text
stringlengths 31
243k
| type
stringclasses 1
value | start
int64 36
275k
| end
int64 286
280k
| depth
int64 0
1
| filepath
stringlengths 85
188
| parent_class
stringclasses 3
values | class_index
int64 0
10.8k
|
---|---|---|---|---|---|---|---|
class Cohere2ForCausalLM(CohereForCausalLM):
def __init__(self, config: Cohere2Config):
super().__init__(config)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
num_logits_to_keep=None,
**kwargs,
):
# Overwritten: has a special cache type, `HybridCache`
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
# Exception 1: when passing input_embeds, input_ids may be missing entries
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
if past_key_values is not None:
if inputs_embeds is not None: # Exception 1
input_ids = input_ids[:, -cache_position.shape[0] :]
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
input_ids = input_ids[:, cache_position]
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s
# `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride
# during the decoding. Here, simply using `.contiguous()` is not sufficient as in the
# batch size = 1 case, `position_ids` is already contiguous but with varying stride
# which retriggers a capture.
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and cache_position[0] == 0:
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
else:
# The clone here is for the same reason as for `position_ids`.
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
if (
isinstance(past_key_values, HybridCache)
and attention_mask.ndim == 2
and not self.config._attn_implementation == "flash_attention_2"
):
if model_inputs["inputs_embeds"] is not None:
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
device = model_inputs["inputs_embeds"].device
else:
batch_size, sequence_length = model_inputs["input_ids"].shape
device = model_inputs["input_ids"].device
attention_mask = self.model._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=past_key_values.get_max_cache_shape(),
dtype=self.lm_head.weight.dtype,
device=device,
cache_position=cache_position,
batch_size=batch_size,
)
if num_logits_to_keep is not None:
model_inputs["num_logits_to_keep"] = num_logits_to_keep
model_inputs.update(
{
"position_ids": position_ids,
"cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
}
)
return model_inputs
|
class_definition
| 24,606 | 28,518 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/cohere2/modular_cohere2.py
| null | 5,600 |
class Cohere2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`CohereModel`]. It is used to instantiate an Cohere
model according to the specified arguments, defining the model architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information. Instantiating a configuration
with the defaults will yield a similar configuration to that of the [CohereForAI/c4ai-command-r-v01](https://huggingface.co/CohereForAI/c4ai-command-r-v01) model.
Args:
vocab_size (`int`, *optional*, defaults to 256000):
Vocabulary size of the Cohere model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`CohereModel`]
hidden_size (`int`, *optional*, defaults to 8192):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 22528):
Dimension of the MLP representations.
logit_scale (`float`, *optional*, defaults to 0.0625):
The scaling factor for the output logits.
num_hidden_layers (`int`, *optional*, defaults to 40):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 64):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 8192):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 5):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 255001):
End of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
sliding_window (`int`, *optional*, defaults to 4096):
Size of the sliding window attention context.
sliding_window_pattern (`int`, *optional*, defaults to 4):
Pattern for the sliding window attention.
cache_implementation (`str`, *optional*, defaults to `"hybrid"`): the cache type to be used with `generate`.
```python
>>> from transformers import Cohere2Model, Cohere2Config
>>> # Initializing a Cohere Nextmodel configuration
>>> configuration = Cohere2Config()
>>> # Initializing a model from the Cohere2 configuration
>>> model = Cohere2Model(configuration) # doctest: +SKIP
>>> # Accessing the model configuration
>>> configuration = model.config # doctest: +SKIP
```
"""
model_type = "cohere2"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=256000,
hidden_size=8192,
intermediate_size=22528,
logit_scale=0.0625,
num_hidden_layers=40,
num_attention_heads=64,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=8192,
initializer_range=0.02,
layer_norm_eps=1e-5,
use_cache=True,
pad_token_id=0,
bos_token_id=5,
eos_token_id=255001,
tie_word_embeddings=True,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
sliding_window=4096,
sliding_window_pattern=4,
cache_implementation="hybrid",
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.logit_scale = logit_scale
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.sliding_window = sliding_window
self.sliding_window_pattern = sliding_window_pattern
# Need to specify head_dim in the config so it can be used in the attention forward functions
self.head_dim = hidden_size // num_attention_heads
self.cache_implementation = cache_implementation
# Validate the correctness of rotary position embeddings parameters
rope_config_validation(self)
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
|
class_definition
| 1,568 | 11,597 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/cohere2/configuration_cohere2.py
| null | 5,601 |
class DimensionInfo:
"""Wrapper for dimension info."""
batch_size: int # batch size
seq_len: int # token length
block_size: int # block size
num_heads: int # num heads
hidden_dim: int # hidden dim
dim_per_head: int # dim per head
num_blocks: int # num blocks
global_len: int # global length
padded_seq_len: int # padded token seq length
# Note: Compared to the original Flax implementation, we will pad the token representations to
# a multiple of block size at the start of the encoder layers, so T=P always.
|
class_definition
| 1,600 | 2,174 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus_x/modeling_pegasus_x.py
| null | 5,602 |
class PegasusXScaledWordEmbedding(nn.Embedding):
"""
This module overrides nn.Embeddings' forward by multiplying with embeddings scale.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: Optional[float] = 1.0):
super().__init__(num_embeddings, embedding_dim, padding_idx)
self.embed_scale = embed_scale
def forward(self, input_ids: torch.Tensor):
return super().forward(input_ids) * self.embed_scale
|
class_definition
| 2,953 | 3,442 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus_x/modeling_pegasus_x.py
| null | 5,603 |
class PegasusXSinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length."""
def __init__(self, embed_dim, max_scale: int = 10000.0):
super().__init__()
self.embed_dim = embed_dim
self.max_scale = max_scale
@torch.no_grad()
def forward(self, input_embeds: torch.Tensor, past_key_values_length: int = 0) -> torch.Tensor:
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
batch_size, seq_len = input_embeds.shape[:2]
positions = torch.arange(
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=input_embeds.device
)[:, None]
pe = torch.zeros((seq_len, self.embed_dim), device=input_embeds.device, dtype=input_embeds.dtype)
half_d_feature = self.embed_dim // 2
div_term = torch.exp(
torch.arange(half_d_feature, device=input_embeds.device, dtype=torch.int64).type_as(input_embeds)
* -(np.log(float(self.max_scale)) / (half_d_feature - 1))
)
pe[:, :half_d_feature] = torch.sin(positions * div_term)
pe[:, half_d_feature:] = torch.cos(positions * div_term)
return pe[None].expand(batch_size, -1, -1)
|
class_definition
| 3,445 | 4,699 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus_x/modeling_pegasus_x.py
| null | 5,604 |
class PegasusXAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[PegasusXConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
|
class_definition
| 4,789 | 12,187 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus_x/modeling_pegasus_x.py
| null | 5,605 |
class PegasusXGlobalLocalAttention(nn.Module):
"""Global + Local attention. For use with Encoder only."""
def __init__(
self,
embed_dim: int,
num_heads: int,
block_size: int,
dropout: float = 0.0,
is_decoder: bool = False,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.block_size = block_size
self.dropout = dropout
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=False)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=False)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=False)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
token_hidden_states: torch.Tensor,
global_hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
"""Input shape: Batch x Time x Channel"""
dim = DimensionInfo(
batch_size=token_hidden_states.shape[0],
seq_len=token_hidden_states.shape[1],
block_size=self.block_size,
num_heads=self.num_heads,
hidden_dim=token_hidden_states.shape[2],
dim_per_head=self.head_dim,
num_blocks=token_hidden_states.shape[1] // self.block_size,
global_len=global_hidden_states.shape[1],
padded_seq_len=token_hidden_states.shape[1],
)
# [batch_size, num_heads, padded_seq_len, dim_per_head]
local_q = self._shape(
self.q_proj(token_hidden_states) * self.scaling,
seq_len=dim.padded_seq_len,
bsz=dim.batch_size,
)
local_k = self._shape(
self.k_proj(token_hidden_states),
seq_len=dim.padded_seq_len,
bsz=dim.batch_size,
)
local_v = self._shape(
self.v_proj(token_hidden_states),
seq_len=dim.padded_seq_len,
bsz=dim.batch_size,
)
# [batch_size, num_heads, global_len, dim_per_head]
global_q = self._shape(
self.q_proj(global_hidden_states) * self.scaling,
seq_len=dim.global_len,
bsz=dim.batch_size,
)
global_k = self._shape(
self.k_proj(global_hidden_states),
seq_len=dim.global_len,
bsz=dim.batch_size,
)
global_v = self._shape(
self.v_proj(global_hidden_states),
seq_len=dim.global_len,
bsz=dim.batch_size,
)
global_attn_output, global_attn_probs = self.compute_global_attention_representations(
global_q=global_q,
global_k=global_k,
global_v=global_v,
local_k=local_k,
local_v=local_v,
mask=attention_mask,
dim=dim,
)
local_attn_output, local_attn_probs = self.compute_local_attention_representations(
global_k=global_k,
global_v=global_v,
local_q=local_q,
local_k=local_k,
local_v=local_v,
mask=attention_mask,
dim=dim,
)
# [batch_size, global_len, hidden_dim]
global_attn_output = (
global_attn_output.transpose(1, 2).contiguous().view(dim.batch_size, dim.global_len, dim.hidden_dim)
)
# [batch_size, global_len, hidden_dim]
global_attn_output = self.out_proj(global_attn_output)
# [batch_size, num_heads, block_size, num_heads, dim_per_head]
local_attn_output = local_attn_output.permute(0, 2, 3, 1, 4).contiguous()
# [batch_size, padded_seq_len, hidden_dim]
local_attn_output = local_attn_output.view(dim.batch_size, dim.padded_seq_len, dim.hidden_dim)
# [batch_size, padded_seq_len, hidden_dim]
local_attn_output = self.out_proj(local_attn_output)
if output_attentions:
attn_probs = {"global": global_attn_probs, "local": local_attn_probs}
else:
attn_probs = None
return local_attn_output, global_attn_output, attn_probs
def compute_global_attention_representations(
self, global_q, global_k, global_v, local_k, local_v, mask, dim: DimensionInfo
):
"""Compute attention representations for global tokens.
Global tokens will attend to both global tokens as well as all input sequence tokens. Because the input
sequence tokens are arranged in blocks for local attention, we unblock them and compute attention.
Args:
global_q (`torch.FloatTensor`) of shape [batch_size, num_heads, global_len, dim_per_head]:
query vectors from global tokens
global_k (`torch.FloatTensor`) of shape [batch_size, num_heads, global_len, dim_per_head]:
key vectors from global tokens
global_v (`torch.FloatTensor`) of shape [batch_size, num_heads, global_len, dim_per_head]:
value vectors from global tokens
local_k (`torch.FloatTensor`) of shape [batch_size, num_heads, padded_seq_len, dim_per_head]:
key vectors from local tokens
local_v (`torch.FloatTensor`) of shape [batch_size, num_heads, padded_seq_len, dim_per_head]:
value vectors from local tokens
mask (`torch.FloatTensor`) of shape [batch_size, padded_seq_len]: attention mask
dim (DimensionInfo): DimensionInfo wrapper for dimensions
Returns:
output of shape `[batch_sizes, length, features]`. where length will be padded to a multiple of block_size
"""
# [batch_size, num_heads, global_len+padded_seq_len, dim_per_head]
global_and_local_k = torch.cat([global_k, local_k], dim=2)
# [batch_size, num_heads, global_len+padded_seq_len, dim_per_head]
global_and_local_v = torch.cat([global_v, local_v], dim=2)
# [batch_size, global_len+padded_seq_len]
extended_mask = nn.functional.pad(mask, pad=(dim.global_len, 0), value=0)
# [batch_size, num_heads, global_len, global_len+padded_seq_len]
attn_weights = torch.einsum("BHGF,BHXF->BHGX", global_q, global_and_local_k)
attn_weights = attn_weights + extended_mask[:, None, None, :]
attn_probs = nn.functional.softmax(attn_weights, dim=-1)
attn_probs = nn.functional.dropout(attn_probs, p=self.dropout, training=self.training)
# [batch_size, num_heads, global_len, F]
attn_output = torch.einsum("BHGX,BHXF->BHGF", attn_probs, global_and_local_v)
return attn_output, attn_probs
def compute_local_attention_representations(
self, global_k, global_v, local_q, local_k, local_v, mask, dim: DimensionInfo
):
"""Compute attention representations for local tokens.
Local tokens will attend to both global tokens as well as all other tokens within the same local block. Hence,
we need to tile and concatenate the global tokens to every local block
Args:
global_k (`torch.FloatTensor`) of shape [batch_size, num_heads, global_len, dim_per_head]:
key vectors from global tokens
global_v (`torch.FloatTensor`) of shape [batch_size, num_heads, global_len, dim_per_head]:
value vectors from global tokens
local_q (`torch.FloatTensor`) of shape [batch_size, num_heads, padded_seq_len, dim_per_head]:
query vectors from local tokens
local_k (`torch.FloatTensor`) of shape [batch_size, num_heads, padded_seq_len, dim_per_head]:
key vectors from local tokens
local_v (`torch.FloatTensor`) of shape [batch_size, num_heads, padded_seq_len, dim_per_head]:
value vectors from local tokens
mask (`torch.FloatTensor`) of shape [batch_size, padded_seq_len]: attention mask
dim (DimensionInfo): DimensionInfo wrapper for dimensions
Returns:
output of shape `[batch_sizes, length, features]`. where length will be padded to a multiple of block_size
"""
# [batch_size, num_heads, num_blocks, block_size, dim_per_head]
blocked_local_q = local_q.view(dim.batch_size, dim.num_heads, dim.num_blocks, dim.block_size, dim.dim_per_head)
# [batch_size, num_heads, num_blocks, block_size, dim_per_head]
blocked_local_k = local_k.view(dim.batch_size, dim.num_heads, dim.num_blocks, dim.block_size, dim.dim_per_head)
# [batch_size, num_heads, num_blocks, block_size, dim_per_head]
blocked_local_v = local_v.view(dim.batch_size, dim.num_heads, dim.num_blocks, dim.block_size, dim.dim_per_head)
# [batch_size, num_blocks, global_len+block_size]
extended_mask = nn.functional.pad(
mask.view(dim.batch_size, dim.num_blocks, dim.block_size),
pad=(dim.global_len, 0),
value=0,
)
# [batch_size, num_heads, num_blocks, block_size, global_len]
blocked_local2global = torch.einsum("BHNKF,BHGF->BHNKG", blocked_local_q, global_k)
# [batch_size, num_heads, num_blocks, block_size, block_size]
blocked_local2local = torch.einsum("BHNKF,BHNXF->BHNKX", blocked_local_q, blocked_local_k)
# [batch_size, num_heads, num_blocks, block_size, global_len+block_size]
attn_weights = torch.cat([blocked_local2global, blocked_local2local], dim=-1)
attn_weights = attn_weights + extended_mask[:, None, :, None, :]
attn_probs = nn.functional.softmax(attn_weights, dim=-1)
attn_probs = nn.functional.dropout(attn_probs, p=self.dropout, training=self.training)
# [batch_size, num_heads, num_blocks, block_size, global_len]
local2global_attn_probs = attn_probs[:, :, :, :, : dim.global_len]
# [batch_size, num_heads, num_blocks, block_size, block_size]
local2local_attn_probs = attn_probs[:, :, :, :, dim.global_len :]
# [batch_size, num_heads, num_blocks, block_size, dim_per_head]
local2global_attn_output = torch.einsum("BHNKG,BHGF->BHNKF", local2global_attn_probs, global_v)
# [batch_size, num_heads, num_blocks, block_size, dim_per_head]
local2local_attn_output = torch.einsum("BHNKX,BHNXF->BHNKF", local2local_attn_probs, blocked_local_v)
# [batch_size, num_heads, num_blocks, block_size, dim_per_head]
attn_output = local2global_attn_output + local2local_attn_output
return attn_output, attn_probs
|
class_definition
| 12,190 | 23,331 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus_x/modeling_pegasus_x.py
| null | 5,606 |
class PegasusXEncoderLayer(nn.Module):
def __init__(self, stagger_blocks_this_layer: bool, config: PegasusXConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = PegasusXGlobalLocalAttention(
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
block_size=config.block_size,
dropout=config.attention_dropout,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.global_self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
self.stagger_blocks_this_layer = stagger_blocks_this_layer
self.block_size = config.block_size
def forward(
self,
hidden_states: torch.Tensor,
global_hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
output_attentions: bool = False,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape *(seq_len, batch, embed_dim)*
global_hidden_states (`torch.FloatTensor`): global token hidden states
*(seq_len, num_global_tokens, embed_dim)*
attention_mask (`torch.FloatTensor`): attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
global_residual = global_hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
global_hidden_states = self.global_self_attn_layer_norm(global_hidden_states)
if self.stagger_blocks_this_layer:
# Pad the blocks to simulate staggering
hidden_states, attention_mask = self.pad_local_tokens(
hidden_states=hidden_states, attention_mask=attention_mask, block_size=self.block_size
)
hidden_states, global_hidden_states, attn_weights = self.self_attn(
token_hidden_states=hidden_states,
global_hidden_states=global_hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
if self.stagger_blocks_this_layer:
# Undo the padding
hidden_states = self.unpad_local_tokens(padded_hidden_states=hidden_states, block_size=self.block_size)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
global_hidden_states = nn.functional.dropout(global_hidden_states, p=self.dropout, training=self.training)
global_hidden_states = global_residual + global_hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
global_residual = global_hidden_states
global_hidden_states = self.final_layer_norm(global_hidden_states)
global_hidden_states = self.activation_fn(self.fc1(global_hidden_states))
global_hidden_states = nn.functional.dropout(
global_hidden_states, p=self.activation_dropout, training=self.training
)
global_hidden_states = self.fc2(global_hidden_states)
global_hidden_states = nn.functional.dropout(global_hidden_states, p=self.dropout, training=self.training)
global_hidden_states = global_residual + global_hidden_states
outputs = (hidden_states, global_hidden_states)
if output_attentions:
outputs += (attn_weights,)
return outputs
@classmethod
def pad_local_tokens(cls, hidden_states, attention_mask, block_size):
# hidden_states: [batch_size, seq_len, hidden_dim]
pad_size = block_size // 2
mask_min_value = torch.finfo(hidden_states.dtype).min
padded_hidden_states = torch.nn.functional.pad(
hidden_states,
pad=(0, 0, pad_size, pad_size),
)
padded_mask = torch.nn.functional.pad(
attention_mask,
pad=(pad_size, pad_size),
value=mask_min_value,
)
return padded_hidden_states, padded_mask
@classmethod
def unpad_local_tokens(cls, padded_hidden_states, block_size):
# padded_hidden_states: [batch_size, padded seq_len, hidden_dim]
pad_size = block_size // 2
return padded_hidden_states[:, pad_size:-pad_size, :]
|
class_definition
| 23,334 | 28,667 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus_x/modeling_pegasus_x.py
| null | 5,607 |
class PegasusXDecoderLayer(nn.Module):
def __init__(self, config: PegasusXConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = PegasusXAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
bias=False,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = PegasusXAttention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
bias=False,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape *(seq_len, batch, embed_dim)*
attention_mask (`torch.FloatTensor`): attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape *(seq_len, batch, embed_dim)*
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache: Whether to us KV cache for decoding
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
|
class_definition
| 28,670 | 33,968 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus_x/modeling_pegasus_x.py
| null | 5,608 |
class PegasusXPreTrainedModel(PreTrainedModel):
config_class = PegasusXConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = [r"PegasusXEncoderLayer", r"PegasusXDecoderLayer"]
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
|
class_definition
| 33,971 | 34,561 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus_x/modeling_pegasus_x.py
| null | 5,609 |
class PegasusXEncoder(PegasusXPreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`PegasusXEncoderLayer`].
Args:
config: PegasusXConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: PegasusXConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
embed_dim = config.d_model
padding_idx = config.pad_token_id
self.max_source_positions = config.max_position_embeddings
embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = PegasusXScaledWordEmbedding(
config.vocab_size, embed_dim, padding_idx, embed_scale=embed_scale
)
self.embed_global = nn.Embedding(config.num_global_tokens, embed_dim)
self.embed_positions = PegasusXSinusoidalPositionalEmbedding(embed_dim)
self.layers = nn.ModuleList(
[
PegasusXEncoderLayer(
stagger_blocks_this_layer=i % 2 == 1 and config.stagger_local_blocks, config=config
)
for i in range(config.encoder_layers)
]
)
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def resize_position_embeddings(self, new_num_position_embeddings: int):
"""
Resizes position embeddings matrix of the model if `new_num_position_embeddings !=
config.max_position_embeddings`.
Arguments:
new_num_position_embeddings (`int`):
The number of new position embeddings. If position embeddings are learned, increasing the size will add
newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
add correct vectors at the end following the position encoding algorithm, whereas reducing the size
will remove vectors from the end.
"""
logger.info(f"Setting `config.max_position_embeddings={new_num_position_embeddings}`...")
self.config.max_position_embeddings = new_num_position_embeddings
self.embed_positions = PegasusXSinusoidalPositionalEmbedding(self.config.d_model)
self.embed_positions.to(self.device)
def get_position_embeddings(self) -> nn.Embedding:
"""
Returns the position embeddings matrix
"""
return self.embed_positions
def forward(
self,
input_ids=None,
attention_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
embed_pos = self.embed_positions(inputs_embeds)
hidden_states = inputs_embeds + embed_pos
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
batch_size, seq_len, _ = hidden_states.shape
# Setup mask
if attention_mask is None:
attention_mask = torch.ones(*input_shape, dtype=inputs_embeds.dtype, device=inputs_embeds.device)
attention_mask = attention_mask.to(dtype=hidden_states.dtype)
mask_min_value = torch.finfo(hidden_states.dtype).min
inverted_mask = 1.0 - attention_mask
attention_mask = inverted_mask.masked_fill(
inverted_mask.to(torch.bool),
mask_min_value,
)
# padding to block_size
if seq_len % self.config.block_size != 0:
pad_len = self.config.block_size - seq_len % self.config.block_size
hidden_states = nn.functional.pad(hidden_states, pad=(0, 0, 0, pad_len), value=0)
attention_mask = nn.functional.pad(attention_mask, pad=(0, pad_len), value=mask_min_value)
# Global tokens
global_hidden_states = self.embed_global(
torch.arange(self.config.num_global_tokens, device=hidden_states.device)[None].expand(batch_size, -1)
)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
to_drop = False
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop: # skip the layer
to_drop = True
if to_drop:
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
global_hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
global_hidden_states,
attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
global_hidden_states = layer_outputs[1]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[2],)
# Undo padding-to-block-size
hidden_states = hidden_states[:, :seq_len]
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
encoder_states = encoder_states + ((hidden_states, global_hidden_states),)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
|
class_definition
| 41,794 | 51,237 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus_x/modeling_pegasus_x.py
| null | 5,610 |
class PegasusXDecoder(PegasusXPreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`PegasusDecoderLayer`]
Args:
config: PegasusXConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: PegasusXConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.max_target_positions = config.max_position_embeddings
embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
padding_idx = config.pad_token_id
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = PegasusXScaledWordEmbedding(
config.vocab_size, config.d_model, padding_idx=padding_idx, embed_scale=embed_scale
)
self.embed_positions = PegasusXSinusoidalPositionalEmbedding(config.d_model)
self.layers = nn.ModuleList([PegasusXDecoderLayer(config) for _ in range(config.decoder_layers)])
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of
shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing
`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more
control over how to convert `input_ids` indices into associated vectors than the model's internal
embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# embed positions
positions = self.embed_positions(inputs_embeds, past_key_values_length)
positions = positions.to(inputs_embeds.device)
hidden_states = inputs_embeds + positions
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
|
class_definition
| 51,240 | 61,890 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus_x/modeling_pegasus_x.py
| null | 5,611 |
class PegasusXModel(PegasusXPreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: PegasusXConfig):
super().__init__(config)
vocab_size = config.vocab_size
embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
padding_idx = config.pad_token_id
self.shared = PegasusXScaledWordEmbedding(
vocab_size, config.d_model, padding_idx=padding_idx, embed_scale=embed_scale
)
self.encoder = PegasusXEncoder(config, self.shared)
self.decoder = PegasusXDecoder(config, self.shared)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, value):
self.shared = value
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def resize_position_embeddings(self, new_num_position_embeddings: int):
"""
Resizes position embeddings matrix of the model if `new_num_position_embeddings !=
config.max_position_embeddings`.
Arguments:
new_num_position_embeddings (`int`):
The number of new position embeddings. If position embeddings are learned, increasing the size will add
newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
add correct vectors at the end following the position encoding algorithm, whereas reducing the size
will remove vectors from the end.
"""
self.config.max_position_embeddings = new_num_position_embeddings
self.encoder.resize_position_embeddings(new_num_position_embeddings)
self.decoder.resize_position_embeddings(new_num_position_embeddings)
def get_position_embeddings(self) -> Tuple[nn.Embedding]:
"""
Returns the position embeddings matrix
"""
return (self.encoder.get_position_embeddings(), self.decoder.get_position_embeddings())
@add_start_docstrings_to_model_forward(PEGASUS_X_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.Tensor] = None,
decoder_attention_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
decoder_inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, PegasusModel
>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-x-large")
>>> model = PegasusModel.from_pretrained("google/pegasus-x-large")
>>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt")
>>> decoder_inputs = tokenizer("Studies show that", return_tensors="pt")
>>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_inputs.input_ids)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 4, 1024]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
|
class_definition
| 62,044 | 68,572 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus_x/modeling_pegasus_x.py
| null | 5,612 |
class PegasusXForConditionalGeneration(PegasusXPreTrainedModel, GenerationMixin):
base_model_prefix = "model"
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
def __init__(self, config: PegasusXConfig):
super().__init__(config)
self.model = PegasusXModel(config)
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def resize_position_embeddings(self, new_num_position_embeddings: int):
"""
Resizes position embeddings matrix of the model if `new_num_position_embeddings !=
config.max_position_embeddings`.
Arguments:
new_num_position_embeddings (`int`):
The number of new position embeddings. If position embeddings are learned, increasing the size will add
newly initialized vectors at the end, whereas reducing the size will remove vectors from the end. If
position embeddings are not learned (*e.g.* sinusoidal position embeddings), increasing the size will
add correct vectors at the end following the position encoding algorithm, whereas reducing the size
will remove vectors from the end.
"""
self.config.max_position_embeddings = new_num_position_embeddings
self.model.encoder.resize_position_embeddings(new_num_position_embeddings)
self.model.decoder.resize_position_embeddings(new_num_position_embeddings)
def get_position_embeddings(self) -> Tuple[nn.Embedding]:
"""
Returns the position embeddings matrix
"""
return (self.model.encoder.get_position_embeddings(), self.model.decoder.get_position_embeddings())
@add_start_docstrings_to_model_forward(PEGASUS_X_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@add_end_docstrings(PEGASUS_X_GENERATION_EXAMPLE)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.Tensor] = None,
decoder_attention_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
decoder_inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0])
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
+ layer_past[2:],
)
return reordered_past
|
class_definition
| 68,690 | 74,977 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus_x/modeling_pegasus_x.py
| null | 5,613 |
class PegasusXDecoderWrapper(PegasusXPreTrainedModel):
"""
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
used in combination with the [`EncoderDecoderModel`] framework.
"""
def __init__(self, config):
super().__init__(config)
self.decoder = PegasusXDecoder(config)
def forward(self, *args, **kwargs):
return self.decoder(*args, **kwargs)
|
class_definition
| 75,072 | 75,525 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus_x/modeling_pegasus_x.py
| null | 5,614 |
class PegasusXConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`PegasusXModel`]. It is used to instantiate a
PEGASUS-X model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the PEGASUS-X
[google/pegasus-x-large](https://huggingface.co/google/pegasus-x-large) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 96103):
Vocabulary size of the PEGASUS-X model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`PegasusXModel`].
d_model (`int`, *optional*, defaults to 1024):
Dimension of the layers and the pooler layer.
encoder_layers (`int`, *optional*, defaults to 16):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 16):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
max_position_embeddings (`int`, *optional*, defaults to 16384):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models)
forced_eos_token_id (`int`, *optional*, defaults to 1):
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
`eos_token_id`.
num_global_tokens (`int`, *optional*, defaults to 128):
Number of global tokens to use for the encoder
block_size (`int`, *optional*, defaults to 512):
Block size for encoder local attention. Sequence length should be an exact multiple of block size.
block_size must be a multiple of 2 if stagger_local_block is True
stagger_local_block (`bool`, *optional*, defaults to `True`):
Whether to stagger every other local attention by half a block
Example:
```python
>>> from transformers import PegasusXConfig, PegasusXModel
>>> # Initializing a PEGASUS google/pegasus-x-large style configuration
>>> configuration = PegasusXConfig()
>>> # Initializing a model (with random weights) from the google/pegasus-x-large style configuration
>>> model = PegasusXModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "pegasus_x"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__(
self,
vocab_size=96103,
max_position_embeddings=16384,
encoder_layers=16,
encoder_ffn_dim=4096,
encoder_attention_heads=16,
decoder_layers=16,
decoder_ffn_dim=4096,
decoder_attention_heads=16,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
use_cache=True,
is_encoder_decoder=True,
activation_function="gelu",
d_model=1024,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
init_std=0.02,
decoder_start_token_id=0,
scale_embedding=True,
pad_token_id=0,
eos_token_id=1,
forced_eos_token_id=1,
num_global_tokens=32,
block_size=512,
stagger_local_blocks=True,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.d_model = d_model
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.use_cache = use_cache
self.num_hidden_layers = encoder_layers
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
self.num_global_tokens = num_global_tokens
self.block_size = block_size
self.stagger_local_blocks = stagger_local_blocks
super().__init__(
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
forced_eos_token_id=forced_eos_token_id,
**kwargs,
)
@property
def num_attention_heads(self) -> int:
return self.encoder_attention_heads
@property
def hidden_size(self) -> int:
return self.d_model
|
class_definition
| 798 | 8,084 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pegasus_x/configuration_pegasus_x.py
| null | 5,615 |
class LayoutLMv2FeatureExtractor(LayoutLMv2ImageProcessor):
def __init__(self, *args, **kwargs) -> None:
warnings.warn(
"The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use LayoutLMv2ImageProcessor instead.",
FutureWarning,
)
super().__init__(*args, **kwargs)
|
class_definition
| 808 | 1,194 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/layoutlmv2/feature_extraction_layoutlmv2.py
| null | 5,616 |
class LayoutLMv2Tokenizer(PreTrainedTokenizer):
r"""
Construct a LayoutLMv2 tokenizer. Based on WordPiece. [`LayoutLMv2Tokenizer`] can be used to turn words, word-level
bounding boxes and optional word labels to token-level `input_ids`, `attention_mask`, `token_type_ids`, `bbox`, and
optional `labels` (for token classification).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
[`LayoutLMv2Tokenizer`] runs end-to-end tokenization: punctuation splitting and wordpiece. It also turns the
word-level bounding boxes into token-level bounding boxes.
"""
vocab_files_names = VOCAB_FILES_NAMES
def __init__(
self,
vocab_file,
do_lower_case=True,
do_basic_tokenize=True,
never_split=None,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
cls_token_box=[0, 0, 0, 0],
sep_token_box=[1000, 1000, 1000, 1000],
pad_token_box=[0, 0, 0, 0],
pad_token_label=-100,
only_label_first_subword=True,
tokenize_chinese_chars=True,
strip_accents=None,
model_max_length: int = 512,
additional_special_tokens: Optional[List[str]] = None,
**kwargs,
):
sep_token = AddedToken(sep_token, special=True) if isinstance(sep_token, str) else sep_token
unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token
cls_token = AddedToken(cls_token, special=True) if isinstance(cls_token, str) else cls_token
mask_token = AddedToken(mask_token, special=True) if isinstance(mask_token, str) else mask_token
if not os.path.isfile(vocab_file):
raise ValueError(
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
" model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
self.do_basic_tokenize = do_basic_tokenize
if do_basic_tokenize:
self.basic_tokenizer = BasicTokenizer(
do_lower_case=do_lower_case,
never_split=never_split,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
)
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
# additional properties
self.cls_token_box = cls_token_box
self.sep_token_box = sep_token_box
self.pad_token_box = pad_token_box
self.pad_token_label = pad_token_label
self.only_label_first_subword = only_label_first_subword
super().__init__(
do_lower_case=do_lower_case,
do_basic_tokenize=do_basic_tokenize,
never_split=never_split,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
cls_token_box=cls_token_box,
sep_token_box=sep_token_box,
pad_token_box=pad_token_box,
pad_token_label=pad_token_label,
only_label_first_subword=only_label_first_subword,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
model_max_length=model_max_length,
additional_special_tokens=additional_special_tokens,
**kwargs,
)
@property
def do_lower_case(self):
return self.basic_tokenizer.do_lower_case
@property
def vocab_size(self):
return len(self.vocab)
def get_vocab(self):
return dict(self.vocab, **self.added_tokens_encoder)
def _tokenize(self, text):
split_tokens = []
if self.do_basic_tokenize:
for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
# If the token is part of the never_split set
if token in self.basic_tokenizer.never_split:
split_tokens.append(token)
else:
split_tokens += self.wordpiece_tokenizer.tokenize(token)
else:
split_tokens = self.wordpiece_tokenizer.tokenize(text)
return split_tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.vocab.get(token, self.vocab.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.ids_to_tokens.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
out_string = " ".join(tokens).replace(" ##", "").strip()
return out_string
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
pair mask has the following format: :: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second
sequence | If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
index = 0
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
else:
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
with open(vocab_file, "w", encoding="utf-8") as writer:
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!"
)
index = token_index
writer.write(token + "\n")
index += 1
return (vocab_file,)
@add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
boxes: Union[List[List[int]], List[List[List[int]]]] = None,
word_labels: Optional[Union[List[int], List[List[int]]]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
"""
Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
sequences with word-level normalized bounding boxes and optional labels.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings
(words of a single example or questions of a batch of examples) or a list of list of strings (batch of
words).
text_pair (`List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence should be a list of strings
(pretokenized string).
boxes (`List[List[int]]`, `List[List[List[int]]]`):
Word-level bounding boxes. Each bounding box should be normalized to be on a 0-1000 scale.
word_labels (`List[int]`, `List[List[int]]`, *optional*):
Word-level integer labels (for token classification tasks such as FUNSD, CORD).
"""
# Input type checking for clearer error
def _is_valid_text_input(t):
if isinstance(t, str):
# Strings are fine
return True
elif isinstance(t, (list, tuple)):
# List are fine as long as they are...
if len(t) == 0:
# ... empty
return True
elif isinstance(t[0], str):
# ... list of strings
return True
elif isinstance(t[0], (list, tuple)):
# ... list with an empty list or with a list of strings
return len(t[0]) == 0 or isinstance(t[0][0], str)
else:
return False
else:
return False
if text_pair is not None:
# in case text + text_pair are provided, text = questions, text_pair = words
if not _is_valid_text_input(text):
raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ")
if not isinstance(text_pair, (list, tuple)):
raise ValueError(
"Words must be of type `List[str]` (single pretokenized example), "
"or `List[List[str]]` (batch of pretokenized examples)."
)
else:
# in case only text is provided => must be words
if not isinstance(text, (list, tuple)):
raise ValueError(
"Words must be of type `List[str]` (single pretokenized example), "
"or `List[List[str]]` (batch of pretokenized examples)."
)
if text_pair is not None:
is_batched = isinstance(text, (list, tuple))
else:
is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple))
words = text if text_pair is None else text_pair
if boxes is None:
raise ValueError("You must provide corresponding bounding boxes")
if is_batched:
if len(words) != len(boxes):
raise ValueError("You must provide words and boxes for an equal amount of examples")
for words_example, boxes_example in zip(words, boxes):
if len(words_example) != len(boxes_example):
raise ValueError("You must provide as many words as there are bounding boxes")
else:
if len(words) != len(boxes):
raise ValueError("You must provide as many words as there are bounding boxes")
if is_batched:
if text_pair is not None and len(text) != len(text_pair):
raise ValueError(
f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:"
f" {len(text_pair)}."
)
batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
is_pair = bool(text_pair is not None)
return self.batch_encode_plus(
batch_text_or_text_pairs=batch_text_or_text_pairs,
is_pair=is_pair,
boxes=boxes,
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
else:
return self.encode_plus(
text=text,
text_pair=text_pair,
boxes=boxes,
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
@add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def batch_encode_plus(
self,
batch_text_or_text_pairs: Union[
List[TextInput],
List[TextInputPair],
List[PreTokenizedInput],
],
is_pair: bool = None,
boxes: Optional[List[List[List[int]]]] = None,
word_labels: Optional[Union[List[int], List[List[int]]]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
verbose=verbose,
**kwargs,
)
return self._batch_encode_plus(
batch_text_or_text_pairs=batch_text_or_text_pairs,
is_pair=is_pair,
boxes=boxes,
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
def _batch_encode_plus(
self,
batch_text_or_text_pairs: Union[
List[TextInput],
List[TextInputPair],
List[PreTokenizedInput],
],
is_pair: bool = None,
boxes: Optional[List[List[List[int]]]] = None,
word_labels: Optional[List[List[int]]] = None,
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
if return_offsets_mapping:
raise NotImplementedError(
"return_offset_mapping is not available when using Python tokenizers. "
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast."
)
batch_outputs = self._batch_prepare_for_model(
batch_text_or_text_pairs=batch_text_or_text_pairs,
is_pair=is_pair,
boxes=boxes,
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_attention_mask=return_attention_mask,
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
return_tensors=return_tensors,
verbose=verbose,
)
return BatchEncoding(batch_outputs)
@add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def _batch_prepare_for_model(
self,
batch_text_or_text_pairs,
is_pair: bool = None,
boxes: Optional[List[List[int]]] = None,
word_labels: Optional[List[List[int]]] = None,
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_tensors: Optional[str] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_length: bool = False,
verbose: bool = True,
) -> BatchEncoding:
"""
Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
manages a moving window (with user defined stride) for overflowing tokens.
Args:
batch_ids_pairs: list of tokenized input ids or input ids pairs
"""
batch_outputs = {}
for idx, example in enumerate(zip(batch_text_or_text_pairs, boxes)):
batch_text_or_text_pair, boxes_example = example
outputs = self.prepare_for_model(
batch_text_or_text_pair[0] if is_pair else batch_text_or_text_pair,
batch_text_or_text_pair[1] if is_pair else None,
boxes_example,
word_labels=word_labels[idx] if word_labels is not None else None,
add_special_tokens=add_special_tokens,
padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward
truncation=truncation_strategy.value,
max_length=max_length,
stride=stride,
pad_to_multiple_of=None, # we pad in batch afterward
padding_side=None, # we pad in batch afterward
return_attention_mask=False, # we pad in batch afterward
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
return_tensors=None, # We convert the whole batch to tensors at the end
prepend_batch_axis=False,
verbose=verbose,
)
for key, value in outputs.items():
if key not in batch_outputs:
batch_outputs[key] = []
batch_outputs[key].append(value)
batch_outputs = self.pad(
batch_outputs,
padding=padding_strategy.value,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_attention_mask=return_attention_mask,
)
batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)
return batch_outputs
@add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING)
def encode(
self,
text: Union[TextInput, PreTokenizedInput],
text_pair: Optional[PreTokenizedInput] = None,
boxes: Optional[List[List[int]]] = None,
word_labels: Optional[List[int]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> List[int]:
encoded_inputs = self.encode_plus(
text=text,
text_pair=text_pair,
boxes=boxes,
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
return encoded_inputs["input_ids"]
@add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def encode_plus(
self,
text: Union[TextInput, PreTokenizedInput],
text_pair: Optional[PreTokenizedInput] = None,
boxes: Optional[List[List[int]]] = None,
word_labels: Optional[List[int]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
"""
Tokenize and prepare for the model a sequence or a pair of sequences. .. warning:: This method is deprecated,
`__call__` should be used instead.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings.
text_pair (`List[str]` or `List[int]`, *optional*):
Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a
list of list of strings (words of a batch of examples).
"""
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
verbose=verbose,
**kwargs,
)
return self._encode_plus(
text=text,
boxes=boxes,
text_pair=text_pair,
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
def _encode_plus(
self,
text: Union[TextInput, PreTokenizedInput],
text_pair: Optional[PreTokenizedInput] = None,
boxes: Optional[List[List[int]]] = None,
word_labels: Optional[List[int]] = None,
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
if return_offsets_mapping:
raise NotImplementedError(
"return_offset_mapping is not available when using Python tokenizers. "
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast. "
"More information on available tokenizers at "
"https://github.com/huggingface/transformers/pull/2674"
)
return self.prepare_for_model(
text=text,
text_pair=text_pair,
boxes=boxes,
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding=padding_strategy.value,
truncation=truncation_strategy.value,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_tensors=return_tensors,
prepend_batch_axis=True,
return_attention_mask=return_attention_mask,
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
verbose=verbose,
)
@add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def prepare_for_model(
self,
text: Union[TextInput, PreTokenizedInput],
text_pair: Optional[PreTokenizedInput] = None,
boxes: Optional[List[List[int]]] = None,
word_labels: Optional[List[int]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
prepend_batch_axis: bool = False,
**kwargs,
) -> BatchEncoding:
"""
Prepares a sequence or a pair of sequences so that it can be used by the model. It adds special tokens,
truncates sequences if overflowing while taking into account the special tokens and manages a moving window
(with user defined stride) for overflowing tokens. Please Note, for *text_pair* different than `None` and
*truncation_strategy = longest_first* or `True`, it is not possible to return overflowing tokens. Such a
combination of arguments will raise an error.
Word-level `boxes` are turned into token-level `bbox`. If provided, word-level `word_labels` are turned into
token-level `labels`. The word label is used for the first token of the word, while remaining tokens are
labeled with -100, such that they will be ignored by the loss function.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings.
text_pair (`List[str]` or `List[int]`, *optional*):
Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a
list of list of strings (words of a batch of examples).
"""
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
verbose=verbose,
**kwargs,
)
tokens = []
pair_tokens = []
token_boxes = []
pair_token_boxes = []
labels = []
if text_pair is None:
if word_labels is None:
# CASE 1: document image classification (training + inference) + CASE 2: token classification (inference)
for word, box in zip(text, boxes):
if len(word) < 1: # skip empty words
continue
word_tokens = self.tokenize(word)
tokens.extend(word_tokens)
token_boxes.extend([box] * len(word_tokens))
else:
# CASE 2: token classification (training)
for word, box, label in zip(text, boxes, word_labels):
if len(word) < 1: # skip empty words
continue
word_tokens = self.tokenize(word)
tokens.extend(word_tokens)
token_boxes.extend([box] * len(word_tokens))
if self.only_label_first_subword:
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
labels.extend([label] + [self.pad_token_label] * (len(word_tokens) - 1))
else:
labels.extend([label] * len(word_tokens))
else:
# CASE 3: document visual question answering (inference)
# text = question
# text_pair = words
tokens = self.tokenize(text)
token_boxes = [self.pad_token_box for _ in range(len(tokens))]
for word, box in zip(text_pair, boxes):
if len(word) < 1: # skip empty words
continue
word_tokens = self.tokenize(word)
pair_tokens.extend(word_tokens)
pair_token_boxes.extend([box] * len(word_tokens))
# Create ids + pair_ids
ids = self.convert_tokens_to_ids(tokens)
pair_ids = self.convert_tokens_to_ids(pair_tokens) if pair_tokens else None
if (
return_overflowing_tokens
and truncation_strategy == TruncationStrategy.LONGEST_FIRST
and pair_ids is not None
):
raise ValueError(
"Not possible to return overflowing tokens for pair of sequences with the "
"`longest_first`. Please select another truncation strategy than `longest_first`, "
"for instance `only_second` or `only_first`."
)
# Compute the total size of the returned encodings
pair = bool(pair_ids is not None)
len_ids = len(ids)
len_pair_ids = len(pair_ids) if pair else 0
total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0)
# Truncation: Handle max sequence length
overflowing_tokens = []
overflowing_token_boxes = []
overflowing_labels = []
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length:
(
ids,
token_boxes,
pair_ids,
pair_token_boxes,
labels,
overflowing_tokens,
overflowing_token_boxes,
overflowing_labels,
) = self.truncate_sequences(
ids,
token_boxes,
pair_ids=pair_ids,
pair_token_boxes=pair_token_boxes,
labels=labels,
num_tokens_to_remove=total_len - max_length,
truncation_strategy=truncation_strategy,
stride=stride,
)
if return_token_type_ids and not add_special_tokens:
raise ValueError(
"Asking to return token_type_ids while setting add_special_tokens to False "
"results in an undefined behavior. Please set add_special_tokens to True or "
"set return_token_type_ids to None."
)
# Load from model defaults
if return_token_type_ids is None:
return_token_type_ids = "token_type_ids" in self.model_input_names
if return_attention_mask is None:
return_attention_mask = "attention_mask" in self.model_input_names
encoded_inputs = {}
if return_overflowing_tokens:
encoded_inputs["overflowing_tokens"] = overflowing_tokens
encoded_inputs["overflowing_token_boxes"] = overflowing_token_boxes
encoded_inputs["overflowing_labels"] = overflowing_labels
encoded_inputs["num_truncated_tokens"] = total_len - max_length
# Add special tokens
if add_special_tokens:
sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids)
token_boxes = [self.cls_token_box] + token_boxes + [self.sep_token_box]
if pair_token_boxes:
pair_token_boxes = pair_token_boxes + [self.sep_token_box]
if labels:
labels = [self.pad_token_label] + labels + [self.pad_token_label]
else:
sequence = ids + pair_ids if pair else ids
token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else [])
# Build output dictionary
encoded_inputs["input_ids"] = sequence
encoded_inputs["bbox"] = token_boxes + pair_token_boxes
if return_token_type_ids:
encoded_inputs["token_type_ids"] = token_type_ids
if return_special_tokens_mask:
if add_special_tokens:
encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids)
else:
encoded_inputs["special_tokens_mask"] = [0] * len(sequence)
if labels:
encoded_inputs["labels"] = labels
# Check lengths
self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose)
# Padding
if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
encoded_inputs = self.pad(
encoded_inputs,
max_length=max_length,
padding=padding_strategy.value,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_attention_mask=return_attention_mask,
)
if return_length:
encoded_inputs["length"] = len(encoded_inputs["input_ids"])
batch_outputs = BatchEncoding(
encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis
)
return batch_outputs
def truncate_sequences(
self,
ids: List[int],
token_boxes: List[List[int]],
pair_ids: Optional[List[int]] = None,
pair_token_boxes: Optional[List[List[int]]] = None,
labels: Optional[List[int]] = None,
num_tokens_to_remove: int = 0,
truncation_strategy: Union[str, TruncationStrategy] = "longest_first",
stride: int = 0,
) -> Tuple[List[int], List[int], List[int]]:
"""
Truncates a sequence pair in-place following the strategy.
Args:
ids (`List[int]`):
Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and
`convert_tokens_to_ids` methods.
token_boxes (`List[List[int]]`):
Bounding boxes of the first sequence.
pair_ids (`List[int]`, *optional*):
Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize`
and `convert_tokens_to_ids` methods.
pair_token_boxes (`List[List[int]]`, *optional*):
Bounding boxes of the second sequence.
labels (`List[int]`, *optional*):
Labels of the first sequence (for token classification tasks).
num_tokens_to_remove (`int`, *optional*, defaults to 0):
Number of tokens to remove using the truncation strategy.
truncation_strategy (`str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
The strategy to follow for truncation. Can be:
- `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a
batch of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
maximum acceptable input length for the model if that argument is not provided. This will only
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater
than the model maximum admissible input size).
stride (`int`, *optional*, defaults to 0):
If set to a positive number, the overflowing tokens returned will contain some tokens from the main
sequence returned. The value of this argument defines the number of additional tokens.
Returns:
`Tuple[List[int], List[int], List[int]]`: The truncated `ids`, the truncated `pair_ids` and the list of
overflowing tokens. Note: The *longest_first* strategy returns empty list of overflowing tokens if a pair
of sequences (or a batch of pairs) is provided.
"""
if num_tokens_to_remove <= 0:
return ids, token_boxes, pair_ids, pair_token_boxes, labels, [], [], []
if not isinstance(truncation_strategy, TruncationStrategy):
truncation_strategy = TruncationStrategy(truncation_strategy)
overflowing_tokens = []
overflowing_token_boxes = []
overflowing_labels = []
if truncation_strategy == TruncationStrategy.ONLY_FIRST or (
truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is None
):
if len(ids) > num_tokens_to_remove:
window_len = min(len(ids), stride + num_tokens_to_remove)
overflowing_tokens = ids[-window_len:]
overflowing_token_boxes = token_boxes[-window_len:]
overflowing_labels = labels[-window_len:]
ids = ids[:-num_tokens_to_remove]
token_boxes = token_boxes[:-num_tokens_to_remove]
labels = labels[:-num_tokens_to_remove]
else:
error_msg = (
f"We need to remove {num_tokens_to_remove} to truncate the input "
f"but the first sequence has a length {len(ids)}. "
)
if truncation_strategy == TruncationStrategy.ONLY_FIRST:
error_msg = (
error_msg + "Please select another truncation strategy than "
f"{truncation_strategy}, for instance 'longest_first' or 'only_second'."
)
logger.error(error_msg)
elif truncation_strategy == TruncationStrategy.LONGEST_FIRST:
logger.warning(
"Be aware, overflowing tokens are not returned for the setting you have chosen,"
f" i.e. sequence pairs with the '{TruncationStrategy.LONGEST_FIRST.value}' "
"truncation strategy. So the returned list will always be empty even if some "
"tokens have been removed."
)
for _ in range(num_tokens_to_remove):
if pair_ids is None or len(ids) > len(pair_ids):
ids = ids[:-1]
token_boxes = token_boxes[:-1]
labels = labels[:-1]
else:
pair_ids = pair_ids[:-1]
pair_token_boxes = pair_token_boxes[:-1]
elif truncation_strategy == TruncationStrategy.ONLY_SECOND and pair_ids is not None:
if len(pair_ids) > num_tokens_to_remove:
window_len = min(len(pair_ids), stride + num_tokens_to_remove)
overflowing_tokens = pair_ids[-window_len:]
overflowing_token_boxes = pair_token_boxes[-window_len:]
pair_ids = pair_ids[:-num_tokens_to_remove]
pair_token_boxes = pair_token_boxes[:-num_tokens_to_remove]
else:
logger.error(
f"We need to remove {num_tokens_to_remove} to truncate the input "
f"but the second sequence has a length {len(pair_ids)}. "
f"Please select another truncation strategy than {truncation_strategy}, "
"for instance 'longest_first' or 'only_first'."
)
return (
ids,
token_boxes,
pair_ids,
pair_token_boxes,
labels,
overflowing_tokens,
overflowing_token_boxes,
overflowing_labels,
)
def _pad(
self,
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
max_length: Optional[int] = None,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
) -> dict:
"""
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
Args:
encoded_inputs:
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
max_length: maximum length of the returned list and optionally padding length (see below).
Will truncate by taking into account the special tokens.
padding_strategy: PaddingStrategy to use for padding.
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
- PaddingStrategy.DO_NOT_PAD: Do not pad
The tokenizer padding sides are defined in self.padding_side:
- 'left': pads on the left of the sequences
- 'right': pads on the right of the sequences
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
`>= 7.5` (Volta).
padding_side:
The side on which the model should have padding applied. Should be selected between ['right', 'left'].
Default value is picked from the class attribute of the same name.
return_attention_mask:
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
"""
# Load from model defaults
if return_attention_mask is None:
return_attention_mask = "attention_mask" in self.model_input_names
required_input = encoded_inputs[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
max_length = len(required_input)
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
# Initialize attention mask if not present.
if return_attention_mask and "attention_mask" not in encoded_inputs:
encoded_inputs["attention_mask"] = [1] * len(required_input)
if needs_to_be_padded:
difference = max_length - len(required_input)
padding_side = padding_side if padding_side is not None else self.padding_side
if padding_side == "right":
if return_attention_mask:
encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
if "token_type_ids" in encoded_inputs:
encoded_inputs["token_type_ids"] = (
encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
)
if "bbox" in encoded_inputs:
encoded_inputs["bbox"] = encoded_inputs["bbox"] + [self.pad_token_box] * difference
if "labels" in encoded_inputs:
encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference
if "special_tokens_mask" in encoded_inputs:
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
elif padding_side == "left":
if return_attention_mask:
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
if "token_type_ids" in encoded_inputs:
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
"token_type_ids"
]
if "bbox" in encoded_inputs:
encoded_inputs["bbox"] = [self.pad_token_box] * difference + encoded_inputs["bbox"]
if "labels" in encoded_inputs:
encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"]
if "special_tokens_mask" in encoded_inputs:
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
else:
raise ValueError("Invalid padding strategy:" + str(padding_side))
return encoded_inputs
|
class_definition
| 9,764 | 64,392 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/layoutlmv2/tokenization_layoutlmv2.py
| null | 5,617 |
class BasicTokenizer:
"""
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
Args:
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
do_split_on_punc (`bool`, *optional*, defaults to `True`):
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
the full context of the words, such as contractions.
"""
def __init__(
self,
do_lower_case=True,
never_split=None,
tokenize_chinese_chars=True,
strip_accents=None,
do_split_on_punc=True,
):
if never_split is None:
never_split = []
self.do_lower_case = do_lower_case
self.never_split = set(never_split)
self.tokenize_chinese_chars = tokenize_chinese_chars
self.strip_accents = strip_accents
self.do_split_on_punc = do_split_on_punc
def tokenize(self, text, never_split=None):
"""
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
Args:
never_split (`List[str]`, *optional*)
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
"""
# union() returns a new set by concatenating the two sets.
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
if self.tokenize_chinese_chars:
text = self._tokenize_chinese_chars(text)
# prevents treating the same character with different unicode codepoints as different characters
unicode_normalized_text = unicodedata.normalize("NFC", text)
orig_tokens = whitespace_tokenize(unicode_normalized_text)
split_tokens = []
for token in orig_tokens:
if token not in never_split:
if self.do_lower_case:
token = token.lower()
if self.strip_accents is not False:
token = self._run_strip_accents(token)
elif self.strip_accents:
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token, never_split))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text, never_split=None):
"""Splits punctuation on a piece of text."""
if not self.do_split_on_punc or (never_split is not None and text in never_split):
return [text]
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF) #
or (cp >= 0x20000 and cp <= 0x2A6DF) #
or (cp >= 0x2A700 and cp <= 0x2B73F) #
or (cp >= 0x2B740 and cp <= 0x2B81F) #
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xFFFD or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
|
class_definition
| 64,467 | 71,215 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/layoutlmv2/tokenization_layoutlmv2.py
| null | 5,618 |
class WordpieceTokenizer:
"""Runs WordPiece tokenization."""
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, text):
"""
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
tokenization using the given vocabulary.
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through *BasicTokenizer*.
Returns:
A list of wordpiece tokens.
"""
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens
|
class_definition
| 71,294 | 73,182 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/layoutlmv2/tokenization_layoutlmv2.py
| null | 5,619 |
class LayoutLMv2Processor(ProcessorMixin):
r"""
Constructs a LayoutLMv2 processor which combines a LayoutLMv2 image processor and a LayoutLMv2 tokenizer into a
single processor.
[`LayoutLMv2Processor`] offers all the functionalities you need to prepare data for the model.
It first uses [`LayoutLMv2ImageProcessor`] to resize document images to a fixed size, and optionally applies OCR to
get words and normalized bounding boxes. These are then provided to [`LayoutLMv2Tokenizer`] or
[`LayoutLMv2TokenizerFast`], which turns the words and bounding boxes into token-level `input_ids`,
`attention_mask`, `token_type_ids`, `bbox`. Optionally, one can provide integer `word_labels`, which are turned
into token-level `labels` for token classification tasks (such as FUNSD, CORD).
Args:
image_processor (`LayoutLMv2ImageProcessor`, *optional*):
An instance of [`LayoutLMv2ImageProcessor`]. The image processor is a required input.
tokenizer (`LayoutLMv2Tokenizer` or `LayoutLMv2TokenizerFast`, *optional*):
An instance of [`LayoutLMv2Tokenizer`] or [`LayoutLMv2TokenizerFast`]. The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "LayoutLMv2ImageProcessor"
tokenizer_class = ("LayoutLMv2Tokenizer", "LayoutLMv2TokenizerFast")
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
feature_extractor = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead.",
FutureWarning,
)
feature_extractor = kwargs.pop("feature_extractor")
image_processor = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
super().__init__(image_processor, tokenizer)
def __call__(
self,
images,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
boxes: Union[List[List[int]], List[List[List[int]]]] = None,
word_labels: Optional[Union[List[int], List[List[int]]]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = False,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs,
) -> BatchEncoding:
"""
This method first forwards the `images` argument to [`~LayoutLMv2ImageProcessor.__call__`]. In case
[`LayoutLMv2ImageProcessor`] was initialized with `apply_ocr` set to `True`, it passes the obtained words and
bounding boxes along with the additional arguments to [`~LayoutLMv2Tokenizer.__call__`] and returns the output,
together with resized `images`. In case [`LayoutLMv2ImageProcessor`] was initialized with `apply_ocr` set to
`False`, it passes the words (`text`/``text_pair`) and `boxes` specified by the user along with the additional
arguments to [`~LayoutLMv2Tokenizer.__call__`] and returns the output, together with resized `images``.
Please refer to the docstring of the above two methods for more information.
"""
# verify input
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
"You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True."
)
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
"You cannot provide word labels if you initialized the image processor with apply_ocr set to True."
)
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError("You cannot return overflowing tokens without returning the offsets mapping.")
# first, apply the image processor
features = self.image_processor(images=images, return_tensors=return_tensors)
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(text, str):
text = [text] # add batch dimension (as the image processor always adds a batch dimension)
text_pair = features["words"]
encoded_inputs = self.tokenizer(
text=text if text is not None else features["words"],
text_pair=text_pair if text_pair is not None else None,
boxes=boxes if boxes is not None else features["boxes"],
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
return_tensors=return_tensors,
**kwargs,
)
# add pixel values
images = features.pop("pixel_values")
if return_overflowing_tokens is True:
images = self.get_overflowing_images(images, encoded_inputs["overflow_to_sample_mapping"])
encoded_inputs["image"] = images
return encoded_inputs
def get_overflowing_images(self, images, overflow_to_sample_mapping):
# in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image
images_with_overflow = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx])
if len(images_with_overflow) != len(overflow_to_sample_mapping):
raise ValueError(
"Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got"
f" {len(images_with_overflow)} and {len(overflow_to_sample_mapping)}"
)
return images_with_overflow
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer
to the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
return ["input_ids", "bbox", "token_type_ids", "attention_mask", "image"]
@property
def feature_extractor_class(self):
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
FutureWarning,
)
return self.image_processor_class
@property
def feature_extractor(self):
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",
FutureWarning,
)
return self.image_processor
|
class_definition
| 905 | 9,291 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/layoutlmv2/processing_layoutlmv2.py
| null | 5,620 |
class LayoutLMv2Embeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super(LayoutLMv2Embeddings, self).__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.x_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.coordinate_size)
self.y_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.coordinate_size)
self.h_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.shape_size)
self.w_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.shape_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
def _calc_spatial_position_embeddings(self, bbox):
try:
left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0])
upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1])
right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2])
lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3])
except IndexError as e:
raise IndexError("The `bbox` coordinate values should be within 0-1000 range.") from e
h_position_embeddings = self.h_position_embeddings(bbox[:, :, 3] - bbox[:, :, 1])
w_position_embeddings = self.w_position_embeddings(bbox[:, :, 2] - bbox[:, :, 0])
spatial_position_embeddings = torch.cat(
[
left_position_embeddings,
upper_position_embeddings,
right_position_embeddings,
lower_position_embeddings,
h_position_embeddings,
w_position_embeddings,
],
dim=-1,
)
return spatial_position_embeddings
|
class_definition
| 1,688 | 4,036 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/layoutlmv2/modeling_layoutlmv2.py
| null | 5,621 |
class LayoutLMv2SelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.fast_qkv = config.fast_qkv
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.has_relative_attention_bias = config.has_relative_attention_bias
self.has_spatial_attention_bias = config.has_spatial_attention_bias
if config.fast_qkv:
self.qkv_linear = nn.Linear(config.hidden_size, 3 * self.all_head_size, bias=False)
self.q_bias = nn.Parameter(torch.zeros(1, 1, self.all_head_size))
self.v_bias = nn.Parameter(torch.zeros(1, 1, self.all_head_size))
else:
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def compute_qkv(self, hidden_states):
if self.fast_qkv:
qkv = self.qkv_linear(hidden_states)
q, k, v = torch.chunk(qkv, 3, dim=-1)
if q.ndimension() == self.q_bias.ndimension():
q = q + self.q_bias
v = v + self.v_bias
else:
_sz = (1,) * (q.ndimension() - 1) + (-1,)
q = q + self.q_bias.view(*_sz)
v = v + self.v_bias.view(*_sz)
else:
q = self.query(hidden_states)
k = self.key(hidden_states)
v = self.value(hidden_states)
return q, k, v
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
output_attentions=False,
rel_pos=None,
rel_2d_pos=None,
):
q, k, v = self.compute_qkv(hidden_states)
# (B, L, H*D) -> (B, H, L, D)
query_layer = self.transpose_for_scores(q)
key_layer = self.transpose_for_scores(k)
value_layer = self.transpose_for_scores(v)
query_layer = query_layer / math.sqrt(self.attention_head_size)
# [BSZ, NAT, L, L]
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.has_relative_attention_bias:
attention_scores += rel_pos
if self.has_spatial_attention_bias:
attention_scores += rel_2d_pos
attention_scores = attention_scores.float().masked_fill_(
attention_mask.to(torch.bool), torch.finfo(attention_scores.dtype).min
)
attention_probs = nn.functional.softmax(attention_scores, dim=-1, dtype=torch.float32).type_as(value_layer)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
|
class_definition
| 4,039 | 8,115 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/layoutlmv2/modeling_layoutlmv2.py
| null | 5,622 |
class LayoutLMv2Attention(nn.Module):
def __init__(self, config):
super().__init__()
self.self = LayoutLMv2SelfAttention(config)
self.output = LayoutLMv2SelfOutput(config)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
output_attentions=False,
rel_pos=None,
rel_2d_pos=None,
):
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
output_attentions,
rel_pos=rel_pos,
rel_2d_pos=rel_2d_pos,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
|
class_definition
| 8,118 | 8,916 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/layoutlmv2/modeling_layoutlmv2.py
| null | 5,623 |
class LayoutLMv2SelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
|
class_definition
| 8,919 | 9,487 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/layoutlmv2/modeling_layoutlmv2.py
| null | 5,624 |
class LayoutLMv2Intermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
|
class_definition
| 9,582 | 10,153 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/layoutlmv2/modeling_layoutlmv2.py
| null | 5,625 |
class LayoutLMv2Output(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
|
class_definition
| 10,240 | 10,854 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/layoutlmv2/modeling_layoutlmv2.py
| null | 5,626 |
class LayoutLMv2Layer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = LayoutLMv2Attention(config)
self.intermediate = LayoutLMv2Intermediate(config)
self.output = LayoutLMv2Output(config)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
output_attentions=False,
rel_pos=None,
rel_2d_pos=None,
):
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
rel_pos=rel_pos,
rel_2d_pos=rel_2d_pos,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
|
class_definition
| 10,857 | 12,257 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/layoutlmv2/modeling_layoutlmv2.py
| null | 5,627 |
class LayoutLMv2Encoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([LayoutLMv2Layer(config) for _ in range(config.num_hidden_layers)])
self.has_relative_attention_bias = config.has_relative_attention_bias
self.has_spatial_attention_bias = config.has_spatial_attention_bias
if self.has_relative_attention_bias:
self.rel_pos_bins = config.rel_pos_bins
self.max_rel_pos = config.max_rel_pos
self.rel_pos_bias = nn.Linear(self.rel_pos_bins, config.num_attention_heads, bias=False)
if self.has_spatial_attention_bias:
self.max_rel_2d_pos = config.max_rel_2d_pos
self.rel_2d_pos_bins = config.rel_2d_pos_bins
self.rel_pos_x_bias = nn.Linear(self.rel_2d_pos_bins, config.num_attention_heads, bias=False)
self.rel_pos_y_bias = nn.Linear(self.rel_2d_pos_bins, config.num_attention_heads, bias=False)
self.gradient_checkpointing = False
def _calculate_1d_position_embeddings(self, position_ids):
rel_pos_mat = position_ids.unsqueeze(-2) - position_ids.unsqueeze(-1)
rel_pos = relative_position_bucket(
rel_pos_mat,
num_buckets=self.rel_pos_bins,
max_distance=self.max_rel_pos,
)
# Since this is a simple indexing operation that is independent of the input,
# no need to track gradients for this operation
#
# Without this no_grad context, training speed slows down significantly
with torch.no_grad():
rel_pos = self.rel_pos_bias.weight.t()[rel_pos].permute(0, 3, 1, 2)
rel_pos = rel_pos.contiguous()
return rel_pos
def _calculate_2d_position_embeddings(self, bbox):
position_coord_x = bbox[:, :, 0]
position_coord_y = bbox[:, :, 3]
rel_pos_x_2d_mat = position_coord_x.unsqueeze(-2) - position_coord_x.unsqueeze(-1)
rel_pos_y_2d_mat = position_coord_y.unsqueeze(-2) - position_coord_y.unsqueeze(-1)
rel_pos_x = relative_position_bucket(
rel_pos_x_2d_mat,
num_buckets=self.rel_2d_pos_bins,
max_distance=self.max_rel_2d_pos,
)
rel_pos_y = relative_position_bucket(
rel_pos_y_2d_mat,
num_buckets=self.rel_2d_pos_bins,
max_distance=self.max_rel_2d_pos,
)
# Since this is a simple indexing operation that is independent of the input,
# no need to track gradients for this operation
#
# Without this no_grad context, training speed slows down significantly
with torch.no_grad():
rel_pos_x = self.rel_pos_x_bias.weight.t()[rel_pos_x].permute(0, 3, 1, 2)
rel_pos_y = self.rel_pos_y_bias.weight.t()[rel_pos_y].permute(0, 3, 1, 2)
rel_pos_x = rel_pos_x.contiguous()
rel_pos_y = rel_pos_y.contiguous()
rel_2d_pos = rel_pos_x + rel_pos_y
return rel_2d_pos
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
bbox=None,
position_ids=None,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
rel_pos = self._calculate_1d_position_embeddings(position_ids) if self.has_relative_attention_bias else None
rel_2d_pos = self._calculate_2d_position_embeddings(bbox) if self.has_spatial_attention_bias else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
output_attentions,
rel_pos=rel_pos,
rel_2d_pos=rel_2d_pos,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
output_attentions,
rel_pos=rel_pos,
rel_2d_pos=rel_2d_pos,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
all_hidden_states,
all_self_attentions,
]
if v is not None
)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
|
class_definition
| 14,383 | 19,709 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/layoutlmv2/modeling_layoutlmv2.py
| null | 5,628 |
class LayoutLMv2PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = LayoutLMv2Config
base_model_prefix = "layoutlmv2"
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, LayoutLMv2Model):
if hasattr(module, "visual_segment_embedding"):
module.visual_segment_embedding.data.normal_(mean=0.0, std=self.config.initializer_range)
|
class_definition
| 19,712 | 21,007 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/layoutlmv2/modeling_layoutlmv2.py
| null | 5,629 |
class LayoutLMv2VisualBackbone(nn.Module):
def __init__(self, config):
super().__init__()
self.cfg = config.get_detectron2_config()
meta_arch = self.cfg.MODEL.META_ARCHITECTURE
model = META_ARCH_REGISTRY.get(meta_arch)(self.cfg)
assert isinstance(model.backbone, detectron2.modeling.backbone.FPN)
self.backbone = model.backbone
assert len(self.cfg.MODEL.PIXEL_MEAN) == len(self.cfg.MODEL.PIXEL_STD)
num_channels = len(self.cfg.MODEL.PIXEL_MEAN)
self.register_buffer(
"pixel_mean",
torch.Tensor(self.cfg.MODEL.PIXEL_MEAN).view(num_channels, 1, 1),
persistent=False,
)
self.register_buffer(
"pixel_std", torch.Tensor(self.cfg.MODEL.PIXEL_STD).view(num_channels, 1, 1), persistent=False
)
self.out_feature_key = "p2"
if torch.are_deterministic_algorithms_enabled():
logger.warning("using `AvgPool2d` instead of `AdaptiveAvgPool2d`")
input_shape = (224, 224)
backbone_stride = self.backbone.output_shape()[self.out_feature_key].stride
self.pool = nn.AvgPool2d(
(
math.ceil(math.ceil(input_shape[0] / backbone_stride) / config.image_feature_pool_shape[0]),
math.ceil(math.ceil(input_shape[1] / backbone_stride) / config.image_feature_pool_shape[1]),
)
)
else:
self.pool = nn.AdaptiveAvgPool2d(config.image_feature_pool_shape[:2])
if len(config.image_feature_pool_shape) == 2:
config.image_feature_pool_shape.append(self.backbone.output_shape()[self.out_feature_key].channels)
assert self.backbone.output_shape()[self.out_feature_key].channels == config.image_feature_pool_shape[2]
def forward(self, images):
images_input = ((images if torch.is_tensor(images) else images.tensor) - self.pixel_mean) / self.pixel_std
features = self.backbone(images_input)
features = features[self.out_feature_key]
features = self.pool(features).flatten(start_dim=2).transpose(1, 2).contiguous()
return features
def synchronize_batch_norm(self):
if not (
torch.distributed.is_available()
and torch.distributed.is_initialized()
and torch.distributed.get_rank() > -1
):
raise RuntimeError("Make sure torch.distributed is set up properly.")
self_rank = torch.distributed.get_rank()
node_size = torch.cuda.device_count()
world_size = torch.distributed.get_world_size()
if not (world_size % node_size == 0):
raise RuntimeError("Make sure the number of processes can be divided by the number of nodes")
node_global_ranks = [list(range(i * node_size, (i + 1) * node_size)) for i in range(world_size // node_size)]
sync_bn_groups = [
torch.distributed.new_group(ranks=node_global_ranks[i]) for i in range(world_size // node_size)
]
node_rank = self_rank // node_size
self.backbone = my_convert_sync_batchnorm(self.backbone, process_group=sync_bn_groups[node_rank])
|
class_definition
| 22,208 | 25,398 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/layoutlmv2/modeling_layoutlmv2.py
| null | 5,630 |
class LayoutLMv2Pooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
|
class_definition
| 29,393 | 29,928 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/layoutlmv2/modeling_layoutlmv2.py
| null | 5,631 |
class LayoutLMv2Model(LayoutLMv2PreTrainedModel):
def __init__(self, config):
requires_backends(self, "detectron2")
super().__init__(config)
self.config = config
self.has_visual_segment_embedding = config.has_visual_segment_embedding
self.embeddings = LayoutLMv2Embeddings(config)
self.visual = LayoutLMv2VisualBackbone(config)
self.visual_proj = nn.Linear(config.image_feature_pool_shape[-1], config.hidden_size)
if self.has_visual_segment_embedding:
self.visual_segment_embedding = nn.Parameter(nn.Embedding(1, config.hidden_size).weight[0])
self.visual_LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.visual_dropout = nn.Dropout(config.hidden_dropout_prob)
self.encoder = LayoutLMv2Encoder(config)
self.pooler = LayoutLMv2Pooler(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _calc_text_embeddings(self, input_ids, bbox, position_ids, token_type_ids, inputs_embeds=None):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
if inputs_embeds is None:
inputs_embeds = self.embeddings.word_embeddings(input_ids)
position_embeddings = self.embeddings.position_embeddings(position_ids)
spatial_position_embeddings = self.embeddings._calc_spatial_position_embeddings(bbox)
token_type_embeddings = self.embeddings.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + position_embeddings + spatial_position_embeddings + token_type_embeddings
embeddings = self.embeddings.LayerNorm(embeddings)
embeddings = self.embeddings.dropout(embeddings)
return embeddings
def _calc_img_embeddings(self, image, bbox, position_ids):
visual_embeddings = self.visual_proj(self.visual(image))
position_embeddings = self.embeddings.position_embeddings(position_ids)
spatial_position_embeddings = self.embeddings._calc_spatial_position_embeddings(bbox)
embeddings = visual_embeddings + position_embeddings + spatial_position_embeddings
if self.has_visual_segment_embedding:
embeddings += self.visual_segment_embedding
embeddings = self.visual_LayerNorm(embeddings)
embeddings = self.visual_dropout(embeddings)
return embeddings
def _calc_visual_bbox(self, image_feature_pool_shape, bbox, device, final_shape):
visual_bbox_x = torch.div(
torch.arange(
0,
1000 * (image_feature_pool_shape[1] + 1),
1000,
device=device,
dtype=bbox.dtype,
),
self.config.image_feature_pool_shape[1],
rounding_mode="floor",
)
visual_bbox_y = torch.div(
torch.arange(
0,
1000 * (self.config.image_feature_pool_shape[0] + 1),
1000,
device=device,
dtype=bbox.dtype,
),
self.config.image_feature_pool_shape[0],
rounding_mode="floor",
)
visual_bbox = torch.stack(
[
visual_bbox_x[:-1].repeat(image_feature_pool_shape[0], 1),
visual_bbox_y[:-1].repeat(image_feature_pool_shape[1], 1).transpose(0, 1),
visual_bbox_x[1:].repeat(image_feature_pool_shape[0], 1),
visual_bbox_y[1:].repeat(image_feature_pool_shape[1], 1).transpose(0, 1),
],
dim=-1,
).view(-1, bbox.size(-1))
visual_bbox = visual_bbox.repeat(final_shape[0], 1, 1)
return visual_bbox
def _get_input_shape(self, input_ids=None, inputs_embeds=None):
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
return input_ids.size()
elif inputs_embeds is not None:
return inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
@add_start_docstrings_to_model_forward(LAYOUTLMV2_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
bbox: Optional[torch.LongTensor] = None,
image: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Return:
Examples:
```python
>>> from transformers import AutoProcessor, LayoutLMv2Model, set_seed
>>> from PIL import Image
>>> import torch
>>> from datasets import load_dataset
>>> set_seed(0)
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")
>>> model = LayoutLMv2Model.from_pretrained("microsoft/layoutlmv2-base-uncased")
>>> dataset = load_dataset("hf-internal-testing/fixtures_docvqa", trust_remote_code=True)
>>> image_path = dataset["test"][0]["file"]
>>> image = Image.open(image_path).convert("RGB")
>>> encoding = processor(image, return_tensors="pt")
>>> outputs = model(**encoding)
>>> last_hidden_states = outputs.last_hidden_state
>>> last_hidden_states.shape
torch.Size([1, 342, 768])
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
input_shape = self._get_input_shape(input_ids, inputs_embeds)
device = input_ids.device if input_ids is not None else inputs_embeds.device
visual_shape = list(input_shape)
visual_shape[1] = self.config.image_feature_pool_shape[0] * self.config.image_feature_pool_shape[1]
visual_shape = torch.Size(visual_shape)
# needs a new copy of input_shape for tracing. Otherwise wrong dimensions will occur
final_shape = list(self._get_input_shape(input_ids, inputs_embeds))
final_shape[1] += visual_shape[1]
final_shape = torch.Size(final_shape)
visual_bbox = self._calc_visual_bbox(self.config.image_feature_pool_shape, bbox, device, final_shape)
final_bbox = torch.cat([bbox, visual_bbox], dim=1)
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
visual_attention_mask = torch.ones(visual_shape, device=device)
final_attention_mask = torch.cat([attention_mask, visual_attention_mask], dim=1)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
if position_ids is None:
seq_length = input_shape[1]
position_ids = self.embeddings.position_ids[:, :seq_length]
position_ids = position_ids.expand(input_shape)
visual_position_ids = torch.arange(0, visual_shape[1], dtype=torch.long, device=device).repeat(
input_shape[0], 1
)
final_position_ids = torch.cat([position_ids, visual_position_ids], dim=1)
if bbox is None:
bbox = torch.zeros(tuple(list(input_shape) + [4]), dtype=torch.long, device=device)
text_layout_emb = self._calc_text_embeddings(
input_ids=input_ids,
bbox=bbox,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
)
visual_emb = self._calc_img_embeddings(
image=image,
bbox=visual_bbox,
position_ids=visual_position_ids,
)
final_emb = torch.cat([text_layout_emb, visual_emb], dim=1)
extended_attention_mask = final_attention_mask.unsqueeze(1).unsqueeze(2)
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)
extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min
if head_mask is not None:
if head_mask.dim() == 1:
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
elif head_mask.dim() == 2:
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)
head_mask = head_mask.to(dtype=next(self.parameters()).dtype)
else:
head_mask = [None] * self.config.num_hidden_layers
encoder_outputs = self.encoder(
final_emb,
extended_attention_mask,
bbox=final_bbox,
position_ids=final_position_ids,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output)
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
|
class_definition
| 30,096 | 40,821 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/layoutlmv2/modeling_layoutlmv2.py
| null | 5,632 |
class LayoutLMv2ForSequenceClassification(LayoutLMv2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.layoutlmv2 = LayoutLMv2Model(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size * 3, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.layoutlmv2.embeddings.word_embeddings
@add_start_docstrings_to_model_forward(LAYOUTLMV2_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
bbox: Optional[torch.LongTensor] = None,
image: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Example:
```python
>>> from transformers import AutoProcessor, LayoutLMv2ForSequenceClassification, set_seed
>>> from PIL import Image
>>> import torch
>>> from datasets import load_dataset
>>> set_seed(0)
>>> dataset = load_dataset("aharley/rvl_cdip", split="train", streaming=True, trust_remote_code=True)
>>> data = next(iter(dataset))
>>> image = data["image"].convert("RGB")
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")
>>> model = LayoutLMv2ForSequenceClassification.from_pretrained(
... "microsoft/layoutlmv2-base-uncased", num_labels=dataset.info.features["label"].num_classes
... )
>>> encoding = processor(image, return_tensors="pt")
>>> sequence_label = torch.tensor([data["label"]])
>>> outputs = model(**encoding, labels=sequence_label)
>>> loss, logits = outputs.loss, outputs.logits
>>> predicted_idx = logits.argmax(dim=-1).item()
>>> predicted_answer = dataset.info.features["label"].names[4]
>>> predicted_idx, predicted_answer # results are not good without further fine-tuning
(7, 'advertisement')
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
visual_shape = list(input_shape)
visual_shape[1] = self.config.image_feature_pool_shape[0] * self.config.image_feature_pool_shape[1]
visual_shape = torch.Size(visual_shape)
final_shape = list(input_shape)
final_shape[1] += visual_shape[1]
final_shape = torch.Size(final_shape)
visual_bbox = self.layoutlmv2._calc_visual_bbox(
self.config.image_feature_pool_shape, bbox, device, final_shape
)
visual_position_ids = torch.arange(0, visual_shape[1], dtype=torch.long, device=device).repeat(
input_shape[0], 1
)
initial_image_embeddings = self.layoutlmv2._calc_img_embeddings(
image=image,
bbox=visual_bbox,
position_ids=visual_position_ids,
)
outputs = self.layoutlmv2(
input_ids=input_ids,
bbox=bbox,
image=image,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
sequence_output, final_image_embeddings = outputs[0][:, :seq_length], outputs[0][:, seq_length:]
cls_final_output = sequence_output[:, 0, :]
# average-pool the visual embeddings
pooled_initial_image_embeddings = initial_image_embeddings.mean(dim=1)
pooled_final_image_embeddings = final_image_embeddings.mean(dim=1)
# concatenate with cls_final_output
sequence_output = torch.cat(
[cls_final_output, pooled_initial_image_embeddings, pooled_final_image_embeddings], dim=1
)
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 41,269 | 48,714 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/layoutlmv2/modeling_layoutlmv2.py
| null | 5,633 |
class LayoutLMv2ForTokenClassification(LayoutLMv2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.layoutlmv2 = LayoutLMv2Model(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.layoutlmv2.embeddings.word_embeddings
@add_start_docstrings_to_model_forward(LAYOUTLMV2_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
bbox: Optional[torch.LongTensor] = None,
image: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
Returns:
Example:
```python
>>> from transformers import AutoProcessor, LayoutLMv2ForTokenClassification, set_seed
>>> from PIL import Image
>>> from datasets import load_dataset
>>> set_seed(0)
>>> datasets = load_dataset("nielsr/funsd", split="test", trust_remote_code=True)
>>> labels = datasets.features["ner_tags"].feature.names
>>> id2label = {v: k for v, k in enumerate(labels)}
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased", revision="no_ocr")
>>> model = LayoutLMv2ForTokenClassification.from_pretrained(
... "microsoft/layoutlmv2-base-uncased", num_labels=len(labels)
... )
>>> data = datasets[0]
>>> image = Image.open(data["image_path"]).convert("RGB")
>>> words = data["words"]
>>> boxes = data["bboxes"] # make sure to normalize your bounding boxes
>>> word_labels = data["ner_tags"]
>>> encoding = processor(
... image,
... words,
... boxes=boxes,
... word_labels=word_labels,
... padding="max_length",
... truncation=True,
... return_tensors="pt",
... )
>>> outputs = model(**encoding)
>>> logits, loss = outputs.logits, outputs.loss
>>> predicted_token_class_ids = logits.argmax(-1)
>>> predicted_tokens_classes = [id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> predicted_tokens_classes[:5] # results are not good without further fine-tuning
['I-HEADER', 'I-HEADER', 'I-QUESTION', 'I-HEADER', 'I-QUESTION']
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.layoutlmv2(
input_ids=input_ids,
bbox=bbox,
image=image,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
# only take the text part of the output representations
sequence_output = outputs[0][:, :seq_length]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 49,185 | 54,060 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/layoutlmv2/modeling_layoutlmv2.py
| null | 5,634 |
class LayoutLMv2ForQuestionAnswering(LayoutLMv2PreTrainedModel):
def __init__(self, config, has_visual_segment_embedding=True):
super().__init__(config)
self.num_labels = config.num_labels
config.has_visual_segment_embedding = has_visual_segment_embedding
self.layoutlmv2 = LayoutLMv2Model(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.layoutlmv2.embeddings.word_embeddings
@add_start_docstrings_to_model_forward(LAYOUTLMV2_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
bbox: Optional[torch.LongTensor] = None,
image: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
Returns:
Example:
In this example below, we give the LayoutLMv2 model an image (of texts) and ask it a question. It will give us
a prediction of what it thinks the answer is (the span of the answer within the texts parsed from the image).
```python
>>> from transformers import AutoProcessor, LayoutLMv2ForQuestionAnswering, set_seed
>>> import torch
>>> from PIL import Image
>>> from datasets import load_dataset
>>> set_seed(0)
>>> processor = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")
>>> model = LayoutLMv2ForQuestionAnswering.from_pretrained("microsoft/layoutlmv2-base-uncased")
>>> dataset = load_dataset("hf-internal-testing/fixtures_docvqa", trust_remote_code=True)
>>> image_path = dataset["test"][0]["file"]
>>> image = Image.open(image_path).convert("RGB")
>>> question = "When is coffee break?"
>>> encoding = processor(image, question, return_tensors="pt")
>>> outputs = model(**encoding)
>>> predicted_start_idx = outputs.start_logits.argmax(-1).item()
>>> predicted_end_idx = outputs.end_logits.argmax(-1).item()
>>> predicted_start_idx, predicted_end_idx
(30, 191)
>>> predicted_answer_tokens = encoding.input_ids.squeeze()[predicted_start_idx : predicted_end_idx + 1]
>>> predicted_answer = processor.tokenizer.decode(predicted_answer_tokens)
>>> predicted_answer # results are not good without further fine-tuning
'44 a. m. to 12 : 25 p. m. 12 : 25 to 12 : 58 p. m. 12 : 58 to 4 : 00 p. m. 2 : 00 to 5 : 00 p. m. coffee break coffee will be served for men and women in the lobby adjacent to exhibit area. please move into exhibit area. ( exhibits open ) trrf general session ( part | ) presiding : lee a. waller trrf vice president “ introductory remarks ” lee a. waller, trrf vice presi - dent individual interviews with trrf public board members and sci - entific advisory council mem - bers conducted by trrf treasurer philip g. kuehn to get answers which the public refrigerated warehousing industry is looking for. plus questions from'
```
```python
>>> target_start_index = torch.tensor([7])
>>> target_end_index = torch.tensor([14])
>>> outputs = model(**encoding, start_positions=target_start_index, end_positions=target_end_index)
>>> predicted_answer_span_start = outputs.start_logits.argmax(-1).item()
>>> predicted_answer_span_end = outputs.end_logits.argmax(-1).item()
>>> predicted_answer_span_start, predicted_answer_span_end
(30, 191)
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.layoutlmv2(
input_ids=input_ids,
bbox=bbox,
image=image,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
# only take the text part of the output representations
sequence_output = outputs[0][:, :seq_length]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 54,416 | 61,910 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/layoutlmv2/modeling_layoutlmv2.py
| null | 5,635 |
class LayoutLMv2ImageProcessor(BaseImageProcessor):
r"""
Constructs a LayoutLMv2 image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to `(size["height"], size["width"])`. Can be
overridden by `do_resize` in `preprocess`.
size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
Size of the image after resizing. Can be overridden by `size` in `preprocess`.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
`preprocess` method.
apply_ocr (`bool`, *optional*, defaults to `True`):
Whether to apply the Tesseract OCR engine to get words + normalized bounding boxes. Can be overridden by
`apply_ocr` in `preprocess`.
ocr_lang (`str`, *optional*):
The language, specified by its ISO code, to be used by the Tesseract OCR engine. By default, English is
used. Can be overridden by `ocr_lang` in `preprocess`.
tesseract_config (`str`, *optional*, defaults to `""`):
Any additional custom configuration flags that are forwarded to the `config` parameter when calling
Tesseract. For example: '--psm 6'. Can be overridden by `tesseract_config` in `preprocess`.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
apply_ocr: bool = True,
ocr_lang: Optional[str] = None,
tesseract_config: Optional[str] = "",
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 224, "width": 224}
size = get_size_dict(size)
self.do_resize = do_resize
self.size = size
self.resample = resample
self.apply_ocr = apply_ocr
self.ocr_lang = ocr_lang
self.tesseract_config = tesseract_config
# Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
Returns:
`np.ndarray`: The resized image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
output_size = (size["height"], size["width"])
return resize(
image,
size=output_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
@filter_out_non_signature_kwargs()
def preprocess(
self,
images: ImageInput,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
apply_ocr: bool = None,
ocr_lang: Optional[str] = None,
tesseract_config: Optional[str] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> PIL.Image.Image:
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Desired size of the output image after resizing.
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PIL.Image` resampling
filter. Only has an effect if `do_resize` is set to `True`.
apply_ocr (`bool`, *optional*, defaults to `self.apply_ocr`):
Whether to apply the Tesseract OCR engine to get words + normalized bounding boxes.
ocr_lang (`str`, *optional*, defaults to `self.ocr_lang`):
The language, specified by its ISO code, to be used by the Tesseract OCR engine. By default, English is
used.
tesseract_config (`str`, *optional*, defaults to `self.tesseract_config`):
Any additional custom configuration flags that are forwarded to the `config` parameter when calling
Tesseract.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
size = get_size_dict(size)
resample = resample if resample is not None else self.resample
apply_ocr = apply_ocr if apply_ocr is not None else self.apply_ocr
ocr_lang = ocr_lang if ocr_lang is not None else self.ocr_lang
tesseract_config = tesseract_config if tesseract_config is not None else self.tesseract_config
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
do_resize=do_resize,
size=size,
resample=resample,
)
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if apply_ocr:
requires_backends(self, "pytesseract")
words_batch = []
boxes_batch = []
for image in images:
words, boxes = apply_tesseract(image, ocr_lang, tesseract_config, input_data_format=input_data_format)
words_batch.append(words)
boxes_batch.append(boxes)
if do_resize:
images = [
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
# flip color channels from RGB to BGR (as Detectron2 requires this)
images = [flip_channel_order(image, input_data_format=input_data_format) for image in images]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)
if apply_ocr:
data["words"] = words_batch
data["boxes"] = boxes_batch
return data
|
class_definition
| 3,533 | 13,454 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/layoutlmv2/image_processing_layoutlmv2.py
| null | 5,636 |
class LayoutLMv2TokenizerFast(PreTrainedTokenizerFast):
r"""
Construct a "fast" LayoutLMv2 tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece.
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
cls_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
The bounding box to use for the special [CLS] token.
sep_token_box (`List[int]`, *optional*, defaults to `[1000, 1000, 1000, 1000]`):
The bounding box to use for the special [SEP] token.
pad_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
The bounding box to use for the special [PAD] token.
pad_token_label (`int`, *optional*, defaults to -100):
The label to use for padding tokens. Defaults to -100, which is the `ignore_index` of PyTorch's
CrossEntropyLoss.
only_label_first_subword (`bool`, *optional*, defaults to `True`):
Whether or not to only label the first subword, in case word labels are provided.
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original LayoutLMv2).
"""
vocab_files_names = VOCAB_FILES_NAMES
slow_tokenizer_class = LayoutLMv2Tokenizer
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
do_lower_case=True,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
cls_token_box=[0, 0, 0, 0],
sep_token_box=[1000, 1000, 1000, 1000],
pad_token_box=[0, 0, 0, 0],
pad_token_label=-100,
only_label_first_subword=True,
tokenize_chinese_chars=True,
strip_accents=None,
**kwargs,
):
super().__init__(
vocab_file,
tokenizer_file=tokenizer_file,
do_lower_case=do_lower_case,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
cls_token_box=cls_token_box,
sep_token_box=sep_token_box,
pad_token_box=pad_token_box,
pad_token_label=pad_token_label,
only_label_first_subword=only_label_first_subword,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
**kwargs,
)
pre_tok_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
if (
pre_tok_state.get("lowercase", do_lower_case) != do_lower_case
or pre_tok_state.get("strip_accents", strip_accents) != strip_accents
):
pre_tok_class = getattr(normalizers, pre_tok_state.pop("type"))
pre_tok_state["lowercase"] = do_lower_case
pre_tok_state["strip_accents"] = strip_accents
self.backend_tokenizer.normalizer = pre_tok_class(**pre_tok_state)
self.do_lower_case = do_lower_case
# additional properties
self.cls_token_box = cls_token_box
self.sep_token_box = sep_token_box
self.pad_token_box = pad_token_box
self.pad_token_label = pad_token_label
self.only_label_first_subword = only_label_first_subword
@add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
boxes: Union[List[List[int]], List[List[List[int]]]] = None,
word_labels: Optional[Union[List[int], List[List[int]]]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
"""
Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
sequences with word-level normalized bounding boxes and optional labels.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings
(words of a single example or questions of a batch of examples) or a list of list of strings (batch of
words).
text_pair (`List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence should be a list of strings
(pretokenized string).
boxes (`List[List[int]]`, `List[List[List[int]]]`):
Word-level bounding boxes. Each bounding box should be normalized to be on a 0-1000 scale.
word_labels (`List[int]`, `List[List[int]]`, *optional*):
Word-level integer labels (for token classification tasks such as FUNSD, CORD).
"""
# Input type checking for clearer error
def _is_valid_text_input(t):
if isinstance(t, str):
# Strings are fine
return True
elif isinstance(t, (list, tuple)):
# List are fine as long as they are...
if len(t) == 0:
# ... empty
return True
elif isinstance(t[0], str):
# ... list of strings
return True
elif isinstance(t[0], (list, tuple)):
# ... list with an empty list or with a list of strings
return len(t[0]) == 0 or isinstance(t[0][0], str)
else:
return False
else:
return False
if text_pair is not None:
# in case text + text_pair are provided, text = questions, text_pair = words
if not _is_valid_text_input(text):
raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ")
if not isinstance(text_pair, (list, tuple)):
raise ValueError(
"Words must be of type `List[str]` (single pretokenized example), "
"or `List[List[str]]` (batch of pretokenized examples)."
)
else:
# in case only text is provided => must be words
if not isinstance(text, (list, tuple)):
raise ValueError(
"Words must be of type `List[str]` (single pretokenized example), "
"or `List[List[str]]` (batch of pretokenized examples)."
)
if text_pair is not None:
is_batched = isinstance(text, (list, tuple))
else:
is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple))
words = text if text_pair is None else text_pair
if boxes is None:
raise ValueError("You must provide corresponding bounding boxes")
if is_batched:
if len(words) != len(boxes):
raise ValueError("You must provide words and boxes for an equal amount of examples")
for words_example, boxes_example in zip(words, boxes):
if len(words_example) != len(boxes_example):
raise ValueError("You must provide as many words as there are bounding boxes")
else:
if len(words) != len(boxes):
raise ValueError("You must provide as many words as there are bounding boxes")
if is_batched:
if text_pair is not None and len(text) != len(text_pair):
raise ValueError(
f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:"
f" {len(text_pair)}."
)
batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
is_pair = bool(text_pair is not None)
return self.batch_encode_plus(
batch_text_or_text_pairs=batch_text_or_text_pairs,
is_pair=is_pair,
boxes=boxes,
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
else:
return self.encode_plus(
text=text,
text_pair=text_pair,
boxes=boxes,
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
@add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def batch_encode_plus(
self,
batch_text_or_text_pairs: Union[
List[TextInput],
List[TextInputPair],
List[PreTokenizedInput],
],
is_pair: bool = None,
boxes: Optional[List[List[List[int]]]] = None,
word_labels: Optional[Union[List[int], List[List[int]]]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
verbose=verbose,
**kwargs,
)
return self._batch_encode_plus(
batch_text_or_text_pairs=batch_text_or_text_pairs,
is_pair=is_pair,
boxes=boxes,
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
def tokenize(self, text: str, pair: Optional[str] = None, add_special_tokens: bool = False, **kwargs) -> List[str]:
batched_input = [(text, pair)] if pair else [text]
encodings = self._tokenizer.encode_batch(
batched_input, add_special_tokens=add_special_tokens, is_pretokenized=False, **kwargs
)
return encodings[0].tokens
@add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def encode_plus(
self,
text: Union[TextInput, PreTokenizedInput],
text_pair: Optional[PreTokenizedInput] = None,
boxes: Optional[List[List[int]]] = None,
word_labels: Optional[List[int]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
"""
Tokenize and prepare for the model a sequence or a pair of sequences. .. warning:: This method is deprecated,
`__call__` should be used instead.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings.
text_pair (`List[str]` or `List[int]`, *optional*):
Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a
list of list of strings (words of a batch of examples).
"""
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
verbose=verbose,
**kwargs,
)
return self._encode_plus(
text=text,
boxes=boxes,
text_pair=text_pair,
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
def _batch_encode_plus(
self,
batch_text_or_text_pairs: Union[
List[TextInput],
List[TextInputPair],
List[PreTokenizedInput],
],
is_pair: bool = None,
boxes: Optional[List[List[List[int]]]] = None,
word_labels: Optional[List[List[int]]] = None,
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_tensors: Optional[str] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
) -> BatchEncoding:
if not isinstance(batch_text_or_text_pairs, list):
raise TypeError(f"batch_text_or_text_pairs has to be a list (got {type(batch_text_or_text_pairs)})")
# Set the truncation and padding strategy and restore the initial configuration
self.set_truncation_and_padding(
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
)
if is_pair:
batch_text_or_text_pairs = [(text.split(), text_pair) for text, text_pair in batch_text_or_text_pairs]
encodings = self._tokenizer.encode_batch(
batch_text_or_text_pairs,
add_special_tokens=add_special_tokens,
is_pretokenized=True, # we set this to True as LayoutLMv2 always expects pretokenized inputs
)
# Convert encoding to dict
# `Tokens` has type: Tuple[
# List[Dict[str, List[List[int]]]] or List[Dict[str, 2D-Tensor]],
# List[EncodingFast]
# ]
# with nested dimensions corresponding to batch, overflows, sequence length
tokens_and_encodings = [
self._convert_encoding(
encoding=encoding,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=True
if word_labels is not None
else return_offsets_mapping, # we use offsets to create the labels
return_length=return_length,
verbose=verbose,
)
for encoding in encodings
]
# Convert the output to have dict[list] from list[dict] and remove the additional overflows dimension
# From (variable) shape (batch, overflows, sequence length) to ~ (batch * overflows, sequence length)
# (we say ~ because the number of overflow varies with the example in the batch)
#
# To match each overflowing sample with the original sample in the batch
# we add an overflow_to_sample_mapping array (see below)
sanitized_tokens = {}
for key in tokens_and_encodings[0][0].keys():
stack = [e for item, _ in tokens_and_encodings for e in item[key]]
sanitized_tokens[key] = stack
sanitized_encodings = [e for _, item in tokens_and_encodings for e in item]
# If returning overflowing tokens, we need to return a mapping
# from the batch idx to the original sample
if return_overflowing_tokens:
overflow_to_sample_mapping = []
for i, (toks, _) in enumerate(tokens_and_encodings):
overflow_to_sample_mapping += [i] * len(toks["input_ids"])
sanitized_tokens["overflow_to_sample_mapping"] = overflow_to_sample_mapping
for input_ids in sanitized_tokens["input_ids"]:
self._eventual_warn_about_too_long_sequence(input_ids, max_length, verbose)
# create the token boxes
token_boxes = []
for batch_index in range(len(sanitized_tokens["input_ids"])):
if return_overflowing_tokens:
original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index]
else:
original_index = batch_index
token_boxes_example = []
for id, sequence_id, word_id in zip(
sanitized_tokens["input_ids"][batch_index],
sanitized_encodings[batch_index].sequence_ids,
sanitized_encodings[batch_index].word_ids,
):
if word_id is not None:
if is_pair and sequence_id == 0:
token_boxes_example.append(self.pad_token_box)
else:
token_boxes_example.append(boxes[original_index][word_id])
else:
if id == self.cls_token_id:
token_boxes_example.append(self.cls_token_box)
elif id == self.sep_token_id:
token_boxes_example.append(self.sep_token_box)
elif id == self.pad_token_id:
token_boxes_example.append(self.pad_token_box)
else:
raise ValueError("Id not recognized")
token_boxes.append(token_boxes_example)
sanitized_tokens["bbox"] = token_boxes
# optionally, create the labels
if word_labels is not None:
labels = []
for batch_index in range(len(sanitized_tokens["input_ids"])):
if return_overflowing_tokens:
original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index]
else:
original_index = batch_index
labels_example = []
for id, offset, word_id in zip(
sanitized_tokens["input_ids"][batch_index],
sanitized_tokens["offset_mapping"][batch_index],
sanitized_encodings[batch_index].word_ids,
):
if word_id is not None:
if self.only_label_first_subword:
if offset[0] == 0:
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
labels_example.append(word_labels[original_index][word_id])
else:
labels_example.append(self.pad_token_label)
else:
labels_example.append(word_labels[original_index][word_id])
else:
labels_example.append(self.pad_token_label)
labels.append(labels_example)
sanitized_tokens["labels"] = labels
# finally, remove offsets if the user didn't want them
if not return_offsets_mapping:
del sanitized_tokens["offset_mapping"]
return BatchEncoding(sanitized_tokens, sanitized_encodings, tensor_type=return_tensors)
def _encode_plus(
self,
text: Union[TextInput, PreTokenizedInput],
text_pair: Optional[PreTokenizedInput] = None,
boxes: Optional[List[List[int]]] = None,
word_labels: Optional[List[int]] = None,
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_tensors: Optional[bool] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
# make it a batched input
# 2 options:
# 1) only text, in case text must be a list of str
# 2) text + text_pair, in which case text = str and text_pair a list of str
batched_input = [(text, text_pair)] if text_pair else [text]
batched_boxes = [boxes]
batched_word_labels = [word_labels] if word_labels is not None else None
batched_output = self._batch_encode_plus(
batched_input,
is_pair=bool(text_pair is not None),
boxes=batched_boxes,
word_labels=batched_word_labels,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
# Return tensor is None, then we can remove the leading batch axis
# Overflowing tokens are returned as a batch of output so we keep them in this case
if return_tensors is None and not return_overflowing_tokens:
batched_output = BatchEncoding(
{
key: value[0] if len(value) > 0 and isinstance(value[0], list) else value
for key, value in batched_output.items()
},
batched_output.encodings,
)
self._eventual_warn_about_too_long_sequence(batched_output["input_ids"], max_length, verbose)
return batched_output
def _pad(
self,
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
max_length: Optional[int] = None,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
) -> dict:
"""
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
Args:
encoded_inputs:
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
max_length: maximum length of the returned list and optionally padding length (see below).
Will truncate by taking into account the special tokens.
padding_strategy: PaddingStrategy to use for padding.
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
- PaddingStrategy.DO_NOT_PAD: Do not pad
The tokenizer padding sides are defined in self.padding_side:
- 'left': pads on the left of the sequences
- 'right': pads on the right of the sequences
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
`>= 7.5` (Volta).
padding_side:
The side on which the model should have padding applied. Should be selected between ['right', 'left'].
Default value is picked from the class attribute of the same name.
return_attention_mask:
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
"""
# Load from model defaults
if return_attention_mask is None:
return_attention_mask = "attention_mask" in self.model_input_names
required_input = encoded_inputs[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
max_length = len(required_input)
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
# Initialize attention mask if not present.
if return_attention_mask and "attention_mask" not in encoded_inputs:
encoded_inputs["attention_mask"] = [1] * len(required_input)
if needs_to_be_padded:
difference = max_length - len(required_input)
padding_side = padding_side if padding_side is not None else self.padding_side
if padding_side == "right":
if return_attention_mask:
encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
if "token_type_ids" in encoded_inputs:
encoded_inputs["token_type_ids"] = (
encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
)
if "bbox" in encoded_inputs:
encoded_inputs["bbox"] = encoded_inputs["bbox"] + [self.pad_token_box] * difference
if "labels" in encoded_inputs:
encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference
if "special_tokens_mask" in encoded_inputs:
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
elif padding_side == "left":
if return_attention_mask:
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
if "token_type_ids" in encoded_inputs:
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
"token_type_ids"
]
if "bbox" in encoded_inputs:
encoded_inputs["bbox"] = [self.pad_token_box] * difference + encoded_inputs["bbox"]
if "labels" in encoded_inputs:
encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"]
if "special_tokens_mask" in encoded_inputs:
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
else:
raise ValueError("Invalid padding strategy:" + str(padding_side))
return encoded_inputs
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
if token_ids_1:
output += token_ids_1 + [self.sep_token_id]
return output
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
pair mask has the following format: :: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second
sequence | If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
|
class_definition
| 1,490 | 38,099 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/layoutlmv2/tokenization_layoutlmv2_fast.py
| null | 5,637 |
class LayoutLMv2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`LayoutLMv2Model`]. It is used to instantiate an
LayoutLMv2 model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the LayoutLMv2
[microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the LayoutLMv2 model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`LayoutLMv2Model`] or [`TFLayoutLMv2Model`].
hidden_size (`int`, *optional*, defaults to 768):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`LayoutLMv2Model`] or
[`TFLayoutLMv2Model`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
max_2d_position_embeddings (`int`, *optional*, defaults to 1024):
The maximum value that the 2D position embedding might ever be used with. Typically set this to something
large just in case (e.g., 1024).
max_rel_pos (`int`, *optional*, defaults to 128):
The maximum number of relative positions to be used in the self-attention mechanism.
rel_pos_bins (`int`, *optional*, defaults to 32):
The number of relative position bins to be used in the self-attention mechanism.
fast_qkv (`bool`, *optional*, defaults to `True`):
Whether or not to use a single matrix for the queries, keys, values in the self-attention layers.
max_rel_2d_pos (`int`, *optional*, defaults to 256):
The maximum number of relative 2D positions in the self-attention mechanism.
rel_2d_pos_bins (`int`, *optional*, defaults to 64):
The number of 2D relative position bins in the self-attention mechanism.
image_feature_pool_shape (`List[int]`, *optional*, defaults to [7, 7, 256]):
The shape of the average-pooled feature map.
coordinate_size (`int`, *optional*, defaults to 128):
Dimension of the coordinate embeddings.
shape_size (`int`, *optional*, defaults to 128):
Dimension of the width and height embeddings.
has_relative_attention_bias (`bool`, *optional*, defaults to `True`):
Whether or not to use a relative attention bias in the self-attention mechanism.
has_spatial_attention_bias (`bool`, *optional*, defaults to `True`):
Whether or not to use a spatial attention bias in the self-attention mechanism.
has_visual_segment_embedding (`bool`, *optional*, defaults to `False`):
Whether or not to add visual segment embeddings.
detectron2_config_args (`dict`, *optional*):
Dictionary containing the configuration arguments of the Detectron2 visual backbone. Refer to [this
file](https://github.com/microsoft/unilm/blob/master/layoutlmft/layoutlmft/models/layoutlmv2/detectron2_config.py)
for details regarding default values.
Example:
```python
>>> from transformers import LayoutLMv2Config, LayoutLMv2Model
>>> # Initializing a LayoutLMv2 microsoft/layoutlmv2-base-uncased style configuration
>>> configuration = LayoutLMv2Config()
>>> # Initializing a model (with random weights) from the microsoft/layoutlmv2-base-uncased style configuration
>>> model = LayoutLMv2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "layoutlmv2"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
max_2d_position_embeddings=1024,
max_rel_pos=128,
rel_pos_bins=32,
fast_qkv=True,
max_rel_2d_pos=256,
rel_2d_pos_bins=64,
convert_sync_batchnorm=True,
image_feature_pool_shape=[7, 7, 256],
coordinate_size=128,
shape_size=128,
has_relative_attention_bias=True,
has_spatial_attention_bias=True,
has_visual_segment_embedding=False,
detectron2_config_args=None,
**kwargs,
):
super().__init__(
vocab_size=vocab_size,
hidden_size=hidden_size,
num_hidden_layers=num_hidden_layers,
num_attention_heads=num_attention_heads,
intermediate_size=intermediate_size,
hidden_act=hidden_act,
hidden_dropout_prob=hidden_dropout_prob,
attention_probs_dropout_prob=attention_probs_dropout_prob,
max_position_embeddings=max_position_embeddings,
type_vocab_size=type_vocab_size,
initializer_range=initializer_range,
layer_norm_eps=layer_norm_eps,
pad_token_id=pad_token_id,
**kwargs,
)
self.max_2d_position_embeddings = max_2d_position_embeddings
self.max_rel_pos = max_rel_pos
self.rel_pos_bins = rel_pos_bins
self.fast_qkv = fast_qkv
self.max_rel_2d_pos = max_rel_2d_pos
self.rel_2d_pos_bins = rel_2d_pos_bins
self.convert_sync_batchnorm = convert_sync_batchnorm
self.image_feature_pool_shape = image_feature_pool_shape
self.coordinate_size = coordinate_size
self.shape_size = shape_size
self.has_relative_attention_bias = has_relative_attention_bias
self.has_spatial_attention_bias = has_spatial_attention_bias
self.has_visual_segment_embedding = has_visual_segment_embedding
self.detectron2_config_args = (
detectron2_config_args if detectron2_config_args is not None else self.get_default_detectron2_config()
)
@classmethod
def get_default_detectron2_config(cls):
return {
"MODEL.MASK_ON": True,
"MODEL.PIXEL_STD": [57.375, 57.120, 58.395],
"MODEL.BACKBONE.NAME": "build_resnet_fpn_backbone",
"MODEL.FPN.IN_FEATURES": ["res2", "res3", "res4", "res5"],
"MODEL.ANCHOR_GENERATOR.SIZES": [[32], [64], [128], [256], [512]],
"MODEL.RPN.IN_FEATURES": ["p2", "p3", "p4", "p5", "p6"],
"MODEL.RPN.PRE_NMS_TOPK_TRAIN": 2000,
"MODEL.RPN.PRE_NMS_TOPK_TEST": 1000,
"MODEL.RPN.POST_NMS_TOPK_TRAIN": 1000,
"MODEL.POST_NMS_TOPK_TEST": 1000,
"MODEL.ROI_HEADS.NAME": "StandardROIHeads",
"MODEL.ROI_HEADS.NUM_CLASSES": 5,
"MODEL.ROI_HEADS.IN_FEATURES": ["p2", "p3", "p4", "p5"],
"MODEL.ROI_BOX_HEAD.NAME": "FastRCNNConvFCHead",
"MODEL.ROI_BOX_HEAD.NUM_FC": 2,
"MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION": 14,
"MODEL.ROI_MASK_HEAD.NAME": "MaskRCNNConvUpsampleHead",
"MODEL.ROI_MASK_HEAD.NUM_CONV": 4,
"MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION": 7,
"MODEL.RESNETS.DEPTH": 101,
"MODEL.RESNETS.SIZES": [[32], [64], [128], [256], [512]],
"MODEL.RESNETS.ASPECT_RATIOS": [[0.5, 1.0, 2.0]],
"MODEL.RESNETS.OUT_FEATURES": ["res2", "res3", "res4", "res5"],
"MODEL.RESNETS.NUM_GROUPS": 32,
"MODEL.RESNETS.WIDTH_PER_GROUP": 8,
"MODEL.RESNETS.STRIDE_IN_1X1": False,
}
def get_detectron2_config(self):
detectron2_config = detectron2.config.get_cfg()
for k, v in self.detectron2_config_args.items():
attributes = k.split(".")
to_set = detectron2_config
for attribute in attributes[:-1]:
to_set = getattr(to_set, attribute)
setattr(to_set, attributes[-1], v)
return detectron2_config
|
class_definition
| 902 | 10,880 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/layoutlmv2/configuration_layoutlmv2.py
| null | 5,638 |
class UniSpeechSatConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`UniSpeechSatModel`]. It is used to instantiate an
UniSpeechSat model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the UniSpeechSat
[microsoft/unispeech-sat-base-100h-libri-ft](https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32):
Vocabulary size of the UniSpeechSat model. Defines the number of different tokens that can be represented
by the `inputs_ids` passed when calling [`UniSpeechSatModel`]. Vocabulary size of the model. Defines the
different tokens that can be represented by the *inputs_ids* passed to the forward method of
[`UniSpeechSatModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
activation_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for activations inside the fully connected layer.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
feat_proj_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for output of the feature encoder.
feat_quantizer_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for the output of the feature encoder that's used by the quantizer.
final_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for the final projection layer of [`UniSpeechSatForCTC`].
layerdrop (`float`, *optional*, defaults to 0.1):
The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
details.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
feat_extract_norm (`str`, *optional*, defaults to `"group"`):
The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group
normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D
convolutional layers.
feat_extract_activation (`str, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the 1D convolutional layers of the feature
extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`):
A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the
feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers.
conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`):
A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length
of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*.
conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 2, 2)`):
A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The
length of *conv_kernel* defines the number of convolutional layers and has to match the length of
*conv_dim*.
conv_bias (`bool`, *optional*, defaults to `False`):
Whether the 1D convolutional layers have a bias.
num_conv_pos_embeddings (`int`, *optional*, defaults to 128):
Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional
embeddings layer.
num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16):
Number of groups of 1D convolutional positional embeddings layer.
do_stable_layer_norm (`bool`, *optional*, defaults to `False`):
Whether to apply *stable* layer norm architecture of the Transformer encoder. `do_stable_layer_norm is
True` corresponds to applying layer norm before the attention layer, whereas `do_stable_layer_norm is
False` corresponds to applying layer norm after the attention layer.
apply_spec_augment (`bool`, *optional*, defaults to `True`):
Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see
[SpecAugment: A Simple Data Augmentation Method for Automatic Speech
Recognition](https://arxiv.org/abs/1904.08779).
mask_time_prob (`float`, *optional*, defaults to 0.05):
Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking
procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If
reasoning from the propability of each feature vector to be chosen as the start of the vector span to be
masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the
actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`.
mask_time_length (`int`, *optional*, defaults to 10):
Length of vector span along the time axis.
mask_time_min_masks (`int`, *optional*, defaults to 2):
The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
mask_time_min_masks''
mask_feature_prob (`float`, *optional*, defaults to 0.0):
Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The
masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over
the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector
span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap
may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is
True`.
mask_feature_length (`int`, *optional*, defaults to 10):
Length of vector span along the feature axis.
mask_feature_min_masks (`int`, *optional*, defaults to 0):
The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
step, irrespectively of `mask_feature_prob`. Only relevant if
''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks''
num_codevectors_per_group (`int`, *optional*, defaults to 320):
Number of entries in each quantization codebook (group).
num_codevector_groups (`int`, *optional*, defaults to 2):
Number of codevector groups for product codevector quantization.
contrastive_logits_temperature (`float`, *optional*, defaults to 0.1):
The temperature *kappa* in the contrastive loss.
num_negatives (`int`, *optional*, defaults to 100):
Number of negative samples for the contrastive loss.
codevector_dim (`int`, *optional*, defaults to 256):
Dimensionality of the quantized feature vectors.
proj_codevector_dim (`int`, *optional*, defaults to 256):
Dimensionality of the final projection of both the quantized and the transformer features.
diversity_loss_weight (`int`, *optional*, defaults to 0.1):
The weight of the codebook diversity loss component.
ctc_loss_reduction (`str`, *optional*, defaults to `"mean"`):
Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an
instance of [`UniSpeechSatForCTC`].
ctc_zero_infinity (`bool`, *optional*, defaults to `False`):
Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly
occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance
of [`UniSpeechSatForCTC`].
use_weighted_layer_sum (`bool`, *optional*, defaults to `False`):
Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an
instance of [`UniSpeechSatForSequenceClassification`].
classifier_proj_size (`int`, *optional*, defaults to 256):
Dimensionality of the projection before token mean-pooling for classification.
tdnn_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 1500)`):
A tuple of integers defining the number of output channels of each 1D convolutional layer in the *TDNN*
module of the *XVector* model. The length of *tdnn_dim* defines the number of *TDNN* layers.
tdnn_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 3, 3, 1, 1)`):
A tuple of integers defining the kernel size of each 1D convolutional layer in the *TDNN* module of the
*XVector* model. The length of *tdnn_kernel* has to match the length of *tdnn_dim*.
tdnn_dilation (`Tuple[int]` or `List[int]`, *optional*, defaults to `(1, 2, 3, 1, 1)`):
A tuple of integers defining the dilation factor of each 1D convolutional layer in *TDNN* module of the
*XVector* model. The length of *tdnn_dilation* has to match the length of *tdnn_dim*.
xvector_output_dim (`int`, *optional*, defaults to 512):
Dimensionality of the *XVector* embedding vectors.
pad_token_id (`int`, *optional*, defaults to 0):
The id of the padding token.
bos_token_id (`int`, *optional*, defaults to 1):
The id of the "beginning-of-sequence" token.
eos_token_id (`int`, *optional*, defaults to 2):
The id of the "end-of-sequence" token.
num_clusters (`int`, *optional*, defaults to 504):
Number of clusters for weak labeling. Only relevant when using an instance of
[`UniSpeechSatForPreTraining`].
Example:
```python
>>> from transformers import UniSpeechSatModel, UniSpeechSatConfig
>>> # Initializing a UniSpeechSat microsoft/unispeech-sat-base-100h-libri-ft style configuration
>>> configuration = UniSpeechSatConfig()
>>> # Initializing a model from the microsoft/unispeech-sat-base-100h-libri-ft style configuration
>>> model = UniSpeechSatModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "unispeech-sat"
def __init__(
self,
vocab_size=32,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout=0.1,
activation_dropout=0.1,
attention_dropout=0.1,
feat_proj_dropout=0.0,
feat_quantizer_dropout=0.0,
final_dropout=0.1,
layerdrop=0.1,
initializer_range=0.02,
layer_norm_eps=1e-5,
feat_extract_norm="group",
feat_extract_activation="gelu",
conv_dim=(512, 512, 512, 512, 512, 512, 512),
conv_stride=(5, 2, 2, 2, 2, 2, 2),
conv_kernel=(10, 3, 3, 3, 3, 2, 2),
conv_bias=False,
num_conv_pos_embeddings=128,
num_conv_pos_embedding_groups=16,
do_stable_layer_norm=False,
apply_spec_augment=True,
mask_time_prob=0.05,
mask_time_length=10,
mask_time_min_masks=2,
mask_feature_prob=0.0,
mask_feature_length=10,
mask_feature_min_masks=0,
num_codevectors_per_group=320,
num_codevector_groups=2,
contrastive_logits_temperature=0.1,
num_negatives=100,
codevector_dim=256,
proj_codevector_dim=256,
diversity_loss_weight=0.1,
ctc_loss_reduction="mean",
ctc_zero_infinity=False,
use_weighted_layer_sum=False,
classifier_proj_size=256,
tdnn_dim=(512, 512, 512, 512, 1500),
tdnn_kernel=(5, 3, 3, 1, 1),
tdnn_dilation=(1, 2, 3, 1, 1),
xvector_output_dim=512,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
num_clusters=504,
**kwargs,
):
super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id)
self.hidden_size = hidden_size
self.feat_extract_norm = feat_extract_norm
self.feat_extract_activation = feat_extract_activation
self.conv_dim = list(conv_dim)
self.conv_stride = list(conv_stride)
self.conv_kernel = list(conv_kernel)
self.conv_bias = conv_bias
self.num_conv_pos_embeddings = num_conv_pos_embeddings
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
self.num_feat_extract_layers = len(self.conv_dim)
self.num_hidden_layers = num_hidden_layers
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.num_attention_heads = num_attention_heads
self.hidden_dropout = hidden_dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.feat_proj_dropout = feat_proj_dropout
self.final_dropout = final_dropout
self.layerdrop = layerdrop
self.layer_norm_eps = layer_norm_eps
self.initializer_range = initializer_range
self.vocab_size = vocab_size
self.num_clusters = num_clusters
self.do_stable_layer_norm = do_stable_layer_norm
self.use_weighted_layer_sum = use_weighted_layer_sum
if (
(len(self.conv_stride) != self.num_feat_extract_layers)
or (len(self.conv_kernel) != self.num_feat_extract_layers)
or (len(self.conv_dim) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,"
f" `len(config.conv_kernel) = {len(self.conv_kernel)}`."
)
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
self.apply_spec_augment = apply_spec_augment
self.mask_time_prob = mask_time_prob
self.mask_time_length = mask_time_length
self.mask_time_min_masks = mask_time_min_masks
self.mask_feature_prob = mask_feature_prob
self.mask_feature_length = mask_feature_length
self.mask_feature_min_masks = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
self.num_codevectors_per_group = num_codevectors_per_group
self.num_codevector_groups = num_codevector_groups
self.contrastive_logits_temperature = contrastive_logits_temperature
self.feat_quantizer_dropout = feat_quantizer_dropout
self.num_negatives = num_negatives
self.codevector_dim = codevector_dim
self.proj_codevector_dim = proj_codevector_dim
self.diversity_loss_weight = diversity_loss_weight
# ctc loss
self.ctc_loss_reduction = ctc_loss_reduction
self.ctc_zero_infinity = ctc_zero_infinity
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
self.classifier_proj_size = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
self.tdnn_dim = list(tdnn_dim)
self.tdnn_kernel = list(tdnn_kernel)
self.tdnn_dilation = list(tdnn_dilation)
self.xvector_output_dim = xvector_output_dim
@property
def inputs_to_logits_ratio(self):
return functools.reduce(operator.mul, self.conv_stride, 1)
|
class_definition
| 847 | 18,795 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/unispeech_sat/configuration_unispeech_sat.py
| null | 5,639 |
class UniSpeechSatForPreTrainingOutput(ModelOutput):
"""
Output type of [`UniSpeechSatForPreTrainingOutput`], with potential hidden states and attentions.
Args:
loss (*optional*, returned when model is in train mode, `torch.FloatTensor` of shape `(1,)`):
Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the [official
paper](https://arxiv.org/pdf/2006.11477.pdf) . (classification) loss.
projected_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`):
Hidden-states of the model projected to *config.proj_codevector_dim* that can be used to predict the masked
projected quantized states.
projected_quantized_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`):
Quantized extracted feature vectors projected to *config.proj_codevector_dim* representing the positive
target vectors for contrastive loss.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
projected_states: torch.FloatTensor = None
projected_quantized_states: torch.FloatTensor = None
codevector_perplexity: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
class_definition
| 2,429 | 4,721 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
| null | 5,640 |
class UniSpeechSatNoLayerNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1d(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias=config.conv_bias,
)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
|
class_definition
| 10,056 | 10,789 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
| null | 5,641 |
class UniSpeechSatLayerNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1d(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias=config.conv_bias,
)
self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = hidden_states.transpose(-2, -1)
hidden_states = self.layer_norm(hidden_states)
hidden_states = hidden_states.transpose(-2, -1)
hidden_states = self.activation(hidden_states)
return hidden_states
|
class_definition
| 10,908 | 11,891 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
| null | 5,642 |
class UniSpeechSatGroupNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1d(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias=config.conv_bias,
)
self.activation = ACT2FN[config.feat_extract_activation]
self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True)
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.layer_norm(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
|
class_definition
| 12,010 | 12,911 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
| null | 5,643 |
class UniSpeechSatPositionalConvEmbedding(nn.Module):
def __init__(self, config):
super().__init__()
self.conv = nn.Conv1d(
config.hidden_size,
config.hidden_size,
kernel_size=config.num_conv_pos_embeddings,
padding=config.num_conv_pos_embeddings // 2,
groups=config.num_conv_pos_embedding_groups,
)
weight_norm = nn.utils.weight_norm
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
if is_deepspeed_zero3_enabled():
import deepspeed
with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0):
self.conv = weight_norm(self.conv, name="weight", dim=2)
if hasattr(self.conv, "parametrizations"):
weight_g = self.conv.parametrizations.weight.original0
weight_v = self.conv.parametrizations.weight.original1
else:
weight_g = self.conv.weight_g
weight_v = self.conv.weight_v
deepspeed.zero.register_external_parameter(self, weight_v)
deepspeed.zero.register_external_parameter(self, weight_g)
else:
self.conv = weight_norm(self.conv, name="weight", dim=2)
self.padding = UniSpeechSatSamePadLayer(config.num_conv_pos_embeddings)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = hidden_states.transpose(1, 2)
hidden_states = self.conv(hidden_states)
hidden_states = self.padding(hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = hidden_states.transpose(1, 2)
return hidden_states
|
class_definition
| 13,035 | 14,836 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
| null | 5,644 |
class UniSpeechSatSamePadLayer(nn.Module):
def __init__(self, num_conv_pos_embeddings):
super().__init__()
self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0
def forward(self, hidden_states):
if self.num_pad_remove > 0:
hidden_states = hidden_states[:, :, : -self.num_pad_remove]
return hidden_states
|
class_definition
| 14,949 | 15,318 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
| null | 5,645 |
class UniSpeechSatFeatureEncoder(nn.Module):
"""Construct the features from raw audio waveform"""
def __init__(self, config):
super().__init__()
if config.feat_extract_norm == "group":
conv_layers = [UniSpeechSatGroupNormConvLayer(config, layer_id=0)] + [
UniSpeechSatNoLayerNormConvLayer(config, layer_id=i + 1)
for i in range(config.num_feat_extract_layers - 1)
]
elif config.feat_extract_norm == "layer":
conv_layers = [
UniSpeechSatLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)
]
else:
raise ValueError(
f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']"
)
self.conv_layers = nn.ModuleList(conv_layers)
self.gradient_checkpointing = False
self._requires_grad = True
def _freeze_parameters(self):
for param in self.parameters():
param.requires_grad = False
self._requires_grad = False
def forward(self, input_values):
hidden_states = input_values[:, None]
# make sure hidden_states require grad for gradient_checkpointing
if self._requires_grad and self.training:
hidden_states.requires_grad = True
for conv_layer in self.conv_layers:
if self._requires_grad and self.gradient_checkpointing and self.training:
hidden_states = self._gradient_checkpointing_func(
conv_layer.__call__,
hidden_states,
)
else:
hidden_states = conv_layer(hidden_states)
return hidden_states
|
class_definition
| 15,433 | 17,199 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
| null | 5,646 |
class UniSpeechSatFeatureExtractor(UniSpeechSatFeatureEncoder):
def __init__(self, config):
super().__init__(config)
warnings.warn(
f"The class `{self.__class__.__name__}` has been depreciated "
"and will be removed in Transformers v5. "
f"Use `{self.__class__.__bases__[0].__name__}` instead.",
FutureWarning,
)
|
class_definition
| 17,202 | 17,590 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
| null | 5,647 |
class UniSpeechSatFeatureProjection(nn.Module):
def __init__(self, config):
super().__init__()
self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps)
self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size)
self.dropout = nn.Dropout(config.feat_proj_dropout)
def forward(self, hidden_states):
# non-projected hidden states are needed for quantization
norm_hidden_states = self.layer_norm(hidden_states)
hidden_states = self.projection(norm_hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states, norm_hidden_states
|
class_definition
| 17,708 | 18,364 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
| null | 5,648 |
class UniSpeechSatAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[UniSpeechSatConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
|
class_definition
| 18,458 | 25,864 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
| null | 5,649 |
class UniSpeechSatFlashAttention2(UniSpeechSatAttention):
"""
UniSpeechSat flash attention module. This module inherits from `UniSpeechSatAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# UniSpeechSatFlashAttention2 attention does not support output_attentions
if output_attentions:
raise ValueError("UniSpeechSatFlashAttention2 attention does not support output_attentions")
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, q_len, _ = hidden_states.size()
# get query proj
query_states = self._reshape(self.q_proj(hidden_states), -1, bsz)
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0].transpose(1, 2)
value_states = past_key_value[1].transpose(1, 2)
elif is_cross_attention:
# cross_attentions
key_states = self._reshape(self.k_proj(key_value_states), -1, bsz)
value_states = self._reshape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0].transpose(1, 2), key_states], dim=1)
value_states = torch.cat([past_key_value[1].transpose(1, 2), value_states], dim=1)
else:
# self_attention
key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2))
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (LlamaRMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
attn_output = _flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=self.dropout if self.training else 0.0,
is_causal=self.is_causal,
use_top_left_mask=self._flash_attn_uses_top_left_mask,
)
attn_output = attn_output.reshape(bsz, q_len, -1)
attn_output = self.out_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
|
class_definition
| 25,964 | 32,448 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
| null | 5,650 |
class UniSpeechSatSdpaAttention(UniSpeechSatAttention):
# Copied from transformers.models.bart.modeling_bart.BartSdpaAttention.forward with Bart->UniSpeechSat
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
if output_attentions or layer_head_mask is not None:
# TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"UniSpeechSatModel is using UniSpeechSatSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention"
' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states,
key_value_states=key_value_states,
past_key_value=past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states)
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
query_states = self._shape(query_states, tgt_len, bsz)
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
# The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1.
is_causal = True if self.is_causal and attention_mask is None and tgt_len > 1 else False
# NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask,
# but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=attention_mask,
dropout_p=self.dropout if self.training else 0.0,
is_causal=is_causal,
)
if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, None, past_key_value
|
class_definition
| 32,451 | 38,367 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
| null | 5,651 |
class UniSpeechSatFeedForward(nn.Module):
def __init__(self, config):
super().__init__()
self.intermediate_dropout = nn.Dropout(config.activation_dropout)
self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.output_dropout = nn.Dropout(config.hidden_dropout)
def forward(self, hidden_states):
hidden_states = self.intermediate_dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = self.intermediate_dropout(hidden_states)
hidden_states = self.output_dense(hidden_states)
hidden_states = self.output_dropout(hidden_states)
return hidden_states
|
class_definition
| 38,647 | 39,621 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
| null | 5,652 |
class UniSpeechSatEncoderLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = UNISPEECHSAT_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=config.hidden_size,
num_heads=config.num_attention_heads,
dropout=config.attention_dropout,
is_decoder=False,
)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.feed_forward = UniSpeechSatFeedForward(config)
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states, attention_mask=None, output_attentions=False):
attn_residual = hidden_states
hidden_states, attn_weights, _ = self.attention(
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
)
hidden_states = self.dropout(hidden_states)
hidden_states = attn_residual + hidden_states
hidden_states = self.layer_norm(hidden_states)
hidden_states = hidden_states + self.feed_forward(hidden_states)
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
|
class_definition
| 39,758 | 41,129 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
| null | 5,653 |
class UniSpeechSatAttnAdapterLayer(nn.Module):
def __init__(self, config):
"""
Implements adapter modules directly with 3D tensor weight as parameters and without using ModuleList to speed
up training throughput.
"""
super().__init__()
self.input_dim = config.adapter_attn_dim
self.hidden_dim = config.hidden_size
self.norm = nn.LayerNorm(self.hidden_dim)
self.linear_1 = nn.Linear(self.hidden_dim, self.input_dim)
self.act_fn = nn.ReLU()
self.linear_2 = nn.Linear(self.input_dim, self.hidden_dim)
def forward(self, hidden_states: torch.FloatTensor):
hidden_states = self.norm(hidden_states)
hidden_states = self.linear_1(hidden_states)
hidden_states = self.act_fn(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
|
class_definition
| 41,246 | 42,131 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
| null | 5,654 |
class UniSpeechSatEncoderLayerStableLayerNorm(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = UNISPEECHSAT_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=config.hidden_size,
num_heads=config.num_attention_heads,
dropout=config.attention_dropout,
is_decoder=False,
)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.feed_forward = UniSpeechSatFeedForward(config)
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
if getattr(config, "adapter_attn_dim", None) is not None:
self.adapter_layer = UniSpeechSatAttnAdapterLayer(config)
else:
self.adapter_layer = None
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
):
attn_residual = hidden_states
hidden_states = self.layer_norm(hidden_states)
hidden_states, attn_weights, _ = self.attention(
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
)
hidden_states = self.dropout(hidden_states)
hidden_states = attn_residual + hidden_states
hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states))
if self.adapter_layer is not None:
hidden_states = hidden_states + self.adapter_layer(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
|
class_definition
| 42,283 | 44,027 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
| null | 5,655 |
class UniSpeechSatEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.pos_conv_embed = UniSpeechSatPositionalConvEmbedding(config)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layers = nn.ModuleList([UniSpeechSatEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
def forward(
self,
hidden_states: torch.tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if attention_mask is not None:
# make sure padded tokens output 0
expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2])
hidden_states[~expand_attention_mask] = 0
if self._use_flash_attention_2:
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
else:
# extend attention_mask
attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
attention_mask = attention_mask.expand(
attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]
)
position_embeddings = self.pos_conv_embed(hidden_states)
hidden_states = hidden_states + position_embeddings
hidden_states = self.layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states)
synced_gpus = is_deepspeed_zero3_enabled() or is_fsdp_managed_module(self)
for layer in self.layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.rand([])
skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
if not skip_the_layer or synced_gpus:
# under fsdp or deepspeed zero3 all gpus must run in sync
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = layer(
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
)
hidden_states = layer_outputs[0]
if skip_the_layer:
layer_outputs = (None, None)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
|
class_definition
| 44,135 | 47,983 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
| null | 5,656 |
class UniSpeechSatEncoderStableLayerNorm(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.pos_conv_embed = UniSpeechSatPositionalConvEmbedding(config)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layers = nn.ModuleList(
[UniSpeechSatEncoderLayerStableLayerNorm(config) for _ in range(config.num_hidden_layers)]
)
self.gradient_checkpointing = False
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
def forward(
self,
hidden_states,
attention_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if attention_mask is not None:
# make sure padded tokens are not attended to
expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2])
hidden_states = hidden_states * expand_attention_mask.to(dtype=hidden_states.dtype)
if self._use_flash_attention_2:
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
else:
# extend attention_mask
attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
attention_mask = attention_mask.expand(
attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]
)
position_embeddings = self.pos_conv_embed(hidden_states)
hidden_states = hidden_states + position_embeddings
hidden_states = self.dropout(hidden_states)
synced_gpus = is_deepspeed_zero3_enabled() or is_fsdp_managed_module(self)
for layer in self.layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.rand([])
skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
if not skip_the_layer or synced_gpus:
# under fsdp or deepspeed zero3 all gpus must run in sync
# XXX: could optimize this like synced_gpus in generate_utils but not sure if it's worth the code complication
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = layer(
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
)
hidden_states = layer_outputs[0]
if skip_the_layer:
layer_outputs = (None, None)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
|
class_definition
| 48,106 | 52,123 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
| null | 5,657 |
class UniSpeechSatGumbelVectorQuantizer(nn.Module):
"""
Vector quantization using gumbel softmax. See [CATEGORICAL REPARAMETERIZATION WITH
GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information.
"""
def __init__(self, config):
super().__init__()
self.num_groups = config.num_codevector_groups
self.num_vars = config.num_codevectors_per_group
if config.codevector_dim % self.num_groups != 0:
raise ValueError(
f"`config.codevector_dim {config.codevector_dim} must be divisible by `config.num_codevector_groups`"
f" {self.num_groups} for concatenation"
)
# storage for codebook variables (codewords)
self.codevectors = nn.Parameter(
torch.FloatTensor(1, self.num_groups * self.num_vars, config.codevector_dim // self.num_groups)
)
self.weight_proj = nn.Linear(config.hidden_size, self.num_groups * self.num_vars)
# can be decayed for training
self.temperature = 2
@staticmethod
def _compute_perplexity(probs, mask=None):
marginal_probs = probs.mean(dim=0)
perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum()
return perplexity
def forward(self, hidden_states):
batch_size, sequence_length, hidden_size = hidden_states.shape
# project to codevector dim
hidden_states = self.weight_proj(hidden_states)
hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1)
if self.training:
# sample code vector probs via gumbel in differentiateable way
codevector_probs = nn.functional.gumbel_softmax(
hidden_states.float(), tau=self.temperature, hard=True
).type_as(hidden_states)
# compute perplexity
codevector_soft_dist = torch.softmax(
hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1
)
perplexity = self._compute_perplexity(codevector_soft_dist)
else:
# take argmax in non-differentiable way
# comptute hard codevector distribution (one hot)
codevector_idx = hidden_states.argmax(dim=-1)
codevector_probs = hidden_states.new_zeros(*hidden_states.shape).scatter_(
-1, codevector_idx.view(-1, 1), 1.0
)
codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1)
perplexity = self._compute_perplexity(codevector_probs)
codevector_probs = codevector_probs.view(batch_size * sequence_length, -1)
# use probs to retrieve codevectors
codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors
codevectors = codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1)
codevectors = codevectors.sum(-2).view(batch_size, sequence_length, -1)
return codevectors, perplexity
|
class_definition
| 52,126 | 55,220 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
| null | 5,658 |
class UniSpeechSatPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = UniSpeechSatConfig
base_model_prefix = "unispeech_sat"
main_input_name = "input_values"
supports_gradient_checkpointing = True
_supports_flash_attn_2 = True
_supports_sdpa = True
def _init_weights(self, module):
"""Initialize the weights"""
# gumbel softmax requires special init
if isinstance(module, UniSpeechSatGumbelVectorQuantizer):
module.weight_proj.weight.data.normal_(mean=0.0, std=1)
module.weight_proj.bias.data.zero_()
nn.init.uniform_(module.codevectors)
elif isinstance(module, UniSpeechSatPositionalConvEmbedding):
nn.init.normal_(
module.conv.weight,
mean=0,
std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)),
)
nn.init.constant_(module.conv.bias, 0)
elif isinstance(module, UniSpeechSatFeatureProjection):
k = math.sqrt(1 / module.projection.in_features)
nn.init.uniform_(module.projection.weight, a=-k, b=k)
nn.init.uniform_(module.projection.bias, a=-k, b=k)
elif isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Conv1d):
nn.init.kaiming_normal_(module.weight)
if module.bias is not None:
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
nn.init.uniform_(module.bias, a=-k, b=k)
def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]):
"""
Computes the output length of the convolutional layers
"""
def _conv_out_length(input_length, kernel_size, stride):
# 1D convolutional layer output length formula taken
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1
for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
input_lengths = _conv_out_length(input_lengths, kernel_size, stride)
return input_lengths
def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor):
# Effectively attention_mask.sum(-1), but not inplace to be able to run
# on inference mode.
non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1]
output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths).to(torch.long)
batch_size = attention_mask.shape[0]
attention_mask = torch.zeros(
(batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device
)
# these two operations makes sure that all values before the output lengths idxs are attended to
attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool()
return attention_mask
|
class_definition
| 55,223 | 58,810 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
| null | 5,659 |
class UniSpeechSatModel(UniSpeechSatPreTrainedModel):
def __init__(self, config: UniSpeechSatConfig):
super().__init__(config)
self.config = config
self.feature_extractor = UniSpeechSatFeatureEncoder(config)
self.feature_projection = UniSpeechSatFeatureProjection(config)
self.masked_spec_embed = nn.Parameter(torch.Tensor(config.hidden_size).uniform_())
if config.do_stable_layer_norm:
self.encoder = UniSpeechSatEncoderStableLayerNorm(config)
else:
self.encoder = UniSpeechSatEncoder(config)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states
def _mask_hidden_states(
self,
hidden_states: torch.FloatTensor,
mask_time_indices: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
):
"""
Masks extracted features along time axis and/or along feature axis according to
[SpecAugment](https://arxiv.org/abs/1904.08779).
"""
# `config.apply_spec_augment` can set masking to False
if not getattr(self.config, "apply_spec_augment", True):
return hidden_states
# generate indices & apply SpecAugment along time axis
batch_size, sequence_length, hidden_size = hidden_states.size()
if mask_time_indices is not None:
# apply SpecAugment along time axis with given mask_time_indices
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
elif self.config.mask_time_prob > 0 and self.training:
mask_time_indices = _compute_mask_indices(
(batch_size, sequence_length),
mask_prob=self.config.mask_time_prob,
mask_length=self.config.mask_time_length,
attention_mask=attention_mask,
min_masks=self.config.mask_time_min_masks,
)
mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
if self.config.mask_feature_prob > 0 and self.training:
# generate indices & apply SpecAugment along feature axis
mask_feature_indices = _compute_mask_indices(
(batch_size, hidden_size),
mask_prob=self.config.mask_feature_prob,
mask_length=self.config.mask_feature_length,
min_masks=self.config.mask_feature_min_masks,
)
mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool)
mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1)
hidden_states[mask_feature_indices] = 0
return hidden_states
@add_start_docstrings_to_model_forward(UNISPEECH_SAT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Wav2Vec2BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
mask_time_indices: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Wav2Vec2BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
extract_features = self.feature_extractor(input_values)
extract_features = extract_features.transpose(1, 2)
if attention_mask is not None:
# compute reduced attention_mask corresponding to feature vectors
attention_mask = self._get_feature_vector_attention_mask(extract_features.shape[1], attention_mask)
hidden_states, extract_features = self.feature_projection(extract_features)
hidden_states = self._mask_hidden_states(
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
)
encoder_outputs = self.encoder(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = encoder_outputs[0]
if not return_dict:
return (hidden_states, extract_features) + encoder_outputs[1:]
return Wav2Vec2BaseModelOutput(
last_hidden_state=hidden_states,
extract_features=extract_features,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
|
class_definition
| 62,342 | 67,641 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
| null | 5,660 |
class UniSpeechSatForPreTraining(UniSpeechSatPreTrainedModel):
def __init__(self, config: UniSpeechSatConfig):
super().__init__(config)
self.unispeech_sat = UniSpeechSatModel(config)
self.dropout_features = nn.Dropout(config.feat_quantizer_dropout)
self.quantizer = UniSpeechSatGumbelVectorQuantizer(config)
self.project_q = nn.Linear(config.codevector_dim, config.proj_codevector_dim)
self.project_hid = nn.Linear(config.hidden_size, config.proj_codevector_dim)
self.dropout = nn.Dropout(config.final_dropout)
self.speaker_proj = nn.Linear(config.hidden_size, config.codevector_dim)
self.label_embeddings_concat = nn.Parameter(torch.FloatTensor(config.num_clusters, config.codevector_dim))
self.label_embeddings_concat.data.zero_()
self.layer_norm_for_extract = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
if self.config.do_stable_layer_norm:
self.layer_norm_for_extract.requires_grad = False
# Initialize weights and apply final processing
self.post_init()
def set_gumbel_temperature(self, temperature: int):
"""
Set the Gumbel softmax temperature to a given value. Only necessary for training
"""
self.quantizer.temperature = temperature
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameters will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.wav2vec2.feature_extractor._freeze_parameters()
@staticmethod
def compute_contrastive_logits(
target_features: torch.FloatTensor,
negative_features: torch.FloatTensor,
predicted_features: torch.FloatTensor,
temperature: int = 1,
):
"""
Compute logits for contrastive loss based using cosine similarity as the distance measure between
`[positive_feature, negative_features]` and `[predicted_features]`. Additionally, temperature can be applied.
"""
target_features = torch.cat([target_features, negative_features], dim=0)
logits = torch.cosine_similarity(predicted_features.float(), target_features.float(), dim=-1)
logits = logits.type_as(target_features)
# apply temperature
logits = logits / temperature
return logits
@add_start_docstrings_to_model_forward(UNISPEECH_SAT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=UniSpeechSatForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, UniSpeechSatForPreTrainingOutput]:
r"""
Returns:
Example:
```python
>>> import torch
>>> from transformers import AutoFeatureExtractor, UniSpeechSatForPreTraining
>>> from transformers.models.unispeech_sat.modeling_unispeech_sat import _compute_mask_indices
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/unispeech-sat-base")
>>> model = UniSpeechSatForPreTraining.from_pretrained("microsoft/unispeech-sat-base")
>>> # TODO: Add full pretraining example
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.unispeech_sat(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
transformer_features = outputs[0]
# quantize all (unmasked) extracted features and project to final vq dim
extract_features = self.dropout_features(outputs[1])
# TODO(PVP) - add pretraining logic and add to tests
logits = extract_features
loss = quantized_features = codevector_perplexity = None
# layer normalization (has no effect when `config.do_stable_layer_norm == False`)
# extract_features = self.layer_norm_for_extract(extract_features)
# quantized_features, codevector_perplexity = self.quantizer(extract_features)
#
# project quantized features twice
# quantized_features = self.project_q(quantized_features)
# quantized_features = self.project_hid(quantized_features)
#
# loss = None
# logits = quantized_features
if not return_dict:
if loss is not None:
return (loss, logits, transformer_features, quantized_features, codevector_perplexity) + outputs[2:]
return (logits, transformer_features, quantized_features, codevector_perplexity) + outputs[2:]
return UniSpeechSatForPreTrainingOutput(
loss=loss,
logits=logits,
projected_states=transformer_features,
projected_quantized_states=quantized_features,
codevector_perplexity=codevector_perplexity,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 67,762 | 73,649 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
| null | 5,661 |
class UniSpeechSatForCTC(UniSpeechSatPreTrainedModel):
def __init__(self, config, target_lang: Optional[str] = None):
super().__init__(config)
self.unispeech_sat = UniSpeechSatModel(config)
self.dropout = nn.Dropout(config.final_dropout)
self.target_lang = target_lang
if config.vocab_size is None:
raise ValueError(
f"You are trying to instantiate {self.__class__} with a configuration that "
"does not define the vocabulary size of the language model head. Please "
"instantiate the model as follows: `UniSpeechSatForCTC.from_pretrained(..., vocab_size=vocab_size)`. "
"or define `vocab_size` of your model's configuration."
)
output_hidden_size = (
config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size
)
self.lm_head = nn.Linear(output_hidden_size, config.vocab_size)
# Initialize weights and apply final processing
self.post_init()
def tie_weights(self):
"""
This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when
passing `target_lang=...` to `from_pretrained(...)`.
This method is **not** supposed to be called by the user and is prone to be changed in the future.
"""
# Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to
# correctly load adapter layers for UniSpeechSat so that we do not have to introduce a new API to
# [`PreTrainedModel`]. While slightly hacky, UniSpeechSat never has to tie input and output embeddings, so that it is
# ok to repurpose this function here.
target_lang = self.target_lang
if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None:
raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.")
elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None:
logger.info("By default `target_lang` is set to 'eng'.")
elif target_lang is not None:
self.load_adapter(target_lang, force_load=True)
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.unispeech_sat.feature_extractor._freeze_parameters()
def freeze_base_model(self):
"""
Calling this function will disable the gradient computation for the base model so that its parameters will not
be updated during training. Only the classification head will be updated.
"""
for param in self.unispeech_sat.parameters():
param.requires_grad = False
@add_start_docstrings_to_model_forward(UNISPEECH_SAT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=CausalLMOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_CTC_EXPECTED_OUTPUT,
expected_loss=_CTC_EXPECTED_LOSS,
)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
) -> Union[Tuple, CausalLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`.
All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ...,
config.vocab_size - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None and labels.max() >= self.config.vocab_size:
raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")
outputs = self.unispeech_sat(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states)
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# retrieve loss input_lengths from attention_mask
attention_mask = (
attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long)
)
input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long)
# assuming that padded tokens are filled with -100
# when not being attended to
labels_mask = labels >= 0
target_lengths = labels_mask.sum(-1)
flattened_targets = labels.masked_select(labels_mask)
# ctc_loss doesn't support fp16
log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1)
with torch.backends.cudnn.flags(enabled=False):
loss = nn.functional.ctc_loss(
log_probs,
flattened_targets,
input_lengths,
target_lengths,
blank=self.config.pad_token_id,
reduction=self.config.ctc_loss_reduction,
zero_infinity=self.config.ctc_zero_infinity,
)
if not return_dict:
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutput(
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
)
|
class_definition
| 74,305 | 81,174 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
| null | 5,662 |
class UniSpeechSatForSequenceClassification(UniSpeechSatPreTrainedModel):
def __init__(self, config):
super().__init__(config)
if hasattr(config, "add_adapter") and config.add_adapter:
raise ValueError(
"Sequence classification does not support the use of UniSpeechSat adapters (config.add_adapter=True)"
)
self.unispeech_sat = UniSpeechSatModel(config)
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
if config.use_weighted_layer_sum:
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size)
self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_extractor
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameters will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_encoder with wav2vec2->unispeech_sat
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.unispeech_sat.feature_extractor._freeze_parameters()
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_base_model with wav2vec2->unispeech_sat
def freeze_base_model(self):
"""
Calling this function will disable the gradient computation for the base model so that its parameters will not
be updated during training. Only the classification head will be updated.
"""
for param in self.unispeech_sat.parameters():
param.requires_grad = False
@add_start_docstrings_to_model_forward(UNISPEECH_SAT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
)
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.forward with Wav2Vec2->UniSpeechSat, wav2vec2->unispeech_sat
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
outputs = self.unispeech_sat(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.config.use_weighted_layer_sum:
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
hidden_states = torch.stack(hidden_states, dim=1)
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
else:
hidden_states = outputs[0]
hidden_states = self.projector(hidden_states)
if attention_mask is None:
pooled_output = hidden_states.mean(dim=1)
else:
padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask)
expand_padding_mask = padding_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2])
hidden_states[~expand_padding_mask] = 0.0
pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 81,404 | 87,028 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
| null | 5,663 |
class UniSpeechSatForAudioFrameClassification(UniSpeechSatPreTrainedModel):
def __init__(self, config):
super().__init__(config)
if hasattr(config, "add_adapter") and config.add_adapter:
raise ValueError(
"Audio frame classification does not support the use of UniSpeechSat adapters (config.add_adapter=True)"
)
self.unispeech_sat = UniSpeechSatModel(config)
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
if config.use_weighted_layer_sum:
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.num_labels = config.num_labels
self.init_weights()
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.unispeech_sat.feature_extractor._freeze_parameters()
def freeze_base_model(self):
"""
Calling this function will disable the gradient computation for the base model so that its parameters will not
be updated during training. Only the classification head will be updated.
"""
for param in self.unispeech_sat.parameters():
param.requires_grad = False
@add_start_docstrings_to_model_forward(UNISPEECH_SAT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_FRAME_CLASS_CHECKPOINT,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
expected_output=_FRAME_EXPECTED_OUTPUT,
)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
outputs = self.unispeech_sat(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.config.use_weighted_layer_sum:
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
hidden_states = torch.stack(hidden_states, dim=1)
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
else:
hidden_states = outputs[0]
logits = self.classifier(hidden_states)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), torch.argmax(labels.view(-1, self.num_labels), axis=1))
if not return_dict:
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
return output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 87,386 | 91,854 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
| null | 5,664 |
class AMSoftmaxLoss(nn.Module):
def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4):
super(AMSoftmaxLoss, self).__init__()
self.scale = scale
self.margin = margin
self.num_labels = num_labels
self.weight = nn.Parameter(torch.randn(input_dim, num_labels), requires_grad=True)
self.loss = nn.CrossEntropyLoss()
def forward(self, hidden_states, labels):
labels = labels.flatten()
weight = nn.functional.normalize(self.weight, dim=0)
hidden_states = nn.functional.normalize(hidden_states, dim=1)
cos_theta = torch.mm(hidden_states, weight)
psi = cos_theta - self.margin
onehot = nn.functional.one_hot(labels, self.num_labels)
logits = self.scale * torch.where(onehot.bool(), psi, cos_theta)
loss = self.loss(logits, labels)
return loss
|
class_definition
| 91,932 | 92,808 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
| null | 5,665 |
class TDNNLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.tdnn_dim[layer_id - 1] if layer_id > 0 else config.tdnn_dim[layer_id]
self.out_conv_dim = config.tdnn_dim[layer_id]
self.kernel_size = config.tdnn_kernel[layer_id]
self.dilation = config.tdnn_dilation[layer_id]
self.kernel = nn.Linear(self.in_conv_dim * self.kernel_size, self.out_conv_dim)
self.activation = nn.ReLU()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
if is_peft_available():
from peft.tuners.lora import LoraLayer
if isinstance(self.kernel, LoraLayer):
warnings.warn(
"Detected LoRA on TDNNLayer. LoRA weights won't be applied due to optimization. "
"You should exclude TDNNLayer from LoRA's target modules.",
)
# for backward compatibility, we keep nn.Linear but call F.conv1d for speed up
hidden_states = hidden_states.transpose(1, 2)
weight = self.kernel.weight.view(self.out_conv_dim, self.kernel_size, self.in_conv_dim).transpose(1, 2)
hidden_states = nn.functional.conv1d(hidden_states, weight, self.kernel.bias, dilation=self.dilation)
hidden_states = hidden_states.transpose(1, 2)
hidden_states = self.activation(hidden_states)
return hidden_states
|
class_definition
| 92,882 | 94,312 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
| null | 5,666 |
class UniSpeechSatForXVector(UniSpeechSatPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.unispeech_sat = UniSpeechSatModel(config)
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
if config.use_weighted_layer_sum:
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
self.projector = nn.Linear(config.hidden_size, config.tdnn_dim[0])
tdnn_layers = [TDNNLayer(config, i) for i in range(len(config.tdnn_dim))]
self.tdnn = nn.ModuleList(tdnn_layers)
self.feature_extractor = nn.Linear(config.tdnn_dim[-1] * 2, config.xvector_output_dim)
self.classifier = nn.Linear(config.xvector_output_dim, config.xvector_output_dim)
self.objective = AMSoftmaxLoss(config.xvector_output_dim, config.num_labels)
self.init_weights()
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.unispeech_sat.feature_extractor._freeze_parameters()
def freeze_base_model(self):
"""
Calling this function will disable the gradient computation for the base model so that its parameters will not
be updated during training. Only the classification head will be updated.
"""
for param in self.unispeech_sat.parameters():
param.requires_grad = False
def _get_tdnn_output_lengths(self, input_lengths: Union[torch.LongTensor, int]):
"""
Computes the output length of the TDNN layers
"""
def _conv_out_length(input_length, kernel_size, stride):
# 1D convolutional layer output length formula taken
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
return (input_length - kernel_size) // stride + 1
for kernel_size in self.config.tdnn_kernel:
input_lengths = _conv_out_length(input_lengths, kernel_size, 1)
return input_lengths
@add_start_docstrings_to_model_forward(UNISPEECH_SAT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_XVECTOR_CHECKPOINT,
output_type=XVectorOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
expected_output=_XVECTOR_EXPECTED_OUTPUT,
)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
) -> Union[Tuple, XVectorOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
outputs = self.unispeech_sat(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.config.use_weighted_layer_sum:
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
hidden_states = torch.stack(hidden_states, dim=1)
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
else:
hidden_states = outputs[0]
hidden_states = self.projector(hidden_states)
for tdnn_layer in self.tdnn:
hidden_states = tdnn_layer(hidden_states)
# Statistic Pooling
if attention_mask is None:
mean_features = hidden_states.mean(dim=1)
std_features = hidden_states.std(dim=1)
else:
feat_extract_output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(dim=1))
tdnn_output_lengths = self._get_tdnn_output_lengths(feat_extract_output_lengths)
mean_features = []
std_features = []
for i, length in enumerate(tdnn_output_lengths):
mean_features.append(hidden_states[i, :length].mean(dim=0))
std_features.append(hidden_states[i, :length].std(dim=0))
mean_features = torch.stack(mean_features)
std_features = torch.stack(std_features)
statistic_pooling = torch.cat([mean_features, std_features], dim=-1)
output_embeddings = self.feature_extractor(statistic_pooling)
logits = self.classifier(output_embeddings)
loss = None
if labels is not None:
loss = self.objective(logits, labels)
if not return_dict:
output = (logits, output_embeddings) + outputs[_HIDDEN_STATES_START_POSITION:]
return ((loss,) + output) if loss is not None else output
return XVectorOutput(
loss=loss,
logits=logits,
embeddings=output_embeddings,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 94,661 | 100,867 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/unispeech_sat/modeling_unispeech_sat.py
| null | 5,667 |
class T5Tokenizer(PreTrainedTokenizer):
"""
Construct a T5 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
extra_ids (`int`, *optional*, defaults to 100):
Add a number of extra ids added to the vocabulary for use as sentinels. These tokens are
accessible as "<extra_id_{%d}>" where "{%d}" is a number between 0 and extra_ids-1. These tokens can be
retrieved by calling get_sentinel_tokens method and token ids can be by calling get_sentinel_token_ids
method
additional_special_tokens (`List[str]`, *optional*):
Additional special tokens used by the tokenizer.
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
legacy (`bool`, *optional*):
Whether or not the `legacy` behaviour of the tokenizer should be used. Legacy is before the merge of #24622
and #25224 which includes fixes to properly handle tokens that appear after special tokens. A simple
example:
- `legacy=True`:
```python
>>> from transformers import T5Tokenizer
>>> tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-base", legacy=True)
>>> tokenizer.encode("Hello <extra_id_0>.")
[8774, 32099, 3, 5, 1]
```
- `legacy=False`:
```python
>>> from transformers import T5Tokenizer
>>> tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-base", legacy=False)
>>> tokenizer.encode("Hello <extra_id_0>.") # the extra space `[3]` is no longer here
[8774, 32099, 5, 1]
```
Checkout the [pull request](https://github.com/huggingface/transformers/pull/24565) for more details.
add_prefix_space (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word.
Attributes:
sp_model (`SentencePieceProcessor`):
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
eos_token="</s>",
unk_token="<unk>",
pad_token="<pad>",
extra_ids=100,
additional_special_tokens=None,
sp_model_kwargs: Optional[Dict[str, Any]] = None,
legacy=None,
add_prefix_space=True,
**kwargs,
) -> None:
pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token
unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token
eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
self.vocab_file = vocab_file
self._extra_ids = extra_ids
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(vocab_file)
if additional_special_tokens is not None:
extra_tokens = [x for x in additional_special_tokens if "<extra_id_" in str(x)]
if len(extra_tokens) < 1:
additional_special_tokens += [f"<extra_id_{i}>" for i in range(extra_ids)]
elif extra_ids > 0 and extra_ids != len(extra_tokens):
raise ValueError(
f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are"
" provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids"
" tokens"
)
else:
extra_tokens = [f"<extra_id_{i}>" for i in range(extra_ids)]
additional_special_tokens = extra_tokens
# for legacy purpose, we keep this. Will be removed and tests updated. (when `added_tokens_decoder` is not passed as kwargs)
self._added_tokens_decoder = {}
for i in range(len(extra_tokens)):
self._added_tokens_decoder[len(self.sp_model) - 1 + extra_ids - i] = AddedToken(
f"<extra_id_{i}>", single_word=False, lstrip=True, rstrip=True, special=True, normalized=False
)
if legacy is None:
logger.warning_once(
f"You are using the default legacy behaviour of the {self.__class__}. This is"
" expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you."
" If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it"
" means, and thoroughly read the reason why this was added as explained in"
" https://github.com/huggingface/transformers/pull/24565"
)
legacy = True
self.legacy = legacy
self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False))
self.vocab_file = vocab_file
self._extra_ids = extra_ids
self.add_prefix_space = add_prefix_space
super().__init__(
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
extra_ids=extra_ids,
additional_special_tokens=additional_special_tokens,
sp_model_kwargs=self.sp_model_kwargs,
legacy=legacy,
add_prefix_space=add_prefix_space,
**kwargs,
)
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_spm_processor
def get_spm_processor(self, from_slow=False):
tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
if self.legacy or from_slow: # no dependency on protobuf
tokenizer.Load(self.vocab_file)
return tokenizer
with open(self.vocab_file, "rb") as f:
sp_model = f.read()
model_pb2 = import_protobuf(f"The new behaviour of {self.__class__.__name__} (with `self.legacy = False`)")
model = model_pb2.ModelProto.FromString(sp_model)
normalizer_spec = model_pb2.NormalizerSpec()
normalizer_spec.add_dummy_prefix = False
model.normalizer_spec.MergeFrom(normalizer_spec)
sp_model = model.SerializeToString()
tokenizer.LoadFromSerializedProto(sp_model)
return tokenizer
@staticmethod
def _eventually_correct_t5_max_length(pretrained_model_name_or_path, max_model_length, init_max_model_length):
if pretrained_model_name_or_path in T5Tokenizer.max_model_input_sizes:
deprecated_max_model_length = T5Tokenizer.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
"This tokenizer was incorrectly instantiated with a model max length of"
f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this"
" behavior is kept to avoid breaking backwards compatibility when padding/encoding with"
" `truncation is True`.\n- Be aware that you SHOULD NOT rely on"
f" {pretrained_model_name_or_path} automatically truncating your input to"
f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences"
f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with"
" `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please"
" instantiate this tokenizer with `model_max_length` set to your preferred value.",
FutureWarning,
)
return max_model_length
@property
def vocab_size(self):
return self.sp_model.get_piece_size()
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
# normal case: some special tokens
if token_ids_1 is None:
return ([0] * len(token_ids_0)) + [1]
return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
def get_sentinel_tokens(self):
return list(
set(filter(lambda x: bool(re.search(r"<extra_id_\d+>", x)) is not None, self.additional_special_tokens))
)
def get_sentinel_token_ids(self):
return [self.convert_tokens_to_ids(token) for token in self.get_sentinel_tokens()]
def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]:
"""Do not add eos again if user already added it."""
if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated"
" eos tokens being added."
)
return token_ids
else:
return token_ids + [self.eos_token_id]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
eos = [self.eos_token_id]
if token_ids_1 is None:
return len(token_ids_0 + eos) * [0]
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A sequence has the following format:
- single sequence: `X </s>`
- pair of sequences: `A </s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
token_ids_0 = self._add_eos_if_not_present(token_ids_0)
if token_ids_1 is None:
return token_ids_0
else:
token_ids_1 = self._add_eos_if_not_present(token_ids_1)
return token_ids_0 + token_ids_1
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def tokenize(self, text: "TextInput", **kwargs) -> List[str]:
"""
Converts a string to a list of tokens. If `self.legacy` is set to `False`, a prefix token is added unless the
first token is special.
"""
if self.legacy or len(text) == 0:
return super().tokenize(text, **kwargs)
text = text.replace(SPIECE_UNDERLINE, " ")
if self.add_prefix_space:
text = SPIECE_UNDERLINE + text
tokens = super().tokenize(text, **kwargs)
if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens:
tokens = tokens[1:]
return tokens
@property
def unk_token_length(self):
return len(self.sp_model.encode(str(self.unk_token)))
def _tokenize(self, text, **kwargs):
"""
Returns a tokenized string.
We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any
SPIECE_UNDERLINE. For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give
`['H', 'e', 'y']` instead of `['▁He', 'y']`. Thus we always encode `f"{unk_token}text"` and strip the
`unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`.
`self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`.
"""
if self.legacy or not text.startswith((SPIECE_UNDERLINE, " ")):
return self.sp_model.encode(text, out_type=str)
# 1. Encode string + prefix ex: "<unk> Hey"
tokens = self.sp_model.encode(self.unk_token + text, out_type=str)
# 2. Remove self.unk_token from ['<','unk','>', '▁Hey']
return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.sp_model.piece_to_id(token)
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
token = self.sp_model.IdToPiece(index)
return token
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
# since we manually add the prefix space, we have to remove it when decoding
if tokens[0].startswith(SPIECE_UNDERLINE) and self.add_prefix_space:
tokens[0] = tokens[0][1:]
current_sub_tokens = []
out_string = ""
prev_is_special = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(current_sub_tokens) + token
prev_is_special = True
current_sub_tokens = []
else:
current_sub_tokens.append(token)
prev_is_special = False
out_string += self.sp_model.decode(current_sub_tokens)
return out_string.strip()
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
|
class_definition
| 1,255 | 19,990 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/t5/tokenization_t5.py
| null | 5,668 |
class T5TokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" T5 tokenizer (backed by HuggingFace's *tokenizers* library). Based on
[Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models).
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
extra_ids (`int`, *optional*, defaults to 100):
Add a number of extra ids added to the vocabulary for use as sentinels. These tokens are accessible as
"<extra_id_{%d}>" where "{%d}" is a number between 0 and extra_ids-1. These tokens can be retrieved by
calling get_sentinel_tokens method and token ids can be by calling get_sentinel_token_ids method
additional_special_tokens (`List[str]`, *optional*):
Additional special tokens used by the tokenizer.
add_prefix_space (`bool`, *optional*):
Whether or not the tokenizer should automatically add a prefix space
from_slow (`book`, *optional*, defaults to `False`):
Whether or not the tokenizer should be converted from a slow one. If `add_prefix_space` is set, this will be set to `True`.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
slow_tokenizer_class = T5Tokenizer
prefix_tokens: List[int] = []
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
eos_token="</s>",
unk_token="<unk>",
pad_token="<pad>",
extra_ids=100,
additional_special_tokens=None,
add_prefix_space=None,
**kwargs,
):
# Add extra_ids to the special token list
if additional_special_tokens is not None:
extra_tokens = [x for x in additional_special_tokens if "<extra_id_" in str(x)]
if len(extra_tokens) < 1:
additional_special_tokens += [f"<extra_id_{i}>" for i in range(extra_ids)]
elif extra_ids > 0 and extra_ids != len(extra_tokens):
raise ValueError(
f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are"
" provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids"
" tokens"
)
else:
extra_tokens = [f"<extra_id_{i}>" for i in range(extra_ids)]
additional_special_tokens = extra_tokens
if add_prefix_space is not None:
logger.warning_once(
"You set `add_prefix_space`. The tokenizer needs to be converted from the slow tokenizers"
)
kwargs["from_slow"] = True
super().__init__(
vocab_file=vocab_file,
tokenizer_file=tokenizer_file,
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
extra_ids=extra_ids,
additional_special_tokens=additional_special_tokens,
add_prefix_space=add_prefix_space,
**kwargs,
)
self.vocab_file = vocab_file
self._extra_ids = extra_ids
@property
def can_save_slow_tokenizer(self) -> bool:
return os.path.isfile(self.vocab_file) if self.vocab_file else False
@staticmethod
def _eventually_correct_t5_max_length(pretrained_model_name_or_path, max_model_length, init_max_model_length):
if pretrained_model_name_or_path in T5TokenizerFast.max_model_input_sizes:
deprecated_max_model_length = T5TokenizerFast.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
"This tokenizer was incorrectly instantiated with a model max length of"
f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this"
" behavior is kept to avoid breaking backwards compatibility when padding/encoding with"
" `truncation is True`.\n- Be aware that you SHOULD NOT rely on"
f" {pretrained_model_name_or_path} automatically truncating your input to"
f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences"
f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with"
" `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please"
" instantiate this tokenizer with `model_max_length` set to your preferred value.",
FutureWarning,
)
return max_model_length
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer."
)
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
logger.info(f"Copy vocab file to {out_vocab_file}")
return (out_vocab_file,)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A sequence has the following format:
- single sequence: `X </s>`
- pair of sequences: `A </s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
token_ids_0 = token_ids_0 + [self.eos_token_id]
if token_ids_1 is None:
return self.prefix_tokens + token_ids_0
else:
token_ids_1 = token_ids_1 + [self.eos_token_id]
return self.prefix_tokens + token_ids_0 + token_ids_1
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
eos = [self.eos_token_id]
if token_ids_1 is None:
return len(token_ids_0 + eos) * [0]
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
def get_sentinel_tokens(self):
return list(
set(filter(lambda x: bool(re.search(r"<extra_id_\d+>", x)) is not None, self.additional_special_tokens))
)
def get_sentinel_token_ids(self):
return [self.convert_tokens_to_ids(token) for token in self.get_sentinel_tokens()]
|
class_definition
| 1,179 | 10,167 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/t5/tokenization_t5_fast.py
| null | 5,669 |
class FlaxT5LayerNorm(nn.Module):
hidden_size: int
dtype: jnp.dtype = jnp.float32
eps: float = 1e-6
weight_init: Callable[..., np.ndarray] = jax.nn.initializers.ones
def setup(self):
self.weight = self.param("weight", self.weight_init, (self.hidden_size,))
def __call__(self, hidden_states):
"""
Construct a layernorm module in the T5 style; No bias and no subtraction of mean.
"""
# layer norm should always be calculated in float32
variance = jnp.power(hidden_states.astype("f4"), 2).mean(axis=-1, keepdims=True)
hidden_states = hidden_states / jnp.sqrt(variance + self.eps)
return self.weight * hidden_states
|
class_definition
| 2,373 | 3,075 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/t5/modeling_flax_t5.py
| null | 5,670 |
class FlaxT5DenseActDense(nn.Module):
config: T5Config
dtype: jnp.dtype = jnp.float32
def setup(self):
wi_init_std = self.config.initializer_factor * (self.config.d_model**-0.5)
wo_init_std = self.config.initializer_factor * (self.config.d_ff**-0.5)
self.wi = nn.Dense(
self.config.d_ff,
use_bias=False,
kernel_init=jax.nn.initializers.normal(wi_init_std),
dtype=self.dtype,
)
self.wo = nn.Dense(
self.config.d_model,
use_bias=False,
kernel_init=jax.nn.initializers.normal(wo_init_std),
dtype=self.dtype,
)
self.dropout = nn.Dropout(self.config.dropout_rate)
self.act = ACT2FN[self.config.dense_act_fn]
def __call__(self, hidden_states, deterministic=True):
hidden_states = self.wi(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.wo(hidden_states)
return hidden_states
|
class_definition
| 3,078 | 4,166 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/t5/modeling_flax_t5.py
| null | 5,671 |
class FlaxT5DenseGatedActDense(nn.Module):
config: T5Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
wi_init_std = self.config.initializer_factor * (self.config.d_model**-0.5)
wo_init_std = self.config.initializer_factor * (self.config.d_ff**-0.5)
self.wi_0 = nn.Dense(
self.config.d_ff,
use_bias=False,
kernel_init=jax.nn.initializers.normal(wi_init_std),
dtype=self.dtype,
)
self.wi_1 = nn.Dense(
self.config.d_ff,
use_bias=False,
kernel_init=jax.nn.initializers.normal(wi_init_std),
dtype=self.dtype,
)
self.wo = nn.Dense(
self.config.d_model,
use_bias=False,
kernel_init=jax.nn.initializers.normal(wo_init_std),
dtype=self.dtype,
)
self.dropout = nn.Dropout(self.config.dropout_rate)
self.act = ACT2FN[self.config.dense_act_fn]
def __call__(self, hidden_states, deterministic):
hidden_gelu = self.act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.wo(hidden_states)
return hidden_states
|
class_definition
| 4,169 | 5,547 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/t5/modeling_flax_t5.py
| null | 5,672 |
class FlaxT5LayerFF(nn.Module):
config: T5Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
if self.config.is_gated_act:
self.DenseReluDense = FlaxT5DenseGatedActDense(self.config, dtype=self.dtype)
else:
self.DenseReluDense = FlaxT5DenseActDense(self.config, dtype=self.dtype)
self.layer_norm = FlaxT5LayerNorm(self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype)
self.dropout = nn.Dropout(self.config.dropout_rate)
def __call__(self, hidden_states, deterministic=True):
forwarded_states = self.layer_norm(hidden_states)
forwarded_states = self.DenseReluDense(forwarded_states, deterministic=deterministic)
hidden_states = hidden_states + self.dropout(forwarded_states, deterministic=deterministic)
return hidden_states
|
class_definition
| 5,550 | 6,436 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/t5/modeling_flax_t5.py
| null | 5,673 |
class FlaxT5Attention(nn.Module):
config: T5Config
has_relative_attention_bias: bool = False
causal: bool = False
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.relative_attention_num_buckets = self.config.relative_attention_num_buckets
self.relative_attention_max_distance = self.config.relative_attention_max_distance
self.d_model = self.config.d_model
self.key_value_proj_dim = self.config.d_kv
self.n_heads = self.config.num_heads
self.dropout = self.config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
q_init_std = self.config.initializer_factor * ((self.inner_dim * self.key_value_proj_dim) ** -0.5)
kv_init_std = self.config.initializer_factor * (self.inner_dim**-0.5)
o_init_std = self.config.initializer_factor * (self.inner_dim**-0.5)
self.q = nn.Dense(
self.inner_dim,
use_bias=False,
kernel_init=jax.nn.initializers.normal(q_init_std),
dtype=self.dtype,
)
self.k = nn.Dense(
self.inner_dim,
use_bias=False,
kernel_init=jax.nn.initializers.normal(kv_init_std),
dtype=self.dtype,
)
self.v = nn.Dense(
self.inner_dim,
use_bias=False,
kernel_init=jax.nn.initializers.normal(kv_init_std),
dtype=self.dtype,
)
self.o = nn.Dense(
self.d_model,
use_bias=False,
kernel_init=jax.nn.initializers.normal(o_init_std),
dtype=self.dtype,
)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embed(
self.relative_attention_num_buckets,
self.n_heads,
embedding_init=jax.nn.initializers.normal(kv_init_std),
dtype=self.dtype,
)
@staticmethod
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0) * num_buckets
relative_position = jnp.abs(relative_position)
else:
relative_position = -jnp.clip(relative_position, a_max=0)
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
jnp.log(relative_position / max_exact) / jnp.log(max_distance / max_exact) * (num_buckets - max_exact)
)
relative_position_if_large = jnp.clip(relative_position_if_large, a_max=num_buckets - 1)
relative_buckets += jnp.where(is_small, relative_position, relative_position_if_large)
return relative_buckets.astype("i4")
def compute_bias(self, query_length, key_length):
"""Compute binned relative position bias"""
context_position = jnp.arange(query_length, dtype="i4")[:, None]
memory_position = jnp.arange(key_length, dtype="i4")[None, :]
relative_position = memory_position - context_position
relative_position_bucket = self._relative_position_bucket(
relative_position,
bidirectional=(not self.causal),
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
values = self.relative_attention_bias(relative_position_bucket)
values = values.transpose((2, 0, 1))[None, :, :, :]
return values
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.n_heads, self.key_value_proj_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.inner_dim,))
@nn.compact
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slighly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = jax.lax.dynamic_update_slice(cached_key.value, key, indices)
value = jax.lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions
# that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def _create_position_bias(
self, key_states, query_states, attention_mask, init_cache, seq_length, causal_attention_mask_shift
):
cache_is_filled = self.causal and self.has_variable("cache", "cached_key") and (not init_cache)
key_length = key_states.shape[1]
query_length = key_length if cache_is_filled else query_states.shape[1]
if self.has_relative_attention_bias:
position_bias = self.compute_bias(query_length, key_length)
elif attention_mask is not None:
position_bias = jnp.zeros_like(attention_mask)
else:
position_bias = jnp.zeros((1, self.n_heads, query_length, key_length), dtype=self.dtype)
# if key and values are already calculated, only the last query position bias should be taken
if cache_is_filled:
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
position_bias = jax.lax.dynamic_slice(
position_bias,
(0, 0, causal_attention_mask_shift, 0),
(1, self.n_heads, seq_length, max_decoder_length),
)
return position_bias
def __call__(
self,
hidden_states,
attention_mask=None,
key_value_states=None,
position_bias=None,
use_cache=False,
output_attentions=False,
deterministic=True,
init_cache=False,
):
"""
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
"""
batch_size, seq_length = hidden_states.shape[:2]
# q, k, v projections
query_states = self.q(hidden_states) # (batch_size, n_heads, seq_length, dim_per_head)
key_states = self.k(hidden_states) if key_value_states is None else self.k(key_value_states)
value_states = self.v(hidden_states) if key_value_states is None else self.v(key_value_states)
# reshape to (batch_size, seq_length, n_heads, head_dim)
query_states = self._split_heads(query_states)
key_states = self._split_heads(key_states)
value_states = self._split_heads(value_states)
# counter-act scaling in dot_product_attention_weights function
query_states *= jnp.sqrt(query_states.shape[-1])
# for fast decoding causal attention mask should be shifted
causal_attention_mask_shift = (
self.variables["cache"]["cache_index"] if (self.has_variable("cache", "cached_key") and self.causal) else 0
)
# create causal attention_mask; attention_mask has to be defined when model is causal
if self.causal:
causal_attention_mask = make_causal_mask(attention_mask, dtype="bool")
# fast decoding for generate requires special attention_mask
if self.has_variable("cache", "cached_key"):
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_attention_mask = jax.lax.dynamic_slice(
causal_attention_mask,
(0, 0, causal_attention_mask_shift, 0),
(1, 1, seq_length, max_decoder_length),
)
# broadcast causal attention mask & attention mask to fit for merge
causal_attention_mask = jnp.broadcast_to(
causal_attention_mask, (batch_size,) + causal_attention_mask.shape[1:]
)
attention_mask = jnp.broadcast_to(
jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_attention_mask.shape
)
attention_mask = combine_masks(attention_mask, causal_attention_mask)
elif attention_mask is not None:
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
key_states, value_states, attention_mask = self._concatenate_to_cache(
key_states, value_states, query_states, attention_mask
)
# replace masked positions with -10_000
if attention_mask is not None:
mask_value = jnp.finfo(self.dtype).min
attention_mask = jax.lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, mask_value).astype(self.dtype),
)
if position_bias is None:
# compute position bias (only for first layer)
position_bias = self._create_position_bias(
key_states, query_states, attention_mask, init_cache, seq_length, causal_attention_mask_shift
)
if attention_mask is not None:
position_bias = position_bias + attention_mask
# create dropout rng
dropout_rng = None
if not deterministic and self.dropout > 0.0:
dropout_rng = self.make_rng("dropout")
# Softmax(QK^T)
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=position_bias,
dropout_rng=dropout_rng,
dropout_rate=self.dropout,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
)
# multiply with value states
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
# bring back to (batch_size, seq_length, d_model)
attn_output = self._merge_heads(attn_output)
# apply output matrix
attn_output = self.o(attn_output)
outputs = (attn_output, position_bias)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
|
class_definition
| 6,439 | 19,501 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/t5/modeling_flax_t5.py
| null | 5,674 |
class FlaxT5LayerSelfAttention(nn.Module):
config: T5Config
has_relative_attention_bias: bool = False
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.SelfAttention = FlaxT5Attention(
self.config,
has_relative_attention_bias=self.has_relative_attention_bias,
causal=self.config.causal,
dtype=self.dtype,
)
self.layer_norm = FlaxT5LayerNorm(self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype)
self.dropout = nn.Dropout(self.config.dropout_rate)
def __call__(
self,
hidden_states,
attention_mask=None,
position_bias=None,
output_attentions=False,
deterministic=True,
init_cache=False,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.SelfAttention(
normed_hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
output_attentions=output_attentions,
deterministic=deterministic,
init_cache=init_cache,
)
hidden_states = hidden_states + self.dropout(attention_output[0], deterministic=deterministic)
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
|
class_definition
| 19,504 | 20,892 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/t5/modeling_flax_t5.py
| null | 5,675 |
class FlaxT5LayerCrossAttention(nn.Module):
config: T5Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.EncDecAttention = FlaxT5Attention(
self.config, has_relative_attention_bias=False, causal=False, dtype=self.dtype
)
self.layer_norm = FlaxT5LayerNorm(self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype)
self.dropout = nn.Dropout(self.config.dropout_rate)
def __call__(
self,
hidden_states,
key_value_states,
attention_mask=None,
position_bias=None,
output_attentions=False,
deterministic=True,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.EncDecAttention(
normed_hidden_states,
attention_mask=attention_mask,
key_value_states=key_value_states,
position_bias=position_bias,
output_attentions=output_attentions,
)
hidden_states = hidden_states + self.dropout(attention_output[0], deterministic=deterministic)
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
|
class_definition
| 20,895 | 22,136 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/t5/modeling_flax_t5.py
| null | 5,676 |
class FlaxT5Block(nn.Module):
config: T5Config
has_relative_attention_bias: bool = False
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.causal = self.config.causal
self.layer = (
FlaxT5LayerSelfAttention(
self.config,
has_relative_attention_bias=self.has_relative_attention_bias,
name=str(0),
dtype=self.dtype,
),
)
feed_forward_index = 1
if self.causal:
self.layer += (FlaxT5LayerCrossAttention(self.config, name=str(1), dtype=self.dtype),)
feed_forward_index += 1
self.layer += (FlaxT5LayerFF(self.config, name=str(feed_forward_index), dtype=self.dtype),)
def __call__(
self,
hidden_states,
attention_mask=None,
position_bias=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
encoder_decoder_position_bias=None,
output_attentions=False,
return_dict=True,
deterministic=True,
init_cache=False,
):
self_attention_outputs = self.layer[0](
hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
output_attentions=output_attentions,
deterministic=deterministic,
init_cache=init_cache,
)
hidden_states = self_attention_outputs[0]
attention_outputs = self_attention_outputs[1:] # Keep self-attention outputs and relative position weights
do_cross_attention = self.causal and encoder_hidden_states is not None
if do_cross_attention:
cross_attention_outputs = self.layer[1](
hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
position_bias=encoder_decoder_position_bias,
output_attentions=output_attentions,
deterministic=deterministic,
)
hidden_states = cross_attention_outputs[0]
# Keep cross-attention outputs and relative position weights
attention_outputs = attention_outputs + cross_attention_outputs[1:]
# Apply Feed Forward layer
hidden_states = self.layer[-1](hidden_states, deterministic=deterministic)
outputs = (hidden_states,)
outputs = outputs + attention_outputs
# returns hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights),
# (cross-attention position bias), (cross-attention weights)
return outputs
|
class_definition
| 22,139 | 24,822 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/t5/modeling_flax_t5.py
| null | 5,677 |
class FlaxT5LayerCollection(nn.Module):
config: T5Config
has_relative_attention_bias: bool
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.layer = FlaxT5Block(
self.config, has_relative_attention_bias=self.has_relative_attention_bias, dtype=self.dtype
)
def __call__(
self,
hidden_states,
attention_mask=None,
position_bias=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
encoder_decoder_position_bias=None,
output_attentions=False,
deterministic=True,
init_cache=False,
):
return self.layer(
hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
encoder_decoder_position_bias=encoder_decoder_position_bias,
output_attentions=output_attentions,
deterministic=deterministic,
init_cache=init_cache,
)
|
class_definition
| 24,825 | 25,946 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/t5/modeling_flax_t5.py
| null | 5,678 |
class FlaxT5BlockCollection(nn.Module):
config: T5Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
gradient_checkpointing: bool = False
def setup(self):
self.causal = self.config.causal
if self.gradient_checkpointing:
FlaxT5CheckpointLayer = remat(FlaxT5LayerCollection, static_argnums=(6, 7, 8))
self.blocks = [
FlaxT5CheckpointLayer(
self.config,
has_relative_attention_bias=(i == 0),
dtype=self.dtype,
name=str(i),
)
for i in range(self.config.num_layers)
]
else:
self.blocks = [
FlaxT5LayerCollection(
self.config,
has_relative_attention_bias=(i == 0),
dtype=self.dtype,
name=str(i),
)
for i in range(self.config.num_layers)
]
def __call__(
self,
hidden_states=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions: bool = False,
output_hidden_states: bool = False,
deterministic: bool = True,
init_cache: bool = False,
):
# Prepare head mask if needed
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if (output_attentions and self.causal) else None
position_bias = None
encoder_decoder_position_bias = None
for i, layer_module in enumerate(self.blocks):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer_module(
hidden_states,
attention_mask,
position_bias,
encoder_hidden_states,
encoder_attention_mask,
encoder_decoder_position_bias,
output_attentions,
deterministic,
init_cache,
)
hidden_states = layer_outputs[0]
# We share the position biases between the layers - the first layer store them
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
# (cross-attention position bias), (cross-attention weights)
position_bias = layer_outputs[1]
if self.causal and encoder_hidden_states is not None:
encoder_decoder_position_bias = layer_outputs[3 if output_attentions else 2]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[2],)
if self.causal:
all_cross_attentions = all_cross_attentions + (layer_outputs[4],)
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
|
class_definition
| 25,949 | 29,150 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/t5/modeling_flax_t5.py
| null | 5,679 |
class FlaxT5Stack(nn.Module):
config: T5Config
embed_tokens: nn.Embed
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
gradient_checkpointing: bool = False
def setup(self):
self.causal = self.config.causal
self.block = FlaxT5BlockCollection(
self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
)
self.final_layer_norm = FlaxT5LayerNorm(
self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype
)
self.dropout = nn.Dropout(self.config.dropout_rate)
def __call__(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
init_cache: bool = False,
):
hidden_states = self.embed_tokens(input_ids)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
outputs = self.block(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
deterministic=deterministic,
init_cache=init_cache,
)
hidden_states = outputs[0]
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
# Add last layer
all_hidden_states = None
if output_hidden_states:
all_hidden_states = outputs.hidden_states
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
if output_hidden_states:
return (
hidden_states,
all_hidden_states,
) + outputs[2:]
return (hidden_states,) + outputs[1:]
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
|
class_definition
| 29,153 | 31,554 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/t5/modeling_flax_t5.py
| null | 5,680 |
class FlaxT5PreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = T5Config
base_model_prefix = "transformer"
module_class: nn.Module = None
def __init__(
self,
config: T5Config,
input_shape: Tuple[int] = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
gradient_checkpointing: bool = False,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def enable_gradient_checkpointing(self):
self._module = self.module_class(
config=self.config,
dtype=self.dtype,
gradient_checkpointing=True,
)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
attention_mask = jnp.ones_like(input_ids)
args = [input_ids, attention_mask]
if self.module_class not in [FlaxT5EncoderModule]:
decoder_input_ids = jnp.ones_like(input_ids)
decoder_attention_mask = jnp.ones_like(input_ids)
args.extend([decoder_input_ids, decoder_attention_mask])
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
random_params = self.module.init(
rngs,
*args,
)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
@add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
def __call__(
self,
input_ids: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
decoder_input_ids: jnp.ndarray = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
if decoder_input_ids is None:
raise ValueError(
"Make sure to provide both `input_ids` and `decoder_input_ids`. `decoder_input_ids` is not passed"
" here."
)
# prepare encoder inputs
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
# prepare decoder inputs
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
# Handle any PRNG if needed
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
return self.module.apply(
{"params": params or self.params},
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
)
def init_cache(self, batch_size, max_length, encoder_outputs):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`):
`encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*:
`attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*)
is a sequence of hidden-states at the output of the last layer of the encoder. Used in the
cross-attention of the decoder.
"""
# init input variables to retrieve cache
decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4")
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, **kwargs):
decoder_module = module._get_decoder_module()
return decoder_module(
decoder_input_ids,
decoder_attention_mask,
**kwargs,
)
init_variables = self.module.init(
jax.random.PRNGKey(0),
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
init_cache=True,
method=_decoder_forward, # we only need to call the decoder to init the cache
)
return unfreeze(init_variables["cache"])
@add_start_docstrings(T5_ENCODE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=T5Config)
def encode(
self,
input_ids: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, FlaxT5ForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small")
>>> model = FlaxT5ForConditionalGeneration.from_pretrained("google-t5/t5-small")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
def _encoder_forward(module, input_ids, attention_mask, **kwargs):
encode_module = module._get_encoder_module()
return encode_module(input_ids, attention_mask, **kwargs)
return self.module.apply(
{"params": params or self.params},
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
method=_encoder_forward,
)
@add_start_docstrings(T5_DECODE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=T5Config)
def decode(
self,
decoder_input_ids,
encoder_outputs,
encoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
past_key_values: dict = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, FlaxT5ForConditionalGeneration
>>> import jax.numpy as jnp
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small")
>>> model = FlaxT5ForConditionalGeneration.from_pretrained("google-t5/t5-small")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> logits = outputs.logits
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
encoder_hidden_states = encoder_outputs[0]
if encoder_attention_mask is None:
batch_size, sequence_length = encoder_hidden_states.shape[:2]
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
batch_size, sequence_length = decoder_input_ids.shape
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
# it can be changed by FlaxT5Attention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, **kwargs):
decoder_module = module._get_decoder_module()
return decoder_module(
decoder_input_ids,
decoder_attention_mask,
**kwargs,
)
outputs = self.module.apply(
inputs,
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
mutable=mutable,
method=_decoder_forward,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past = outputs
outputs["past_key_values"] = unfreeze(past["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past = outputs
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
return outputs
|
class_definition
| 39,284 | 51,812 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/t5/modeling_flax_t5.py
| null | 5,681 |
class FlaxT5Module(nn.Module):
config: T5Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
gradient_checkpointing: bool = False
def _get_encoder_module(self):
return self.encoder
def _get_decoder_module(self):
return self.decoder
def setup(self):
self.shared = nn.Embed(
self.config.vocab_size,
self.config.d_model,
embedding_init=jax.nn.initializers.normal(self.config.initializer_factor * 1.0),
dtype=self.dtype,
)
encoder_config = copy.deepcopy(self.config)
encoder_config.causal = False
self.encoder = FlaxT5Stack(
encoder_config,
embed_tokens=self.shared,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
decoder_config = copy.deepcopy(self.config)
decoder_config.causal = True
decoder_config.num_layers = self.config.num_decoder_layers
self.decoder = FlaxT5Stack(
decoder_config,
embed_tokens=self.shared,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
def __call__(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
encoder_outputs=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
deterministic: bool = True,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Encode if needed (training, first prediction pass)
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return FlaxSeq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
|
class_definition
| 54,428 | 57,505 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/t5/modeling_flax_t5.py
| null | 5,682 |
class FlaxT5Model(FlaxT5PreTrainedModel):
module_class = FlaxT5Module
|
class_definition
| 57,508 | 57,581 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/t5/modeling_flax_t5.py
| null | 5,683 |
class FlaxT5EncoderModule(nn.Module):
config: T5Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
gradient_checkpointing: bool = False
def setup(self):
self.shared = nn.Embed(
self.config.vocab_size,
self.config.d_model,
embedding_init=jax.nn.initializers.normal(self.config.initializer_factor * 1.0),
dtype=self.dtype,
)
encoder_config = copy.deepcopy(self.config)
encoder_config.is_decoder = False
encoder_config.is_encoder_decoder = False
encoder_config.causal = False
self.encoder = FlaxT5Stack(
encoder_config,
embed_tokens=self.shared,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
def __call__(
self,
input_ids=None,
attention_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict: bool = True,
deterministic: bool = True,
):
# Encode if needed (training, first prediction pass)
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
return encoder_outputs
|
class_definition
| 59,002 | 60,446 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/t5/modeling_flax_t5.py
| null | 5,684 |
class FlaxT5EncoderModel(FlaxT5PreTrainedModel):
module_class = FlaxT5EncoderModule
@add_start_docstrings_to_model_forward(T5_ENCODE_INPUTS_DOCSTRING)
def __call__(
self,
input_ids: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
# prepare encoder inputs
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
# Handle any PRNG if needed
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
return self.module.apply(
{"params": params or self.params},
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
)
|
class_definition
| 60,449 | 61,979 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/t5/modeling_flax_t5.py
| null | 5,685 |
class FlaxT5ForConditionalGenerationModule(nn.Module):
config: T5Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
gradient_checkpointing: bool = False
def _get_encoder_module(self):
return self.encoder
def _get_decoder_module(self):
return self.decoder
def setup(self):
self.model_dim = self.config.d_model
self.shared = nn.Embed(
self.config.vocab_size,
self.config.d_model,
embedding_init=jax.nn.initializers.normal(self.config.initializer_factor),
dtype=self.dtype,
)
encoder_config = copy.deepcopy(self.config)
encoder_config.causal = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = FlaxT5Stack(
encoder_config, self.shared, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
)
decoder_config = copy.deepcopy(self.config)
decoder_config.causal = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = self.config.num_decoder_layers
self.decoder = FlaxT5Stack(
decoder_config, self.shared, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
)
self.lm_head = nn.Dense(
self.config.vocab_size,
use_bias=False,
kernel_init=jax.nn.initializers.normal(self.config.initializer_factor),
dtype=self.dtype,
)
def __call__(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
encoder_outputs=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
deterministic: bool = True,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Encode
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
hidden_states = encoder_outputs[0]
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
sequence_output = decoder_outputs[0]
if self.config.tie_word_embeddings:
# Rescale output before projecting on vocab
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
sequence_output = sequence_output * (self.model_dim**-0.5)
if self.config.tie_word_embeddings:
shared_embedding = self.shared.variables["params"]["embedding"]
lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, sequence_output)
else:
lm_logits = self.lm_head(sequence_output)
if not return_dict:
return (lm_logits,) + decoder_outputs[1:] + encoder_outputs
return FlaxSeq2SeqLMOutput(
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
|
class_definition
| 62,080 | 66,118 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/t5/modeling_flax_t5.py
| null | 5,686 |
class FlaxT5ForConditionalGeneration(FlaxT5PreTrainedModel):
module_class = FlaxT5ForConditionalGenerationModule
@add_start_docstrings(T5_DECODE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=T5Config)
def decode(
self,
decoder_input_ids,
encoder_outputs,
encoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
past_key_values: dict = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, FlaxT5ForConditionalGeneration
>>> import jax.numpy as jnp
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small")
>>> model = FlaxT5ForConditionalGeneration.from_pretrained("google-t5/t5-small")
>>> text = "summarize: My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> logits = outputs.logits
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
encoder_hidden_states = encoder_outputs[0]
if encoder_attention_mask is None:
batch_size, sequence_length = encoder_hidden_states.shape[:2]
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
batch_size, sequence_length = decoder_input_ids.shape
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
# it can be changed by FlaxT5Attention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, **kwargs):
decoder_module = module._get_decoder_module()
decoder_outputs = decoder_module(
decoder_input_ids,
decoder_attention_mask,
**kwargs,
)
sequence_output = decoder_outputs[0]
if self.config.tie_word_embeddings:
# Rescale output before projecting on vocab
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
sequence_output = sequence_output * (self.config.d_model**-0.5)
if self.config.tie_word_embeddings:
shared_embedding = module.shared.variables["params"]["embedding"]
lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, sequence_output)
else:
lm_logits = module.lm_head(sequence_output)
return lm_logits, decoder_outputs
outputs = self.module.apply(
inputs,
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
mutable=mutable,
method=_decoder_forward,
)
if past_key_values is None:
lm_logits, decoder_outputs = outputs
else:
(lm_logits, decoder_outputs), past = outputs
if return_dict:
outputs = FlaxCausalLMOutputWithCrossAttentions(
logits=lm_logits,
hidden_states=decoder_outputs.hidden_states,
attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
)
else:
outputs = (lm_logits,) + decoder_outputs[1:]
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs["past_key_values"] = unfreeze(past["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
return outputs
def prepare_inputs_for_generation(
self,
decoder_input_ids,
max_length,
attention_mask: Optional[jax.Array] = None,
decoder_attention_mask: Optional[jax.Array] = None,
encoder_outputs=None,
**kwargs,
):
# initializing the cache
batch_size, seq_length = decoder_input_ids.shape
past_key_values = self.init_cache(batch_size, max_length, encoder_outputs)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since the decoder uses a causal mask, those positions are masked anyways.
# Thus we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if decoder_attention_mask is not None:
extended_attention_mask = jax.lax.dynamic_update_slice(
extended_attention_mask, decoder_attention_mask, (0, 0)
)
return {
"past_key_values": past_key_values,
"encoder_outputs": encoder_outputs,
"encoder_attention_mask": attention_mask,
"decoder_attention_mask": extended_attention_mask,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
return model_kwargs
|
class_definition
| 66,121 | 73,188 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/t5/modeling_flax_t5.py
| null | 5,687 |
class T5LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Construct a layernorm module in the T5 style. No bias and no subtraction of mean.
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
# T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
# half-precision inputs is done in fp32
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
|
class_definition
| 9,192 | 10,285 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/t5/modeling_t5.py
| null | 5,688 |
class T5DenseActDense(nn.Module):
def __init__(self, config: T5Config):
super().__init__()
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_states = self.wi(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.dropout(hidden_states)
if (
isinstance(self.wo.weight, torch.Tensor)
and hidden_states.dtype != self.wo.weight.dtype
and self.wo.weight.dtype != torch.int8
):
hidden_states = hidden_states.to(self.wo.weight.dtype)
hidden_states = self.wo(hidden_states)
return hidden_states
|
class_definition
| 10,705 | 11,564 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/t5/modeling_t5.py
| null | 5,689 |
class T5DenseGatedActDense(nn.Module):
def __init__(self, config: T5Config):
super().__init__()
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_gelu = self.act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states)
# To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32.
# See https://github.com/huggingface/transformers/issues/20287
# we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None``
if (
isinstance(self.wo.weight, torch.Tensor)
and hidden_states.dtype != self.wo.weight.dtype
and self.wo.weight.dtype != torch.int8
):
hidden_states = hidden_states.to(self.wo.weight.dtype)
hidden_states = self.wo(hidden_states)
return hidden_states
|
class_definition
| 11,567 | 12,854 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/t5/modeling_t5.py
| null | 5,690 |
class T5LayerFF(nn.Module):
def __init__(self, config: T5Config):
super().__init__()
if config.is_gated_act:
self.DenseReluDense = T5DenseGatedActDense(config)
else:
self.DenseReluDense = T5DenseActDense(config)
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, hidden_states):
forwarded_states = self.layer_norm(hidden_states)
forwarded_states = self.DenseReluDense(forwarded_states)
hidden_states = hidden_states + self.dropout(forwarded_states)
return hidden_states
|
class_definition
| 12,857 | 13,523 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/t5/modeling_t5.py
| null | 5,691 |
class T5Attention(nn.Module):
def __init__(
self,
config: T5Config,
has_relative_attention_bias=False,
layer_idx: Optional[int] = None,
):
super().__init__()
self.is_decoder = config.is_decoder
self.has_relative_attention_bias = has_relative_attention_bias
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.relative_attention_max_distance = config.relative_attention_max_distance
self.d_model = config.d_model
self.key_value_proj_dim = config.d_kv
self.n_heads = config.num_heads
self.dropout = config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
self.layer_idx = layer_idx
if layer_idx is None and self.is_decoder:
logger.warning_once(
f"Instantiating a decoder {self.__class__.__name__} without passing `layer_idx` is not recommended and "
"will to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
self.pruned_heads = set()
self.gradient_checkpointing = False
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
)
# Prune linear layers
self.q = prune_linear_layer(self.q, index)
self.k = prune_linear_layer(self.k, index)
self.v = prune_linear_layer(self.v, index)
self.o = prune_linear_layer(self.o, index, dim=1)
# Update hyper params
self.n_heads = self.n_heads - len(heads)
self.inner_dim = self.key_value_proj_dim * self.n_heads
self.pruned_heads = self.pruned_heads.union(heads)
@staticmethod
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
def compute_bias(self, query_length, key_length, device=None, cache_position=None):
"""Compute binned relative position bias"""
if device is None:
device = self.relative_attention_bias.weight.device
if cache_position is None:
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
else:
context_position = cache_position[:, None].to(device)
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
relative_position = memory_position - context_position # shape (query_length, key_length)
relative_position_bucket = self._relative_position_bucket(
relative_position, # shape (query_length, key_length)
bidirectional=(not self.is_decoder),
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
return values
def forward(
self,
hidden_states,
mask=None,
key_value_states=None,
position_bias=None,
past_key_value=None,
layer_head_mask=None,
query_length=None,
use_cache=False,
output_attentions=False,
cache_position=None,
):
"""
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
"""
# Input is (batch_size, seq_length, dim)
# Mask is (batch_size, 1, 1, key_length) (non-causal encoder) or (batch_size, 1, seq_length, key_length) (causal decoder)
batch_size, seq_length = hidden_states.shape[:2]
# if key_value_states are provided this layer is used as a cross-attention layer for the decoder
is_cross_attention = key_value_states is not None
query_states = self.q(hidden_states)
query_states = query_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
if past_key_value is not None:
is_updated = past_key_value.is_updated.get(self.layer_idx)
if is_cross_attention:
# after the first generated id, we can subsequently re-use all key/value_states from cache
curr_past_key_value = past_key_value.cross_attention_cache
else:
curr_past_key_value = past_key_value.self_attention_cache
current_states = key_value_states if is_cross_attention else hidden_states
if is_cross_attention and past_key_value is not None and is_updated:
# reuse k,v, cross_attentions
key_states = curr_past_key_value.key_cache[self.layer_idx]
value_states = curr_past_key_value.value_cache[self.layer_idx]
else:
key_states = self.k(current_states)
value_states = self.v(current_states)
key_states = key_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
value_states = value_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
if past_key_value is not None:
# save all key/value_states to cache to be re-used for fast auto-regressive generation
cache_position = cache_position if not is_cross_attention else None
key_states, value_states = curr_past_key_value.update(
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
)
# set flag that curr layer for cross-attn is already updated so we can re-use in subsequent calls
if is_cross_attention:
past_key_value.is_updated[self.layer_idx] = True
# compute scores, equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
scores = torch.matmul(query_states, key_states.transpose(3, 2))
if position_bias is None:
key_length = key_states.shape[-2]
# cache position is 0-indexed so we add 1 to get the real length of queries (aka with past)
real_seq_length = query_length if query_length is not None else cache_position[-1] + 1
if not self.has_relative_attention_bias:
position_bias = torch.zeros(
(1, self.n_heads, seq_length, key_length), device=scores.device, dtype=scores.dtype
)
if self.gradient_checkpointing and self.training:
position_bias.requires_grad = True
else:
position_bias = self.compute_bias(
real_seq_length, key_length, device=scores.device, cache_position=cache_position
)
position_bias = position_bias[:, :, -seq_length:, :]
if mask is not None:
causal_mask = mask[:, :, :, : key_states.shape[-2]]
position_bias = position_bias + causal_mask
if self.pruned_heads:
mask = torch.ones(position_bias.shape[1])
mask[list(self.pruned_heads)] = 0
position_bias_masked = position_bias[:, mask.bool()]
else:
position_bias_masked = position_bias
scores += position_bias_masked
# (batch_size, n_heads, seq_length, key_length)
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(batch_size, -1, self.inner_dim)
attn_output = self.o(attn_output)
outputs = (attn_output, past_key_value, position_bias)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
|
class_definition
| 13,526 | 24,758 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/t5/modeling_t5.py
| null | 5,692 |
class T5LayerSelfAttention(nn.Module):
def __init__(self, config, has_relative_attention_bias=False, layer_idx: Optional[int] = None):
super().__init__()
self.SelfAttention = T5Attention(
config, has_relative_attention_bias=has_relative_attention_bias, layer_idx=layer_idx
)
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
cache_position=None,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.SelfAttention(
normed_hidden_states,
mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
)
hidden_states = hidden_states + self.dropout(attention_output[0])
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
|
class_definition
| 24,761 | 26,111 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/t5/modeling_t5.py
| null | 5,693 |
class T5LayerCrossAttention(nn.Module):
def __init__(self, config, layer_idx: Optional[int] = None):
super().__init__()
self.EncDecAttention = T5Attention(config, has_relative_attention_bias=False, layer_idx=layer_idx)
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
key_value_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
query_length=None,
output_attentions=False,
cache_position=None,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.EncDecAttention(
normed_hidden_states,
mask=attention_mask,
key_value_states=key_value_states,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
query_length=query_length,
output_attentions=output_attentions,
cache_position=cache_position,
)
layer_output = hidden_states + self.dropout(attention_output[0])
outputs = (layer_output,) + attention_output[1:] # add attentions if we output them
return outputs
|
class_definition
| 26,114 | 27,527 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/t5/modeling_t5.py
| null | 5,694 |
class T5Block(nn.Module):
def __init__(self, config, has_relative_attention_bias=False, layer_idx: Optional[int] = None):
super().__init__()
self.is_decoder = config.is_decoder
self.layer = nn.ModuleList()
self.layer.append(
T5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias, layer_idx=layer_idx)
)
if self.is_decoder:
self.layer.append(T5LayerCrossAttention(config, layer_idx=layer_idx))
self.layer.append(T5LayerFF(config))
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
encoder_decoder_position_bias=None,
layer_head_mask=None,
cross_attn_layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
return_dict=True,
cache_position=None,
):
self_attention_outputs = self.layer[0](
hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
)
hidden_states, past_key_value = self_attention_outputs[:2]
attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16:
clamp_value = torch.where(
torch.isinf(hidden_states).any(),
torch.finfo(hidden_states.dtype).max - 1000,
torch.finfo(hidden_states.dtype).max,
)
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
do_cross_attention = self.is_decoder and encoder_hidden_states is not None
if do_cross_attention:
cross_attention_outputs = self.layer[1](
hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
position_bias=encoder_decoder_position_bias,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_value,
query_length=cache_position[-1] + 1,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states, past_key_value = cross_attention_outputs[:2]
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16:
clamp_value = torch.where(
torch.isinf(hidden_states).any(),
torch.finfo(hidden_states.dtype).max - 1000,
torch.finfo(hidden_states.dtype).max,
)
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
# Keep cross-attention outputs and relative position weights
attention_outputs = attention_outputs + cross_attention_outputs[2:]
# Apply Feed Forward layer
hidden_states = self.layer[-1](hidden_states)
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16:
clamp_value = torch.where(
torch.isinf(hidden_states).any(),
torch.finfo(hidden_states.dtype).max - 1000,
torch.finfo(hidden_states.dtype).max,
)
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if use_cache:
outputs = outputs + (past_key_value,) + attention_outputs
else:
outputs = outputs + attention_outputs
return outputs # hidden-states, past_key_value, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
|
class_definition
| 27,530 | 31,667 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/t5/modeling_t5.py
| null | 5,695 |
class T5ClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config: T5Config):
super().__init__()
self.dense = nn.Linear(config.d_model, config.d_model)
self.dropout = nn.Dropout(p=config.classifier_dropout)
self.out_proj = nn.Linear(config.d_model, config.num_labels)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dropout(hidden_states)
hidden_states = self.dense(hidden_states)
hidden_states = torch.tanh(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.out_proj(hidden_states)
return hidden_states
|
class_definition
| 31,670 | 32,384 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/t5/modeling_t5.py
| null | 5,696 |
class T5PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = T5Config
load_tf_weights = load_tf_weights_in_t5
base_model_prefix = "transformer"
is_parallelizable = True
supports_gradient_checkpointing = True
_supports_quantized_cache = False # enc-dec models don't support yet
_supports_static_cache = True
_supports_cache_class = True
_no_split_modules = ["T5Block"]
_keep_in_fp32_modules = ["wo"]
@property
def dummy_inputs(self):
input_ids = torch.tensor(DUMMY_INPUTS)
input_mask = torch.tensor(DUMMY_MASK)
dummy_inputs = {
"decoder_input_ids": input_ids,
"input_ids": input_ids,
"decoder_attention_mask": input_mask,
}
return dummy_inputs
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor # Used for testing weights initialization
if isinstance(module, T5LayerNorm):
module.weight.data.fill_(factor * 1.0)
elif isinstance(
module,
(T5Model, T5ForConditionalGeneration, T5EncoderModel, T5ForQuestionAnswering),
):
# Mesh TensorFlow embeddings initialization
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
if hasattr(module, "lm_head") and not self.config.tie_word_embeddings:
module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0)
if hasattr(module, "qa_outputs"):
module.qa_outputs.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
module.qa_outputs.bias.data.zero_()
elif isinstance(module, T5ForTokenClassification):
if hasattr(module, "classifier"):
module.classifier.weight.data.normal_(mean=0.0, std=factor * 1.0)
module.classifier.bias.data.zero_()
elif isinstance(module, T5ClassificationHead):
module.dense.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.dense, "bias") and module.dense.bias is not None:
module.dense.bias.data.zero_()
module.out_proj.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.out_proj, "bias") and module.out_proj.bias is not None:
module.out_proj.bias.data.zero_()
elif isinstance(module, T5DenseActDense):
# Mesh TensorFlow FF initialization
# See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
# and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi, "bias") and module.wi.bias is not None:
module.wi.bias.data.zero_()
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
if hasattr(module.wo, "bias") and module.wo.bias is not None:
module.wo.bias.data.zero_()
elif isinstance(module, T5DenseGatedActDense):
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
module.wi_0.bias.data.zero_()
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
module.wi_1.bias.data.zero_()
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
if hasattr(module.wo, "bias") and module.wo.bias is not None:
module.wo.bias.data.zero_()
elif isinstance(module, T5Attention):
# Mesh TensorFlow attention initialization to avoid scaling before softmax
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
d_model = self.config.d_model
key_value_proj_dim = self.config.d_kv
n_heads = self.config.num_heads
module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
if module.has_relative_attention_bias:
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
def _shift_right(self, input_ids):
decoder_start_token_id = self.config.decoder_start_token_id
pad_token_id = self.config.pad_token_id
if decoder_start_token_id is None:
raise ValueError(
"self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id. "
"See T5 docs for more information."
)
# shift inputs to the right
if is_torch_fx_proxy(input_ids):
# Item assignment is not supported natively for proxies.
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
else:
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
shifted_input_ids[..., 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
|
class_definition
| 32,387 | 38,806 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/t5/modeling_t5.py
| null | 5,697 |
class T5Stack(T5PreTrainedModel):
def __init__(self, config, embed_tokens=None):
super().__init__(config)
self.embed_tokens = embed_tokens
self.is_decoder = config.is_decoder
self.block = nn.ModuleList(
[T5Block(config, has_relative_attention_bias=bool(i == 0), layer_idx=i) for i in range(config.num_layers)]
)
self.final_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
# Initialize weights and apply final processing
self.post_init()
# Model parallel
self.model_parallel = False
self.device_map = None
self.gradient_checkpointing = False
@add_start_docstrings(PARALLELIZE_DOCSTRING)
def parallelize(self, device_map=None):
warnings.warn(
"`T5Stack.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model"
" with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0,"
" 'block.1': 1, ...}",
FutureWarning,
)
# Check validity of device_map
self.device_map = (
get_device_map(len(self.block), range(torch.cuda.device_count())) if device_map is None else device_map
)
assert_device_map(self.device_map, len(self.block))
self.model_parallel = True
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
self.last_device = "cuda:" + str(max(self.device_map.keys()))
# Load onto devices
for k, v in self.device_map.items():
for layer in v:
cuda_device = "cuda:" + str(k)
self.block[layer] = self.block[layer].to(cuda_device)
# Set embed_tokens to first layer
self.embed_tokens = self.embed_tokens.to(self.first_device)
# Set final layer norm to last device
self.final_layer_norm = self.final_layer_norm.to(self.last_device)
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
def deparallelize(self):
warnings.warn(
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
FutureWarning,
)
self.model_parallel = False
self.device_map = None
self.first_device = "cpu"
self.last_device = "cpu"
for i in range(len(self.block)):
self.block[i] = self.block[i].to("cpu")
self.embed_tokens = self.embed_tokens.to("cpu")
self.final_layer_norm = self.final_layer_norm.to("cpu")
torch.cuda.empty_cache()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, new_embeddings):
self.embed_tokens = new_embeddings
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
inputs_embeds=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
cache_position=None,
):
# Model parallel
if self.model_parallel:
torch.cuda.set_device(self.first_device)
self.embed_tokens = self.embed_tokens.to(self.first_device)
use_cache = use_cache if use_cache is not None else self.config.use_cache
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
)
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if inputs_embeds is None:
if self.embed_tokens is None:
raise ValueError("You have to initialize the model with valid token embeddings")
inputs_embeds = self.embed_tokens(input_ids)
batch_size, seq_length = input_shape
if use_cache is True:
if not self.is_decoder:
raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder")
# initialize past_key_values
return_legacy_cache = False
return_self_attention_cache = False
if self.is_decoder and (use_cache or past_key_values is not None):
if isinstance(past_key_values, Cache) and not isinstance(past_key_values, EncoderDecoderCache):
return_self_attention_cache = True
past_key_values = EncoderDecoderCache(past_key_values, DynamicCache())
elif not isinstance(past_key_values, EncoderDecoderCache):
return_legacy_cache = True
logger.warning_once(
"Passing a tuple of `past_key_values` is deprecated and will be removed in Transformers v4.48.0. "
"You should pass an instance of `EncoderDecoderCache` instead, e.g. "
"`past_key_values=EncoderDecoderCache.from_legacy_cache(past_key_values)`."
)
past_key_values = EncoderDecoderCache.from_legacy_cache(past_key_values)
elif past_key_values is None:
past_key_values = EncoderDecoderCache(DynamicCache(), DynamicCache())
elif not self.is_decoder:
# do not pass cache object down the line for encoder stack
# it messes indexing later in decoder-stack because cache object is modified in-place
past_key_values = None
past_key_values_length = past_key_values.get_seq_length() if past_key_values is not None else 0
if cache_position is None:
cache_position = torch.arange(
past_key_values_length, past_key_values_length + seq_length, device=inputs_embeds.device
)
if attention_mask is None and not is_torchdynamo_compiling():
# required mask seq length can be calculated via length of past cache
mask_seq_length = past_key_values_length + seq_length
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
if self.config.is_decoder:
causal_mask = self._update_causal_mask(
attention_mask,
inputs_embeds,
cache_position,
past_key_values.self_attention_cache if past_key_values is not None else None,
output_attentions,
)
elif attention_mask is not None:
causal_mask = attention_mask[:, None, None, :]
causal_mask = causal_mask.to(dtype=inputs_embeds.dtype)
causal_mask = (1.0 - causal_mask) * torch.finfo(inputs_embeds.dtype).min
else:
causal_mask = None
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(
encoder_hidden_shape, device=inputs_embeds.device, dtype=torch.long
)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
position_bias = None
encoder_decoder_position_bias = None
hidden_states = self.dropout(inputs_embeds)
for i, layer_module in enumerate(self.block):
layer_head_mask = head_mask[i]
cross_attn_layer_head_mask = cross_attn_head_mask[i]
# Model parallel
if self.model_parallel:
torch.cuda.set_device(hidden_states.device)
# Ensure that attention_mask is always on the same device as hidden_states
if causal_mask is not None:
causal_mask = causal_mask.to(hidden_states.device)
if position_bias is not None:
position_bias = position_bias.to(hidden_states.device)
if encoder_hidden_states is not None:
encoder_hidden_states = encoder_hidden_states.to(hidden_states.device)
if encoder_extended_attention_mask is not None:
encoder_extended_attention_mask = encoder_extended_attention_mask.to(hidden_states.device)
if encoder_decoder_position_bias is not None:
encoder_decoder_position_bias = encoder_decoder_position_bias.to(hidden_states.device)
if layer_head_mask is not None:
layer_head_mask = layer_head_mask.to(hidden_states.device)
if cross_attn_layer_head_mask is not None:
cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(hidden_states.device)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.forward,
hidden_states,
causal_mask,
position_bias,
encoder_hidden_states,
encoder_extended_attention_mask,
encoder_decoder_position_bias,
layer_head_mask,
cross_attn_layer_head_mask,
None, # past_key_value is always None with gradient checkpointing
use_cache,
output_attentions,
return_dict,
cache_position,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask=causal_mask,
position_bias=position_bias,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
encoder_decoder_position_bias=encoder_decoder_position_bias,
layer_head_mask=layer_head_mask,
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
return_dict=return_dict,
cache_position=cache_position,
)
# layer_outputs is a tuple with:
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
if use_cache is False:
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
hidden_states, next_decoder_cache = layer_outputs[:2]
# We share the position biases between the layers - the first layer store them
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
# (cross-attention position bias), (cross-attention weights)
position_bias = layer_outputs[2]
if self.is_decoder and encoder_hidden_states is not None:
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[3],)
if self.is_decoder:
all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
# Model Parallel: If it's the last layer for that device, put things on the next device
if self.model_parallel:
for k, v in self.device_map.items():
if i == v[-1] and "cuda:" + str(k) != self.last_device:
hidden_states = hidden_states.to("cuda:" + str(k + 1))
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if return_self_attention_cache:
next_cache = past_key_values.self_attention_cache
if return_legacy_cache:
next_cache = past_key_values.to_legacy_cache()
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_cache,
all_hidden_states,
all_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel._prepare_4d_causal_attention_mask_with_cache_position
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to plcae the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
|
class_definition
| 38,809 | 59,871 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/t5/modeling_t5.py
| null | 5,698 |
class T5Model(T5PreTrainedModel):
_keys_to_ignore_on_load_unexpected = [
"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
]
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: T5Config):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = T5Stack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = T5Stack(decoder_config, self.shared)
# Initialize weights and apply final processing
self.post_init()
# Model parallel
self.model_parallel = False
self.device_map = None
@add_start_docstrings(PARALLELIZE_DOCSTRING)
def parallelize(self, device_map=None):
warnings.warn(
"`T5Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model"
" with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'encoder.block.0':"
" 0, 'encoder.block.1': 1, ...}",
FutureWarning,
)
self.device_map = (
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
if device_map is None
else device_map
)
assert_device_map(self.device_map, len(self.encoder.block))
self.encoder.parallelize(self.device_map)
self.decoder.parallelize(self.device_map)
self.model_parallel = True
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
def deparallelize(self):
warnings.warn(
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
FutureWarning,
)
self.encoder.deparallelize()
self.decoder.deparallelize()
self.encoder = self.encoder.to("cpu")
self.decoder = self.decoder.to("cpu")
self.model_parallel = False
self.device_map = None
torch.cuda.empty_cache()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
decoder_inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, T5Model
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small")
>>> model = T5Model.from_pretrained("google-t5/t5-small")
>>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids # Batch size 1
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
>>> # preprocess: Prepend decoder_input_ids with start token which is pad token for T5Model.
>>> # This is not needed for torch's T5ForConditionalGeneration as it does this internally using labels arg.
>>> decoder_input_ids = model._shift_right(decoder_input_ids)
>>> # forward pass
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
>>> last_hidden_states = outputs.last_hidden_state
```"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
if head_mask is not None and decoder_head_mask is None:
if self.config.num_layers == self.config.num_decoder_layers:
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
decoder_head_mask = head_mask
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.decoder.first_device)
hidden_states = hidden_states.to(self.decoder.first_device)
if decoder_input_ids is not None:
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
if attention_mask is not None:
attention_mask = attention_mask.to(self.decoder.first_device)
if decoder_attention_mask is not None:
decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
|
class_definition
| 70,287 | 79,305 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/t5/modeling_t5.py
| null | 5,699 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.