults to `None`): Information necessary to initiate the decoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. - A path to a *directory* containing model weights saved using [`~FlaxPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. model_args (remaining positional arguments, *optional*): All remaning positional arguments will be passed to the underlying model's `__init__` method. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). - To update the encoder configuration, use the prefix *encoder_* for each configuration parameter. - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a `config` is provided or automatically loaded. Example: ```python >>> from transformers import FlaxSpeechEncoderDecoderModel >>> # initialize a wav2vec2-2-bart from pretrained wav2vec2 and bart models. Note that the cross-attention layers will be randomly initialized >>> model = FlaxSpeechEncoderDecoderModel.from_encoder_decoder_pretrained( ... "facebook/wav2vec2-large-lv60", "facebook/bart-large" ... ) >>> # saving model after fine-tuning >>> model.save_pretrained("./wav2vec2-2-bart-large") >>> # load fine-tuned model >>> model = FlaxSpeechEncoderDecoderModel.from_pretrained("./wav2vec2-2-bart-large") ```""" kwargs_encoder = { argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_") } kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # remove encoder, decoder kwargs from kwargs for key in kwargs_encoder.keys(): del kwargs["encoder_" + key] for key in kwargs_decoder.keys(): del kwargs["decoder_" + key] # Load and initialize the encoder and decoder # The distinction between encoder and decoder at the model level is made # by the value of the flag `is_decoder` that we need to set correctly. encoder = kwargs_encoder.pop("model", None) if encoder is None: if encoder_pretrained_model_name_or_path is None: raise ValueError( "If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_encoder: encoder_config, kwargs_encoder = AutoConfig.from_pretrained( encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True ) if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: logger.info( f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model " "from a decoder model. Cross-attention and casual mask are disabled." ) encoder_config.is_decoder = False encoder_config.add_cross_attention = False kwargs_encoder["config"] = encoder_config encoder = FlaxAutoModel.from_pretrained( encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder ) decoder = kwargs_decoder.pop("model", None) if decoder is None: if decoder_pretrained_model_name_or_path is None: raise ValueError( "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_decoder: decoder_config, kwargs_decoder = AutoConfig.from_pretrained( decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True ) if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: logger.info( f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention" f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if" f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." ) decoder_config.is_decoder = True decoder_config.add_cross_attention = True kwargs_decoder["config"] = decoder_config if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: logger.warning( f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. " f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, " "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` " "passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a " "`decoder_config` to `.from_encoder_decoder_pretrained(...)`" ) decoder = FlaxAutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder) # instantiate config with corresponding kwargs dtype = kwargs.pop("dtype", jnp.float32) config = SpeechEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs) # make sure input & output word embeddings are not tied config.tie_word_embeddings = False # init model model = cls(config, dtype=dtype) model.params["encoder"] = encoder.params model.params["decoder"] = decoder.params return model
class_definition
17,083
44,641
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/speech_encoder_decoder/modeling_flax_speech_encoder_decoder.py
null
5,497
class SpeechEncoderDecoderModel(PreTrainedModel, GenerationMixin): r""" [`SpeechEncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with one of the base model classes of the library as encoder and another one as decoder when created with the :meth*~transformers.AutoModel.from_pretrained* class method for the encoder and :meth*~transformers.AutoModelForCausalLM.from_pretrained* class method for the decoder. """ config_class = SpeechEncoderDecoderConfig base_model_prefix = "speech_encoder_decoder" main_input_name = "inputs" supports_gradient_checkpointing = True _supports_param_buffer_assignment = False _supports_flash_attn_2 = True _supports_sdpa = True def __init__( self, config: Optional[PretrainedConfig] = None, encoder: Optional[PreTrainedModel] = None, decoder: Optional[PreTrainedModel] = None, ): if config is None and (encoder is None or decoder is None): raise ValueError("Either a configuration or an encoder and a decoder has to be provided.") if config is None: config = SpeechEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config) else: if not isinstance(config, self.config_class): raise ValueError(f"Config: {config} has to be of type {self.config_class}") if config.decoder.cross_attention_hidden_size is not None: if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size: raise ValueError( "If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal" f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for" f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for" " `config.encoder.hidden_size`." ) # initialize with config # make sure input & output embeddings is not tied config.tie_word_embeddings = False super().__init__(config) if encoder is None: encoder = AutoModel.from_config(config.encoder) if decoder is None: decoder = AutoModelForCausalLM.from_config(config.decoder) self.encoder = encoder self.decoder = decoder if self.encoder.config.to_dict() != self.config.encoder.to_dict(): logger.warning( f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:" f" {self.config.encoder}" ) if self.decoder.config.to_dict() != self.config.decoder.to_dict(): logger.warning( f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:" f" {self.config.decoder}" ) # make sure that the individual model's config refers to the shared config # so that the updates to the config will be synced self.config.encoder._attn_implementation = self.encoder.config._attn_implementation self.config.decoder._attn_implementation = self.decoder.config._attn_implementation self.encoder.config = self.config.encoder self.decoder.config = self.config.decoder # get encoder output hidden size self.encoder_output_dim = getattr(config.encoder, "output_hidden_size", config.encoder.hidden_size) if ( self.encoder_output_dim != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): # encoder outputs might need to be projected to different dimension for decoder self.enc_to_dec_proj = nn.Linear(self.encoder.config.hidden_size, self.decoder.config.hidden_size) if self.encoder.get_output_embeddings() is not None: raise ValueError( f"The encoder {self.encoder} should not have a LM Head. Please use a model without LM Head" ) def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def get_input_embeddings(self): return self.decoder.get_input_embeddings() def get_output_embeddings(self): return self.decoder.get_output_embeddings() def set_output_embeddings(self, new_embeddings): return self.decoder.set_output_embeddings(new_embeddings) def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder of the speech encoder so that its parameters will not be updated during training. """ self.encoder.freeze_feature_encoder() @classmethod def from_pretrained(cls, *args, **kwargs): # At the moment fast initialization is not supported for composite models if kwargs.get("_fast_init", False): logger.warning( "Fast initialization is currently not supported for SpeechEncoderDecoderModel. " "Falling back to slow initialization..." ) kwargs["_fast_init"] = False return super().from_pretrained(*args, **kwargs) @classmethod def from_encoder_decoder_pretrained( cls, encoder_pretrained_model_name_or_path: str = None, decoder_pretrained_model_name_or_path: str = None, *model_args, **kwargs, ) -> PreTrainedModel: r""" Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model checkpoints. The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train the model, you need to first set it back in training mode with `model.train()`. Params: encoder_pretrained_model_name_or_path (`str`, *optional*): Information necessary to initiate the encoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In this case, `from_tf` should be set to `True` and a configuration object should be provided as `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`): Information necessary to initiate the decoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In this case, `from_tf` should be set to `True` and a configuration object should be provided as `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. model_args (remaining positional arguments, *optional*): All remaning positional arguments will be passed to the underlying model's `__init__` method. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). - To update the encoder configuration, use the prefix *encoder_* for each configuration parameter. - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a `config` is provided or automatically loaded. Example: ```python >>> from transformers import SpeechEncoderDecoderModel >>> # initialize a wav2vec2bert from a pretrained Wav2Vec2 and a pretrained BERT model. Note that the cross-attention layers will be randomly initialized >>> model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained( ... "facebook/wav2vec2-base-960h", "google-bert/bert-base-uncased" ... ) >>> # saving model after fine-tuning >>> model.save_pretrained("./wav2vec2bert") >>> # load fine-tuned model >>> model = SpeechEncoderDecoderModel.from_pretrained("./wav2vec2bert") ```""" kwargs_encoder = { argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_") } kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # remove encoder, decoder kwargs from kwargs for key in kwargs_encoder.keys(): del kwargs["encoder_" + key] for key in kwargs_decoder.keys(): del kwargs["decoder_" + key] # Load and initialize the encoder and decoder # The distinction between encoder and decoder at the model level is made # by the value of the flag `is_decoder` that we need to set correctly. encoder = kwargs_encoder.pop("model", None) if encoder is None: if encoder_pretrained_model_name_or_path is None: raise ValueError( "If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_encoder: encoder_config, kwargs_encoder = AutoConfig.from_pretrained( encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True ) if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: logger.info( f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model " "from a decoder model. Cross-attention and casual mask are disabled." ) encoder_config.is_decoder = False encoder_config.add_cross_attention = False kwargs_encoder["config"] = encoder_config encoder = AutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder) decoder = kwargs_decoder.pop("model", None) if decoder is None: if decoder_pretrained_model_name_or_path is None: raise ValueError( "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_decoder: decoder_config, kwargs_decoder = AutoConfig.from_pretrained( decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True ) if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: logger.info( f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention" f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if" f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." ) decoder_config.is_decoder = True decoder_config.add_cross_attention = True kwargs_decoder["config"] = decoder_config if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: logger.warning( f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. " f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, " "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` " "passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a " "`decoder_config` to `.from_encoder_decoder_pretrained(...)`" ) decoder = AutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder) # instantiate config with corresponding kwargs config = SpeechEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs) # make sure input & output embeddings is not tied config.tie_word_embeddings = False return cls(encoder=encoder, decoder=decoder, config=config) @add_start_docstrings_to_model_forward(SPEECH_ENCODER_DECODER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, inputs: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, input_values: Optional[torch.FloatTensor] = None, input_features: Optional[torch.FloatTensor] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: r""" Returns: Examples: ```python >>> from transformers import SpeechEncoderDecoderModel, AutoProcessor >>> from datasets import load_dataset >>> import torch >>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-xls-r-300m-en-to-15") >>> model = SpeechEncoderDecoderModel.from_pretrained("facebook/wav2vec2-xls-r-300m-en-to-15") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> input_values = processor(ds[0]["audio"]["array"], return_tensors="pt").input_values >>> # Inference: Translate English speech to German >>> generated = model.generate(input_values) >>> decoded = processor.batch_decode(generated, skip_special_tokens=True)[0] >>> decoded 'Mr. Quilter ist der Apostel der Mittelschicht und wir freuen uns, sein Evangelium willkommen heißen zu können.' >>> # Training: Train model on English transcription >>> labels = processor(text=ds[0]["text"], return_tensors="pt").input_ids >>> loss = model(input_values, labels=labels).loss >>> loss.backward() ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")} kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } if "num_items_in_batch" in kwargs_encoder: kwargs_decoder["num_items_in_batch"] = kwargs_encoder.pop("num_items_in_batch", None) if encoder_outputs is None: if inputs is None: if input_values is not None and input_features is not None: raise ValueError("You cannot specify both input_values and input_features at the same time") elif input_values is not None: inputs = input_values elif input_features is not None: inputs = input_features else: raise ValueError("You have to specify either input_values or input_features") encoder_outputs = self.encoder( inputs, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs_encoder, ) elif isinstance(encoder_outputs, tuple): encoder_outputs = BaseModelOutput(*encoder_outputs) encoder_hidden_states = encoder_outputs[0] # optionally project encoder_hidden_states if ( self.encoder_output_dim != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) # compute correct encoder attention mask if attention_mask is not None: encoder_attention_mask = self.encoder._get_feature_vector_attention_mask( encoder_hidden_states.shape[1], attention_mask ) else: encoder_attention_mask = None if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None): decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, inputs_embeds=decoder_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, past_key_values=past_key_values, return_dict=return_dict, **kwargs_decoder, ) # Compute loss independent from decoder (as some shift the logits inside them) loss = None if labels is not None: logits = decoder_outputs.logits if return_dict else decoder_outputs[0] loss_fct = CrossEntropyLoss() loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1)) if not return_dict: if loss is not None: return (loss,) + decoder_outputs + encoder_outputs else: return decoder_outputs + encoder_outputs return Seq2SeqLMOutput( loss=loss, logits=decoder_outputs.logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_hidden_states, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) def resize_token_embeddings(self, *args, **kwargs): raise NotImplementedError( "Resizing the embedding layers via the SpeechEncoderDecoderModel directly is not supported. Please use the" " respective methods of the wrapped decoder object (model.decoder.resize_token_embeddings(...))" ) def _reorder_cache(self, past_key_values, beam_idx): # apply decoder cache reordering here return self.decoder._reorder_cache(past_key_values, beam_idx)
class_definition
11,274
32,082
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/speech_encoder_decoder/modeling_speech_encoder_decoder.py
null
5,498
class ZoeDepthImageProcessor(BaseImageProcessor): r""" Constructs a ZoeDepth image processor. Args: do_pad (`bool`, *optional*, defaults to `True`): Whether to apply pad the input. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overidden by `do_rescale` in `preprocess`. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overidden by `rescale_factor` in `preprocess`. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions. Can be overidden by `do_resize` in `preprocess`. size (`Dict[str, int]` *optional*, defaults to `{"height": 384, "width": 512}`): Size of the image after resizing. Size of the image after resizing. If `keep_aspect_ratio` is `True`, the image is resized by choosing the smaller of the height and width scaling factors and using it for both dimensions. If `ensure_multiple_of` is also set, the image is further resized to a size that is a multiple of this value. Can be overidden by `size` in `preprocess`. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`): Defines the resampling filter to use if resizing the image. Can be overidden by `resample` in `preprocess`. keep_aspect_ratio (`bool`, *optional*, defaults to `True`): If `True`, the image is resized by choosing the smaller of the height and width scaling factors and using it for both dimensions. This ensures that the image is scaled down as little as possible while still fitting within the desired output size. In case `ensure_multiple_of` is also set, the image is further resized to a size that is a multiple of this value by flooring the height and width to the nearest multiple of this value. Can be overidden by `keep_aspect_ratio` in `preprocess`. ensure_multiple_of (`int`, *optional*, defaults to 32): If `do_resize` is `True`, the image is resized to a size that is a multiple of this value. Works by flooring the height and width to the nearest multiple of this value. Works both with and without `keep_aspect_ratio` being set to `True`. Can be overidden by `ensure_multiple_of` in `preprocess`. """ model_input_names = ["pixel_values"] def __init__( self, do_pad: bool = True, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BILINEAR, keep_aspect_ratio: bool = True, ensure_multiple_of: int = 32, **kwargs, ) -> None: super().__init__(**kwargs) self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_pad = do_pad self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD size = size if size is not None else {"height": 384, "width": 512} size = get_size_dict(size) self.do_resize = do_resize self.size = size self.keep_aspect_ratio = keep_aspect_ratio self.ensure_multiple_of = ensure_multiple_of self.resample = resample def resize( self, image: np.ndarray, size: Dict[str, int], keep_aspect_ratio: bool = False, ensure_multiple_of: int = 1, resample: PILImageResampling = PILImageResampling.BILINEAR, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """ Resize an image to target size `(size["height"], size["width"])`. If `keep_aspect_ratio` is `True`, the image is resized to the largest possible size such that the aspect ratio is preserved. If `ensure_multiple_of` is set, the image is resized to a size that is a multiple of this value. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Target size of the output image. keep_aspect_ratio (`bool`, *optional*, defaults to `False`): If `True`, the image is resized to the largest possible size such that the aspect ratio is preserved. ensure_multiple_of (`int`, *optional*, defaults to 1): The image is resized to a size that is a multiple of this value. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Defines the resampling filter to use if resizing the image. Otherwise, the image is resized to size specified in `size`. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ if input_data_format is None: input_data_format = infer_channel_dimension_format(image) data_format = data_format if data_format is not None else input_data_format size = get_size_dict(size) if "height" not in size or "width" not in size: raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}") output_size = get_resize_output_image_size( image, output_size=(size["height"], size["width"]), keep_aspect_ratio=keep_aspect_ratio, multiple=ensure_multiple_of, input_data_format=input_data_format, ) height, width = output_size torch_image = torch.from_numpy(image).unsqueeze(0) torch_image = torch_image.permute(0, 3, 1, 2) if input_data_format == "channels_last" else torch_image # TODO support align_corners=True in image_transforms.resize requires_backends(self, "torch") resample_to_mode = {PILImageResampling.BILINEAR: "bilinear", PILImageResampling.BICUBIC: "bicubic"} mode = resample_to_mode[resample] resized_image = nn.functional.interpolate( torch_image, (int(height), int(width)), mode=mode, align_corners=True ) resized_image = resized_image.squeeze().numpy() resized_image = to_channel_dimension_format( resized_image, data_format, input_channel_dim=ChannelDimension.FIRST ) return resized_image def pad_image( self, image: np.array, mode: PaddingMode = PaddingMode.REFLECT, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ): """ Pad an image as done in the original ZoeDepth implementation. Padding fixes the boundary artifacts in the output depth map. Boundary artifacts are sometimes caused by the fact that the model is trained on NYU raw dataset which has a black or white border around the image. This function pads the input image and crops the prediction back to the original size / view. Args: image (`np.ndarray`): Image to pad. mode (`PaddingMode`): The padding mode to use. Can be one of: - `"constant"`: pads with a constant value. - `"reflect"`: pads with the reflection of the vector mirrored on the first and last values of the vector along each axis. - `"replicate"`: pads with the replication of the last value on the edge of the array along each axis. - `"symmetric"`: pads with the reflection of the vector mirrored along the edge of the array. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ height, width = get_image_size(image, input_data_format) pad_height = int(np.sqrt(height / 2) * 3) pad_width = int(np.sqrt(width / 2) * 3) return pad( image, padding=((pad_height, pad_height), (pad_width, pad_width)), mode=mode, data_format=data_format, input_data_format=input_data_format, ) @filter_out_non_signature_kwargs() def preprocess( self, images: ImageInput, do_pad: bool = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_resize: bool = None, size: int = None, keep_aspect_ratio: bool = None, ensure_multiple_of: int = None, resample: PILImageResampling = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: ChannelDimension = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_pad (`bool`, *optional*, defaults to `self.do_pad`): Whether to pad the input image. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after resizing. If `keep_aspect_ratio` is `True`, he image is resized by choosing the smaller of the height and width scaling factors and using it for both dimensions. If `ensure_multiple_of` is also set, the image is further resized to a size that is a multiple of this value. keep_aspect_ratio (`bool`, *optional*, defaults to `self.keep_aspect_ratio`): If `True` and `do_resize=True`, the image is resized by choosing the smaller of the height and width scaling factors and using it for both dimensions. This ensures that the image is scaled down as little as possible while still fitting within the desired output size. In case `ensure_multiple_of` is also set, the image is further resized to a size that is a multiple of this value by flooring the height and width to the nearest multiple of this value. ensure_multiple_of (`int`, *optional*, defaults to `self.ensure_multiple_of`): If `do_resize` is `True`, the image is resized to a size that is a multiple of this value. Works by flooring the height and width to the nearest multiple of this value. Works both with and without `keep_aspect_ratio` being set to `True`. Can be overidden by `ensure_multiple_of` in `preprocess`. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only has an effect if `do_resize` is set to `True`. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size size = get_size_dict(size) keep_aspect_ratio = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio ensure_multiple_of = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of resample = resample if resample is not None else self.resample do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std do_pad = do_pad if do_pad is not None else self.do_pad images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_resize=do_resize, size=size, resample=resample, ) # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if do_rescale and is_scaled_image(images[0]): logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) if do_rescale: images = [ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) for image in images ] if do_pad: images = [self.pad_image(image=image, input_data_format=input_data_format) for image in images] if do_resize: images = [ self.resize( image=image, size=size, resample=resample, keep_aspect_ratio=keep_aspect_ratio, ensure_multiple_of=ensure_multiple_of, input_data_format=input_data_format, ) for image in images ] if do_normalize: images = [ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) for image in images ] images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors) def post_process_depth_estimation( self, outputs: "ZoeDepthDepthEstimatorOutput", source_sizes: Optional[Union[TensorType, List[Tuple[int, int]], None]] = None, target_sizes: Optional[Union[TensorType, List[Tuple[int, int]], None]] = None, outputs_flipped: Optional[Union["ZoeDepthDepthEstimatorOutput", None]] = None, do_remove_padding: Optional[Union[bool, None]] = None, ) -> List[Dict[str, TensorType]]: """ Converts the raw output of [`ZoeDepthDepthEstimatorOutput`] into final depth predictions and depth PIL images. Only supports PyTorch. Args: outputs ([`ZoeDepthDepthEstimatorOutput`]): Raw outputs of the model. source_sizes (`TensorType` or `List[Tuple[int, int]]`, *optional*): Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the source size (height, width) of each image in the batch before preprocessing. This argument should be dealt as "required" unless the user passes `do_remove_padding=False` as input to this function. target_sizes (`TensorType` or `List[Tuple[int, int]]`, *optional*): Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size (height, width) of each image in the batch. If left to None, predictions will not be resized. outputs_flipped ([`ZoeDepthDepthEstimatorOutput`], *optional*): Raw outputs of the model from flipped input (averaged out in the end). do_remove_padding (`bool`, *optional*): By default ZoeDepth addes padding equal to `int(√(height / 2) * 3)` (and similarly for width) to fix the boundary artifacts in the output depth map, so we need remove this padding during post_processing. The parameter exists here in case the user changed the image preprocessing to not include padding. Returns: `List[Dict[str, TensorType]]`: A list of dictionaries of tensors representing the processed depth predictions. """ requires_backends(self, "torch") predicted_depth = outputs.predicted_depth if (outputs_flipped is not None) and (predicted_depth.shape != outputs_flipped.predicted_depth.shape): raise ValueError("Make sure that `outputs` and `outputs_flipped` have the same shape") if (target_sizes is not None) and (len(predicted_depth) != len(target_sizes)): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the predicted depth" ) if do_remove_padding is None: do_remove_padding = self.do_pad if source_sizes is None and do_remove_padding: raise ValueError( "Either `source_sizes` should be passed in, or `do_remove_padding` should be set to False" ) if (source_sizes is not None) and (len(predicted_depth) != len(source_sizes)): raise ValueError( "Make sure that you pass in as many source image sizes as the batch dimension of the logits" ) if outputs_flipped is not None: predicted_depth = (predicted_depth + torch.flip(outputs_flipped.predicted_depth, dims=[-1])) / 2 predicted_depth = predicted_depth.unsqueeze(1) # Zoe Depth model adds padding around the images to fix the boundary artifacts in the output depth map # The padding length is `int(np.sqrt(img_h/2) * fh)` for the height and similar for the width # fh (and fw respectively) are equal to '3' by default # Check [here](https://github.com/isl-org/ZoeDepth/blob/edb6daf45458569e24f50250ef1ed08c015f17a7/zoedepth/models/depth_model.py#L57) # for the original implementation. # In this section, we remove this padding to get the final depth image and depth prediction padding_factor_h = padding_factor_w = 3 results = [] target_sizes = [None] * len(predicted_depth) if target_sizes is None else target_sizes source_sizes = [None] * len(predicted_depth) if source_sizes is None else source_sizes for depth, target_size, source_size in zip(predicted_depth, target_sizes, source_sizes): # depth.shape = [1, H, W] if source_size is not None: pad_h = pad_w = 0 if do_remove_padding: pad_h = int(np.sqrt(source_size[0] / 2) * padding_factor_h) pad_w = int(np.sqrt(source_size[1] / 2) * padding_factor_w) depth = nn.functional.interpolate( depth.unsqueeze(1), size=[source_size[0] + 2 * pad_h, source_size[1] + 2 * pad_w], mode="bicubic", align_corners=False, ) if pad_h > 0: depth = depth[:, :, pad_h:-pad_h, :] if pad_w > 0: depth = depth[:, :, :, pad_w:-pad_w] depth = depth.squeeze(1) # depth.shape = [1, H, W] if target_size is not None: target_size = [target_size[0], target_size[1]] depth = nn.functional.interpolate( depth.unsqueeze(1), size=target_size, mode="bicubic", align_corners=False ) depth = depth.squeeze() # depth.shape = [H, W] results.append({"predicted_depth": depth}) return results
class_definition
2,964
28,036
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/zoedepth/image_processing_zoedepth.py
null
5,499