text
stringlengths
31
243k
type
stringclasses
1 value
start
int64
36
275k
end
int64
286
280k
depth
int64
0
1
filepath
stringlengths
85
188
parent_class
stringclasses
3 values
class_index
int64
0
10.8k
class TapasLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = TapasPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def _tie_weights(self): self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states
class_definition
29,854
30,688
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tapas.py
null
5,300
class TapasOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = TapasLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores
class_definition
30,777
31,093
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tapas.py
null
5,301
class TapasPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = TapasConfig base_model_prefix = "tapas" supports_gradient_checkpointing = True _supports_param_buffer_assignment = False # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0)
class_definition
31,096
32,340
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tapas.py
null
5,302
class TapasModel(TapasPreTrainedModel): """ This class is a small change compared to [`BertModel`], taking into account the additional token type ids. The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in [Attention is all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = TapasEmbeddings(config) self.encoder = TapasEncoder(config) self.pooler = TapasPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, TapasModel >>> import pandas as pd >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base") >>> model = TapasModel.from_pretrained("google/tapas-base") >>> data = { ... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], ... "Age": ["56", "45", "59"], ... "Number of movies": ["87", "53", "69"], ... } >>> table = pd.DataFrame.from_dict(data) >>> queries = ["How many movies has George Clooney played in?", "How old is Brad Pitt?"] >>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros( (*input_shape, len(self.config.type_vocab_sizes)), dtype=torch.long, device=device ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastabe to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, )
class_definition
36,021
43,075
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tapas.py
null
5,303
class TapasForMaskedLM(TapasPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] config_class = TapasConfig base_model_prefix = "tapas" def __init__(self, config): super().__init__(config) self.tapas = TapasModel(config, add_pooling_layer=False) self.cls = TapasOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias @add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` Returns: Examples: ```python >>> from transformers import AutoTokenizer, TapasForMaskedLM >>> import pandas as pd >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base") >>> model = TapasForMaskedLM.from_pretrained("google/tapas-base") >>> data = { ... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], ... "Age": ["56", "45", "59"], ... "Number of movies": ["87", "53", "69"], ... } >>> table = pd.DataFrame.from_dict(data) >>> inputs = tokenizer( ... table=table, queries="How many [MASK] has George [MASK] played in?", return_tensors="pt" ... ) >>> labels = tokenizer( ... table=table, queries="How many movies has George Clooney played in?", return_tensors="pt" ... )["input_ids"] >>> outputs = model(**inputs, labels=labels) >>> logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.tapas( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
43,182
47,589
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tapas.py
null
5,304
class TapasForQuestionAnswering(TapasPreTrainedModel): def __init__(self, config: TapasConfig): super().__init__(config) # base model self.tapas = TapasModel(config) # dropout (only used when training) self.dropout = nn.Dropout(config.hidden_dropout_prob) # cell selection heads if config.init_cell_selection_weights_to_zero: # init_cell_selection_weights_to_zero: Whether the initial weights should be # set to 0. This ensures that all tokens have the same prior probability. self.output_weights = nn.Parameter(torch.zeros(config.hidden_size)) self.column_output_weights = nn.Parameter(torch.zeros(config.hidden_size)) else: self.output_weights = nn.Parameter(torch.empty(config.hidden_size)) nn.init.normal_( self.output_weights, std=config.initializer_range ) # here, a truncated normal is used in the original implementation self.column_output_weights = nn.Parameter(torch.empty(config.hidden_size)) nn.init.normal_( self.column_output_weights, std=config.initializer_range ) # here, a truncated normal is used in the original implementation self.output_bias = nn.Parameter(torch.zeros([])) self.column_output_bias = nn.Parameter(torch.zeros([])) # aggregation head if config.num_aggregation_labels > 0: self.aggregation_classifier = nn.Linear(config.hidden_size, config.num_aggregation_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TableQuestionAnsweringOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, table_mask: Optional[torch.LongTensor] = None, labels: Optional[torch.LongTensor] = None, aggregation_labels: Optional[torch.LongTensor] = None, float_answer: Optional[torch.FloatTensor] = None, numeric_values: Optional[torch.FloatTensor] = None, numeric_values_scale: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TableQuestionAnsweringOutput]: r""" table_mask (`torch.LongTensor` of shape `(batch_size, seq_length)`, *optional*): Mask for the table. Indicates which tokens belong to the table (1). Question tokens, table headers and padding are 0. labels (`torch.LongTensor` of shape `(batch_size, seq_length)`, *optional*): Labels per token for computing the hierarchical cell selection loss. This encodes the positions of the answer appearing in the table. Can be obtained using [`AutoTokenizer`]. - 1 for tokens that are **part of the answer**, - 0 for tokens that are **not part of the answer**. aggregation_labels (`torch.LongTensor` of shape `(batch_size, )`, *optional*): Aggregation function index for every example in the batch for computing the aggregation loss. Indices should be in `[0, ..., config.num_aggregation_labels - 1]`. Only required in case of strong supervision for aggregation (WikiSQL-supervised). float_answer (`torch.FloatTensor` of shape `(batch_size, )`, *optional*): Float answer for every example in the batch. Set to *float('nan')* for cell selection questions. Only required in case of weak supervision (WTQ) to calculate the aggregate mask and regression loss. numeric_values (`torch.FloatTensor` of shape `(batch_size, seq_length)`, *optional*): Numeric values of every token, NaN for tokens which are not numeric values. Can be obtained using [`AutoTokenizer`]. Only required in case of weak supervision for aggregation (WTQ) to calculate the regression loss. numeric_values_scale (`torch.FloatTensor` of shape `(batch_size, seq_length)`, *optional*): Scale of the numeric values of every token. Can be obtained using [`AutoTokenizer`]. Only required in case of weak supervision for aggregation (WTQ) to calculate the regression loss. Returns: Examples: ```python >>> from transformers import AutoTokenizer, TapasForQuestionAnswering >>> import pandas as pd >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base-finetuned-wtq") >>> model = TapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-wtq") >>> data = { ... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], ... "Age": ["56", "45", "59"], ... "Number of movies": ["87", "53", "69"], ... } >>> table = pd.DataFrame.from_dict(data) >>> queries = ["How many movies has George Clooney played in?", "How old is Brad Pitt?"] >>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> logits_aggregation = outputs.logits_aggregation ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.tapas( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] pooled_output = outputs[1] sequence_output = self.dropout(sequence_output) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] device = input_ids.device if input_ids is not None else inputs_embeds.device # Construct indices for the table. if token_type_ids is None: token_type_ids = torch.zeros( (*input_shape, len(self.config.type_vocab_sizes)), dtype=torch.long, device=device ) token_types = [ "segment_ids", "column_ids", "row_ids", "prev_labels", "column_ranks", "inv_column_ranks", "numeric_relations", ] row_ids = token_type_ids[:, :, token_types.index("row_ids")] column_ids = token_type_ids[:, :, token_types.index("column_ids")] row_index = IndexMap( indices=torch.min(row_ids, torch.as_tensor(self.config.max_num_rows - 1, device=row_ids.device)), num_segments=self.config.max_num_rows, batch_dims=1, ) col_index = IndexMap( indices=torch.min(column_ids, torch.as_tensor(self.config.max_num_columns - 1, device=column_ids.device)), num_segments=self.config.max_num_columns, batch_dims=1, ) cell_index = ProductIndexMap(row_index, col_index) # Masks. input_shape = input_ids.size() if input_ids is not None else inputs_embeds.size()[:-1] device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) # Table cells only, without question tokens and table headers. if table_mask is None: table_mask = torch.where(row_ids > 0, torch.ones_like(row_ids), torch.zeros_like(row_ids)) # torch.FloatTensor[batch_size, seq_length] input_mask_float = attention_mask.float().to(device) table_mask_float = table_mask.float().to(device) # Mask for cells that exist in the table (i.e. that are not padding). cell_mask, _ = reduce_mean(input_mask_float, cell_index) # Compute logits per token. These are used to select individual cells. logits = compute_token_logits(sequence_output, self.config.temperature, self.output_weights, self.output_bias) # Compute logits per column. These are used to select a column. column_logits = None if self.config.select_one_column: column_logits = compute_column_logits( sequence_output, self.column_output_weights, self.column_output_bias, cell_index, cell_mask, self.config.allow_empty_column_selection, ) # Aggregation logits logits_aggregation = None if self.config.num_aggregation_labels > 0: logits_aggregation = self.aggregation_classifier(pooled_output) # Total loss calculation total_loss = 0.0 calculate_loss = False if labels is not None: calculate_loss = True is_supervised = not self.config.num_aggregation_labels > 0 or not self.config.use_answer_as_supervision # Semi-supervised cell selection in case of no aggregation: # If the answer (the denotation) appears directly in the table we might # select the answer without applying any aggregation function. There are # some ambiguous cases, see utils._calculate_aggregate_mask for more info. # `aggregate_mask` is 1 for examples where we chose to aggregate and 0 # for examples where we chose to select the answer directly. # `labels` encodes the positions of the answer appearing in the table. if is_supervised: aggregate_mask = None else: if float_answer is not None: assert ( labels.shape[0] == float_answer.shape[0] ), "Make sure the answers are a FloatTensor of shape (batch_size,)" # <float32>[batch_size] aggregate_mask = _calculate_aggregate_mask( float_answer, pooled_output, self.config.cell_selection_preference, labels, self.aggregation_classifier, ) else: raise ValueError("You have to specify float answers in order to calculate the aggregate mask") # Cell selection log-likelihood if self.config.average_logits_per_cell: logits_per_cell, _ = reduce_mean(logits, cell_index) logits = gather(logits_per_cell, cell_index) dist_per_token = torch.distributions.Bernoulli(logits=logits) # Compute cell selection loss per example. selection_loss_per_example = None if not self.config.select_one_column: weight = torch.where( labels == 0, torch.ones_like(labels, dtype=torch.float32), self.config.positive_label_weight * torch.ones_like(labels, dtype=torch.float32), ) selection_loss_per_token = -dist_per_token.log_prob(labels) * weight selection_loss_per_example = torch.sum(selection_loss_per_token * input_mask_float, dim=1) / ( torch.sum(input_mask_float, dim=1) + EPSILON_ZERO_DIVISION ) else: selection_loss_per_example, logits = _single_column_cell_selection_loss( logits, column_logits, labels, cell_index, col_index, cell_mask ) dist_per_token = torch.distributions.Bernoulli(logits=logits) # Supervised cell selection if self.config.disable_per_token_loss: pass elif is_supervised: total_loss += torch.mean(selection_loss_per_example) else: # For the not supervised case, do not assign loss for cell selection total_loss += torch.mean(selection_loss_per_example * (1.0 - aggregate_mask)) # Semi-supervised regression loss and supervised loss for aggregations if self.config.num_aggregation_labels > 0: if is_supervised: # Note that `aggregate_mask` is None if the setting is supervised. if aggregation_labels is not None: assert ( labels.shape[0] == aggregation_labels.shape[0] ), "Make sure the aggregation labels are a LongTensor of shape (batch_size,)" per_example_additional_loss = _calculate_aggregation_loss( logits_aggregation, aggregate_mask, aggregation_labels, self.config.use_answer_as_supervision, self.config.num_aggregation_labels, self.config.aggregation_loss_weight, ) else: raise ValueError( "You have to specify aggregation labels in order to calculate the aggregation loss" ) else: # Set aggregation labels to zeros aggregation_labels = torch.zeros(labels.shape[0], dtype=torch.long, device=labels.device) per_example_additional_loss = _calculate_aggregation_loss( logits_aggregation, aggregate_mask, aggregation_labels, self.config.use_answer_as_supervision, self.config.num_aggregation_labels, self.config.aggregation_loss_weight, ) if self.config.use_answer_as_supervision: if numeric_values is not None and numeric_values_scale is not None: assert numeric_values.shape == numeric_values_scale.shape # Add regression loss for numeric answers which require aggregation. answer_loss, large_answer_loss_mask = _calculate_regression_loss( float_answer, aggregate_mask, dist_per_token, numeric_values, numeric_values_scale, table_mask_float, logits_aggregation, self.config, ) per_example_additional_loss += answer_loss # Zero loss for examples with answer_loss > cutoff. per_example_additional_loss *= large_answer_loss_mask else: raise ValueError( "You have to specify numeric values and numeric values scale in order to calculate the" " regression loss" ) total_loss += torch.mean(per_example_additional_loss) else: # if no label ids are provided, set them to zeros in order to properly compute logits labels = torch.zeros_like(logits) _, logits = _single_column_cell_selection_loss( logits, column_logits, labels, cell_index, col_index, cell_mask ) if not return_dict: output = (logits, logits_aggregation) + outputs[2:] return ((total_loss,) + output) if calculate_loss else output return TableQuestionAnsweringOutput( loss=total_loss if calculate_loss else None, logits=logits, logits_aggregation=logits_aggregation, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
47,941
64,547
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tapas.py
null
5,305
class TapasForSequenceClassification(TapasPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.tapas = TapasModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Note: this is called "classification_class_index" in the original implementation. Returns: Examples: ```python >>> from transformers import AutoTokenizer, TapasForSequenceClassification >>> import torch >>> import pandas as pd >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base-finetuned-tabfact") >>> model = TapasForSequenceClassification.from_pretrained("google/tapas-base-finetuned-tabfact") >>> data = { ... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], ... "Age": ["56", "45", "59"], ... "Number of movies": ["87", "53", "69"], ... } >>> table = pd.DataFrame.from_dict(data) >>> queries = [ ... "There is only one actor who is 45 years old", ... "There are 3 actors which played in more than 60 movies", ... ] >>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="pt") >>> labels = torch.tensor([1, 0]) # 1 means entailed, 0 means refuted >>> outputs = model(**inputs, labels=labels) >>> loss = outputs.loss >>> logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.tapas( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
64,798
69,829
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tapas.py
null
5,306
class AverageApproximationFunction(str, enum.Enum): RATIO = "ratio" FIRST_ORDER = "first_order" SECOND_ORDER = "second_order"
class_definition
69,858
69,995
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tapas.py
null
5,307
class IndexMap: """Index grouping entries within a tensor.""" def __init__(self, indices, num_segments, batch_dims=0): """ Creates an index Args: indices (`torch.LongTensor`, same shape as a *values* Tensor to which the indices refer): Tensor containing the indices. num_segments (`torch.LongTensor`): Scalar tensor, the number of segments. All elements in a batched segmented tensor must have the same number of segments (although many segments can be empty). batch_dims (`int`, *optional*, defaults to 0): The number of batch dimensions. The first *batch_dims* dimensions of a SegmentedTensor are treated as batch dimensions. Segments in different batch elements are always distinct even if they have the same index. """ self.indices = torch.as_tensor(indices) self.num_segments = torch.as_tensor(num_segments, device=indices.device) self.batch_dims = batch_dims def batch_shape(self): return self.indices.size()[: self.batch_dims] # returns a torch.Size object
class_definition
70,055
71,230
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tapas.py
null
5,308
class ProductIndexMap(IndexMap): """The product of two indices.""" def __init__(self, outer_index, inner_index): """ Combines indices i and j into pairs (i, j). The result is an index where each segment (i, j) is the intersection of segments i and j. For example if the inputs represent table cells indexed by respectively rows and columns the output will be a table indexed by (row, column) pairs, i.e. by cell. The implementation combines indices {0, .., n - 1} and {0, .., m - 1} into {0, .., nm - 1}. The output has *num_segments* equal to *outer_index.num_segments* * *inner_index.num_segments* Args: outer_index (`IndexMap`): IndexMap. inner_index (`IndexMap`): IndexMap, must have the same shape as *outer_index*. """ if outer_index.batch_dims != inner_index.batch_dims: raise ValueError("outer_index.batch_dims and inner_index.batch_dims must be the same.") super().__init__( indices=(inner_index.indices + outer_index.indices * inner_index.num_segments), num_segments=inner_index.num_segments * outer_index.num_segments, batch_dims=inner_index.batch_dims, ) self.outer_index = outer_index self.inner_index = inner_index def project_outer(self, index): """Projects an index with the same index set onto the outer components.""" indices = torch.div(index.indices, self.inner_index.num_segments, rounding_mode="floor").type(torch.long) return IndexMap(indices=indices, num_segments=self.outer_index.num_segments, batch_dims=index.batch_dims) def project_inner(self, index): """Projects an index with the same index set onto the inner components.""" return IndexMap( indices=torch.fmod(index.indices, self.inner_index.num_segments) .type(torch.float) .floor() .type(torch.long), num_segments=self.inner_index.num_segments, batch_dims=index.batch_dims, )
class_definition
71,233
73,340
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tapas.py
null
5,309
class TFTableQuestionAnsweringOutput(ModelOutput): """ Output type of [`TFTapasForQuestionAnswering`]. Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` (and possibly `answer`, `aggregation_labels`, `numeric_values` and `numeric_values_scale` are provided)): Total loss as the sum of the hierarchical cell selection log-likelihood loss and (optionally) the semi-supervised regression loss and (optionally) supervised loss for aggregations. logits (`tf.Tensor` of shape `(batch_size, sequence_length)`): Prediction scores of the cell selection head, for every token. logits_aggregation (`tf.Tensor`, *optional*, of shape `(batch_size, num_aggregation_labels)`): Prediction scores of the aggregation head, for every aggregation operator. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None logits: tf.Tensor = None logits_aggregation: tf.Tensor | None = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None
class_definition
2,849
4,746
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tf_tapas.py
null
5,310
class TFTapasEmbeddings(keras.layers.Layer): """ Construct the embeddings from word, position and token_type embeddings. Same as BertEmbeddings but with a number of additional token type embeddings to encode tabular structure. """ def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) self.config = config self.number_of_token_type_embeddings = len(config.type_vocab_sizes) self.reset_position_index_per_cell = config.reset_position_index_per_cell self.hidden_size = config.hidden_size self.max_position_embeddings = config.max_position_embeddings self.initializer_range = config.initializer_range self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) def build(self, input_shape=None): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.config.vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.hidden_size], initializer=get_initializer(self.initializer_range), ) for i, type_vocab_size in enumerate(self.config.type_vocab_sizes): with tf.name_scope(f"token_type_embeddings_{i}"): setattr( self, f"token_type_embeddings_{i}", self.add_weight( name="embeddings", shape=[type_vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range), ), ) if self.built: return self.built = True if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) def call( self, input_ids: tf.Tensor = None, position_ids: tf.Tensor = None, token_type_ids: tf.Tensor = None, inputs_embeds: tf.Tensor = None, training: bool = False, ) -> tf.Tensor: """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ assert not (input_ids is None and inputs_embeds is None) if input_ids is not None: input_shape = shape_list(input_ids) else: input_shape = shape_list(inputs_embeds)[:-1] seq_length = input_shape[1] if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape + [self.number_of_token_type_embeddings], value=0) if position_ids is None: # create absolute position embeddings position_ids = tf.expand_dims(tf.range(start=0, limit=seq_length), axis=0) position_ids = tf.broadcast_to(position_ids, shape=input_shape) # when self.config.reset_position_index_per_cell is set to True, create relative position embeddings if self.reset_position_index_per_cell: # shape (batch_size, seq_len) col_index = IndexMap(token_type_ids[:, :, 1], self.config.type_vocab_sizes[1], batch_dims=1) # shape (batch_size, seq_len) row_index = IndexMap(token_type_ids[:, :, 2], self.config.type_vocab_sizes[2], batch_dims=1) # shape (batch_size, seq_len) full_index = ProductIndexMap(col_index, row_index) # shape (max_rows * max_columns,). First absolute position for every cell first_position_per_segment = reduce_min(position_ids, full_index)[0] # ? shape (batch_size, seq_len). First absolute position of the cell for every token first_position = gather(first_position_per_segment, full_index) # shape (1, seq_len) position = tf.expand_dims(tf.range(start=0, limit=seq_length), axis=0) position_ids = tf.math.minimum(self.max_position_embeddings - 1, position - first_position) if input_ids is not None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) position_embeddings = tf.gather(self.position_embeddings, indices=position_ids) final_embeddings = inputs_embeds + position_embeddings for i in range(self.number_of_token_type_embeddings): name = f"token_type_embeddings_{i}" final_embeddings += tf.gather(params=getattr(self, name), indices=token_type_ids[:, :, i]) final_embeddings = self.LayerNorm(inputs=final_embeddings) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings
class_definition
4,749
9,959
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tf_tapas.py
null
5,311
class TFTapasSelfAttention(keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number " f"of attention heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.sqrt_att_head_size = math.sqrt(self.attention_head_size) self.query = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" ) self.value = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob) self.is_decoder = config.is_decoder self.config = config def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor, encoder_attention_mask: tf.Tensor, past_key_value: Tuple[tf.Tensor], output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: batch_size = shape_list(hidden_states)[0] mixed_query_layer = self.query(inputs=hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) key_layer = tf.concat([past_key_value[0], key_layer], axis=2) value_layer = tf.concat([past_key_value[1], value_layer], axis=2) else: key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. # (batch size, num_heads, seq_len_q, seq_len_k) attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) attention_scores = tf.divide(attention_scores, dk) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in TFTapasModel call() function) attention_scores = tf.add(attention_scores, attention_mask) # Normalize the attention scores to probabilities. attention_probs = stable_softmax(logits=attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(inputs=attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = tf.multiply(attention_probs, head_mask) attention_output = tf.matmul(attention_probs, value_layer) attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, all_head_size) attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "query", None) is not None: with tf.name_scope(self.query.name): self.query.build([None, None, self.config.hidden_size]) if getattr(self, "key", None) is not None: with tf.name_scope(self.key.name): self.key.build([None, None, self.config.hidden_size]) if getattr(self, "value", None) is not None: with tf.name_scope(self.value.name): self.value.build([None, None, self.config.hidden_size])
class_definition
10,055
16,875
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tf_tapas.py
null
5,312
class TFTapasSelfOutput(keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size])
class_definition
16,968
18,297
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tf_tapas.py
null
5,313
class TFTapasAttention(keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) self.self_attention = TFTapasSelfAttention(config, name="self") self.dense_output = TFTapasSelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call( self, input_tensor: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor, encoder_attention_mask: tf.Tensor, past_key_value: Tuple[tf.Tensor], output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: self_outputs = self.self_attention( hidden_states=input_tensor, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, training=training, ) attention_output = self.dense_output( hidden_states=self_outputs[0], input_tensor=input_tensor, training=training ) # add attentions (possibly with past_key_value) if we output them outputs = (attention_output,) + self_outputs[1:] return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attention", None) is not None: with tf.name_scope(self.self_attention.name): self.self_attention.build(None) if getattr(self, "dense_output", None) is not None: with tf.name_scope(self.dense_output.name): self.dense_output.build(None)
class_definition
18,389
20,225
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tf_tapas.py
null
5,314
class TFTapasIntermediate(keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size])
class_definition
20,320
21,344
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tf_tapas.py
null
5,315
class TFTapasOutput(keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.intermediate_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size])
class_definition
21,433
22,764
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tf_tapas.py
null
5,316
class TFTapasLayer(keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) self.attention = TFTapasAttention(config, name="attention") self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = TFTapasAttention(config, name="crossattention") self.intermediate = TFTapasIntermediate(config, name="intermediate") self.bert_output = TFTapasOutput(config, name="output") def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor | None, encoder_attention_mask: tf.Tensor | None, past_key_value: Tuple[tf.Tensor] | None, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( input_tensor=hidden_states, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=self_attn_past_key_value, output_attentions=output_attentions, training=training, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( input_tensor=attention_output, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, training=training, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value intermediate_output = self.intermediate(hidden_states=attention_output) layer_output = self.bert_output( hidden_states=intermediate_output, input_tensor=attention_output, training=training ) outputs = (layer_output,) + outputs # add attentions if we output them # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "bert_output", None) is not None: with tf.name_scope(self.bert_output.name): self.bert_output.build(None) if getattr(self, "crossattention", None) is not None: with tf.name_scope(self.crossattention.name): self.crossattention.build(None)
class_definition
22,852
27,587
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tf_tapas.py
null
5,317
class TFTapasEncoder(keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) self.config = config self.layer = [TFTapasLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor | None, encoder_attention_mask: tf.Tensor | None, past_key_values: Tuple[Tuple[tf.Tensor]] | None, use_cache: Optional[bool], output_attentions: bool, output_hidden_states: bool, return_dict: bool, training: bool = False, ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) past_key_value = past_key_values[i] if past_key_values is not None else None layer_outputs = layer_module( hidden_states=hidden_states, attention_mask=attention_mask, head_mask=head_mask[i], encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, training=training, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if self.config.add_cross_attention and encoder_hidden_states is not None: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None ) return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None)
class_definition
27,677
30,761
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tf_tapas.py
null
5,318
class TFTapasPooler(keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(inputs=first_token_tensor) return pooled_output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size])
class_definition
30,850
31,821
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tf_tapas.py
null
5,319
class TFTapasPredictionHeadTransform(keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense", ) if isinstance(config.hidden_act, str): self.transform_act_fn = get_tf_activation(config.hidden_act) else: self.transform_act_fn = config.hidden_act self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(inputs=hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size])
class_definition
31,927
33,326
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tf_tapas.py
null
5,320
class TFTapasLMPredictionHead(keras.layers.Layer): def __init__(self, config: TapasConfig, input_embeddings: keras.layers.Layer, **kwargs): super().__init__(**kwargs) self.config = config self.hidden_size = config.hidden_size self.transform = TFTapasPredictionHeadTransform(config, name="transform") # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.input_embeddings = input_embeddings def build(self, input_shape=None): self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") if self.built: return self.built = True if getattr(self, "transform", None) is not None: with tf.name_scope(self.transform.name): self.transform.build(None) def get_output_embeddings(self) -> keras.layers.Layer: return self.input_embeddings def set_output_embeddings(self, value: tf.Variable): self.input_embeddings.weight = value self.input_embeddings.vocab_size = shape_list(value)[0] def get_bias(self) -> Dict[str, tf.Variable]: return {"bias": self.bias} def set_bias(self, value: tf.Variable): self.bias = value["bias"] self.config.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.transform(hidden_states=hidden_states) seq_length = shape_list(hidden_states)[1] hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size]) hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True) hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) return hidden_states
class_definition
33,425
35,387
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tf_tapas.py
null
5,321
class TFTapasMLMHead(keras.layers.Layer): def __init__(self, config: TapasConfig, input_embeddings: keras.layers.Layer, **kwargs): super().__init__(**kwargs) self.predictions = TFTapasLMPredictionHead(config, input_embeddings, name="predictions") def call(self, sequence_output: tf.Tensor) -> tf.Tensor: prediction_scores = self.predictions(hidden_states=sequence_output) return prediction_scores def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "predictions", None) is not None: with tf.name_scope(self.predictions.name): self.predictions.build(None)
class_definition
35,477
36,183
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tf_tapas.py
null
5,322
class TFTapasMainLayer(keras.layers.Layer): config_class = TapasConfig def __init__(self, config: TapasConfig, add_pooling_layer: bool = True, **kwargs): super().__init__(**kwargs) self.config = config self.embeddings = TFTapasEmbeddings(config, name="embeddings") self.encoder = TFTapasEncoder(config, name="encoder") self.pooler = TFTapasPooler(config, name="pooler") if add_pooling_layer else None def get_input_embeddings(self) -> keras.layers.Layer: return self.embeddings def set_input_embeddings(self, value: tf.Variable): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = tf.fill(dims=input_shape, value=1) if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape + [len(self.config.type_vocab_sizes)], value=0) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, training=training, ) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1])) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype) one_cst = tf.constant(1.0, dtype=embedding_output.dtype) ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.config.num_hidden_layers encoder_outputs = self.encoder( hidden_states=embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None if not return_dict: return ( sequence_output, pooled_output, ) + encoder_outputs[1:] return TFBaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "pooler", None) is not None: with tf.name_scope(self.pooler.name): self.pooler.build(None)
class_definition
36,206
42,030
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tf_tapas.py
null
5,323
class TFTapasPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = TapasConfig base_model_prefix = "tapas" @property def input_signature(self): return { "input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"), "attention_mask": tf.TensorSpec((None, None), tf.float32, name="attention_mask"), "token_type_ids": tf.TensorSpec((None, None, 7), tf.int32, name="token_type_ids"), }
class_definition
42,033
42,634
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tf_tapas.py
null
5,324
class TFTapasModel(TFTapasPreTrainedModel): def __init__(self, config: TapasConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.tapas = TFTapasMainLayer(config, name="tapas") @unpack_inputs @add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, TapasModel >>> import pandas as pd >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base") >>> model = TapasModel.from_pretrained("google/tapas-base") >>> data = { ... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], ... "Age": ["56", "45", "59"], ... "Number of movies": ["87", "53", "69"], ... } >>> table = pd.DataFrame.from_dict(data) >>> queries = ["How many movies has George Clooney played in?", "How old is Brad Pitt?"] >>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="tf") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ```""" outputs = self.tapas( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "tapas", None) is not None: with tf.name_scope(self.tapas.name): self.tapas.build(None)
class_definition
48,654
51,340
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tf_tapas.py
null
5,325
class TFTapasForMaskedLM(TFTapasPreTrainedModel, TFMaskedLanguageModelingLoss): def __init__(self, config: TapasConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) if config.is_decoder: logger.warning( "If you want to use `TFTapasForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.tapas = TFTapasMainLayer(config, add_pooling_layer=False, name="tapas") self.lm_head = TFTapasMLMHead(config, input_embeddings=self.tapas.embeddings, name="cls") def get_lm_head(self) -> keras.layers.Layer: return self.lm_head.predictions @unpack_inputs @add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` Returns: Examples: ```python >>> from transformers import AutoTokenizer, TapasForMaskedLM >>> import pandas as pd >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base") >>> model = TapasForMaskedLM.from_pretrained("google/tapas-base") >>> data = { ... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], ... "Age": ["56", "45", "59"], ... "Number of movies": ["87", "53", "69"], ... } >>> table = pd.DataFrame.from_dict(data) >>> inputs = tokenizer( ... table=table, queries="How many [MASK] has George [MASK] played in?", return_tensors="tf" ... ) >>> labels = tokenizer( ... table=table, queries="How many movies has George Clooney played in?", return_tensors="tf" ... )["input_ids"] >>> outputs = model(**inputs, labels=labels) >>> logits = outputs.logits ```""" outputs = self.tapas( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "tapas", None) is not None: with tf.name_scope(self.tapas.name): self.tapas.build(None) if getattr(self, "lm_head", None) is not None: with tf.name_scope(self.lm_head.name): self.lm_head.build(None)
class_definition
51,447
55,846
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tf_tapas.py
null
5,326
class TFTapasComputeTokenLogits(keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) self.temperature = config.temperature # cell selection heads with tf.name_scope("output"): self.output_weights = self.add_weight( name="output_weights", shape=(config.hidden_size,), dtype=tf.float32, trainable=True, initializer=tf.zeros_initializer() if config.init_cell_selection_weights_to_zero else keras.initializers.TruncatedNormal(stddev=config.initializer_range), ) self.output_bias = self.add_weight( name="output_bias", shape=(), trainable=True, initializer=tf.zeros_initializer() ) def call(self, sequence_output: tf.Tensor) -> tf.Tensor: """ Computes logits per token Args: sequence_output (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Also known as last_hidden_state. Sequence of hidden-states at the output of the last layer of the model. Returns: logits (`tf.Tensor` of shape `(batch_size, sequence_length)`): Logits per token. """ logits = (tf.einsum("bsj,j->bs", sequence_output, self.output_weights) + self.output_bias) / self.temperature return logits
class_definition
55,849
57,304
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tf_tapas.py
null
5,327
class TFTapasComputeColumnLogits(keras.layers.Layer): def __init__(self, config: TapasConfig, **kwargs): super().__init__(**kwargs) with tf.name_scope("column_output"): self.column_output_weights = self.add_weight( name="column_output_weights", shape=[config.hidden_size], dtype=tf.float32, trainable=True, initializer=tf.zeros_initializer() if config.init_cell_selection_weights_to_zero else keras.initializers.TruncatedNormal(stddev=config.initializer_range), ) self.column_output_bias = self.add_weight( name="column_output_bias", shape=(), trainable=True, initializer=tf.zeros_initializer() ) def call(self, sequence_output, cell_index, cell_mask, allow_empty_column_selection) -> tf.Tensor: """ Computes the column logits. Args: sequence_output (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Also known as last_hidden_state. Sequence of hidden-states at the output of the last layer of the model. cell_index (`ProductIndexMap`): Index that groups tokens into cells. cell_mask (`tf.Tensor` of shape `(batch_size, max_num_rows * max_num_cols)`): Mask for cells that exist in the table (i.e. that are not padding). allow_empty_column_selection (`bool`): Whether to allow not to select any column Returns: column_logits (`tf.Tensor`of shape `(batch_size, max_num_cols)`): Tensor containing the column logits for every example in the batch. """ # First, compute the token logits (batch_size, seq_len) - without temperature token_logits = tf.einsum("bsj,j->bs", sequence_output, self.column_output_weights) + self.column_output_bias # Next, average the logits per cell (batch_size, max_num_cols*max_num_rows) cell_logits, cell_logits_index = reduce_mean(token_logits, cell_index) # Finally, average the logits per column (batch_size, max_num_cols) column_index = cell_index.project_inner(cell_logits_index) column_logits, out_index = reduce_sum(cell_logits * cell_mask, column_index) cell_count, _ = reduce_sum(cell_mask, column_index) column_logits /= cell_count + EPSILON_ZERO_DIVISION # Mask columns that do not appear in the example. is_padding = tf.logical_and(cell_count < 0.5, tf.not_equal(out_index.indices, 0)) column_logits += CLOSE_ENOUGH_TO_LOG_ZERO * tf.cast(is_padding, tf.float32) if not allow_empty_column_selection: column_logits += CLOSE_ENOUGH_TO_LOG_ZERO * tf.cast(tf.equal(out_index.indices, 0), tf.float32) return column_logits
class_definition
57,307
60,204
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tf_tapas.py
null
5,328
class TFTapasForQuestionAnswering(TFTapasPreTrainedModel): def __init__(self, config: TapasConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) # base model self.tapas = TFTapasMainLayer(config, name="tapas") # dropout self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.compute_token_logits = TFTapasComputeTokenLogits(config, name="compute_token_logits") self.compute_column_logits = TFTapasComputeColumnLogits(config, name="compute_column_logits") if config.num_aggregation_labels > 0: self.aggregation_classifier = keras.layers.Dense( config.num_aggregation_labels, kernel_initializer=get_initializer(config.initializer_range), name="aggregation_classifier", ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFTableQuestionAnsweringOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, table_mask: np.ndarray | tf.Tensor | None = None, aggregation_labels: np.ndarray | tf.Tensor | None = None, float_answer: np.ndarray | tf.Tensor | None = None, numeric_values: np.ndarray | tf.Tensor | None = None, numeric_values_scale: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFTableQuestionAnsweringOutput, Tuple[tf.Tensor]]: r""" table_mask (`tf.Tensor` of shape `(batch_size, seq_length)`, *optional*): Mask for the table. Indicates which tokens belong to the table (1). Question tokens, table headers and padding are 0. labels (`tf.Tensor` of shape `(batch_size, seq_length)`, *optional*): Labels per token for computing the hierarchical cell selection loss. This encodes the positions of the answer appearing in the table. Can be obtained using [`AutoTokenizer`]. - 1 for tokens that are **part of the answer**, - 0 for tokens that are **not part of the answer**. aggregation_labels (`tf.Tensor` of shape `(batch_size, )`, *optional*): Aggregation function index for every example in the batch for computing the aggregation loss. Indices should be in `[0, ..., config.num_aggregation_labels - 1]`. Only required in case of strong supervision for aggregation (WikiSQL-supervised). float_answer (`tf.Tensor` of shape `(batch_size, )`, *optional*): Float answer for every example in the batch. Set to *float('nan')* for cell selection questions. Only required in case of weak supervision (WTQ) to calculate the aggregate mask and regression loss. numeric_values (`tf.Tensor` of shape `(batch_size, seq_length)`, *optional*): Numeric values of every token, NaN for tokens which are not numeric values. Can be obtained using [`AutoTokenizer`]. Only required in case of weak supervision for aggregation (WTQ) to calculate the regression loss. numeric_values_scale (`tf.Tensor` of shape `(batch_size, seq_length)`, *optional*): Scale of the numeric values of every token. Can be obtained using [`AutoTokenizer`]. Only required in case of weak supervision for aggregation (WTQ) to calculate the regression loss. Returns: Examples: ```python >>> from transformers import AutoTokenizer, TapasForQuestionAnswering >>> import pandas as pd >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base-finetuned-wtq") >>> model = TapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-wtq") >>> data = { ... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], ... "Age": ["56", "45", "59"], ... "Number of movies": ["87", "53", "69"], ... } >>> table = pd.DataFrame.from_dict(data) >>> queries = ["How many movies has George Clooney played in?", "How old is Brad Pitt?"] >>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="tf") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> logits_aggregation = outputs.logits_aggregation ```""" outputs = self.tapas( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] pooled_output = outputs[1] sequence_output = self.dropout(sequence_output) if input_ids is not None: input_shape = shape_list(input_ids) else: input_shape = shape_list(inputs_embeds)[:-1] # Construct indices for the table. if token_type_ids is None: token_type_ids = tf.fill(input_shape + [len(self.config.type_vocab_sizes)], 0) token_types = [ "segment_ids", "column_ids", "row_ids", "prev_labels", "column_ranks", "inv_column_ranks", "numeric_relations", ] row_ids = token_type_ids[:, :, token_types.index("row_ids")] column_ids = token_type_ids[:, :, token_types.index("column_ids")] # Construct indices for the table. row_index = IndexMap( indices=tf.minimum(tf.cast(row_ids, tf.int32), self.config.max_num_rows - 1), num_segments=self.config.max_num_rows, batch_dims=1, ) col_index = IndexMap( indices=tf.minimum(tf.cast(column_ids, tf.int32), self.config.max_num_columns - 1), num_segments=self.config.max_num_columns, batch_dims=1, ) cell_index = ProductIndexMap(row_index, col_index) # Masks. input_shape = shape_list(input_ids) if input_ids is not None else shape_list(inputs_embeds)[:-1] if attention_mask is None: attention_mask = tf.ones(input_shape) # Table cells only, without question tokens and table headers. if table_mask is None: table_mask = tf.where(row_ids > 0, tf.ones_like(row_ids), tf.zeros_like(row_ids)) # <float32>[batch_size, seq_length] input_mask_float = tf.cast(attention_mask, tf.float32) table_mask_float = tf.cast(table_mask, tf.float32) # Mask for cells that exist in the table (i.e. that are not padding). cell_mask, _ = reduce_mean(input_mask_float, cell_index) # Compute logits per token. These are used to select individual cells. logits = self.compute_token_logits(sequence_output) # Compute logits per column. These are used to select a column. column_logits = None if self.config.select_one_column: column_logits = self.compute_column_logits( sequence_output, cell_index, cell_mask, self.config.allow_empty_column_selection ) # Aggregate logits. logits_aggregation = None if self.config.num_aggregation_labels > 0: logits_aggregation = self.aggregation_classifier(pooled_output) # Total loss calculation total_loss = tf.zeros(shape=(1,), dtype=tf.float32) calculate_loss = False if labels is not None: calculate_loss = True is_supervised = not self.config.num_aggregation_labels > 0 or not self.config.use_answer_as_supervision # Semi-supervised cell selection in case of no aggregation: # If the answer (the denotation) appears directly in the table we might # select the answer without applying any aggregation function. There are # some ambiguous cases, see utils._calculate_aggregate_mask for more info. # `aggregate_mask` is 1 for examples where we chose to aggregate and 0 # for examples where we chose to select the answer directly. # `labels` encodes the positions of the answer appearing in the table. if is_supervised: aggregate_mask = None else: if float_answer is not None: assert ( shape_list(labels)[0] == shape_list(float_answer)[0] ), "Make sure the answers are a FloatTensor of shape (batch_size,)" # <float32>[batch_size] aggregate_mask = _calculate_aggregate_mask( float_answer, pooled_output, self.config.cell_selection_preference, labels, self.aggregation_classifier, ) else: aggregate_mask = None raise ValueError("You have to specify float answers in order to calculate the aggregate mask") # Cell selection log-likelihood if self.config.average_logits_per_cell: logits_per_cell, _ = reduce_mean(logits, cell_index) logits = gather(logits_per_cell, cell_index) dist_per_token = tfp.distributions.Bernoulli(logits=logits) # Compute cell selection loss per example. selection_loss_per_example = None if not self.config.select_one_column: weight = tf.where( labels == 0, tf.ones_like(labels, dtype=tf.float32), self.config.positive_label_weight * tf.ones_like(labels, dtype=tf.float32), ) selection_loss_per_token = -dist_per_token.log_prob(labels) * weight selection_loss_per_example = tf.reduce_sum(selection_loss_per_token * input_mask_float, axis=1) / ( tf.reduce_sum(input_mask_float, axis=1) + EPSILON_ZERO_DIVISION ) else: selection_loss_per_example, logits = _single_column_cell_selection_loss( logits, column_logits, labels, cell_index, col_index, cell_mask ) dist_per_token = tfp.distributions.Bernoulli(logits=logits) # Supervised cell selection if self.config.disable_per_token_loss: pass elif is_supervised: total_loss += tf.reduce_mean(selection_loss_per_example) else: # For the not supervised case, do not assign loss for cell selection total_loss += tf.reduce_mean(selection_loss_per_example * (1.0 - aggregate_mask)) # Semi-supervised regression loss and supervised loss for aggregations if self.config.num_aggregation_labels > 0: if is_supervised: # Note that `aggregate_mask` is None if the setting is supervised. if aggregation_labels is not None: assert ( shape_list(labels)[0] == shape_list(aggregation_labels)[0] ), "Make sure the aggregation labels are a LongTensor of shape (batch_size,)" per_example_additional_loss = _calculate_aggregation_loss( logits_aggregation, aggregate_mask, aggregation_labels, self.config.use_answer_as_supervision, self.config.num_aggregation_labels, self.config.aggregation_loss_weight, ) else: raise ValueError( "You have to specify aggregation labels in order to calculate the aggregation loss" ) else: aggregation_labels = tf.zeros(shape_list(labels)[0], dtype=tf.int32) per_example_additional_loss = _calculate_aggregation_loss( logits_aggregation, aggregate_mask, aggregation_labels, self.config.use_answer_as_supervision, self.config.num_aggregation_labels, self.config.aggregation_loss_weight, ) if self.config.use_answer_as_supervision: if numeric_values is not None and numeric_values_scale is not None: assert shape_list(numeric_values) == shape_list(numeric_values_scale) # Add regression loss for numeric answers which require aggregation. answer_loss, large_answer_loss_mask = _calculate_regression_loss( float_answer, aggregate_mask, dist_per_token, numeric_values, numeric_values_scale, table_mask_float, logits_aggregation, self.config, ) per_example_additional_loss += answer_loss # Zero loss for examples with answer_loss > cutoff. per_example_additional_loss *= large_answer_loss_mask else: raise ValueError( "You have to specify numeric values and numeric values scale in order to calculate the" " regression loss" ) total_loss += tf.reduce_mean(per_example_additional_loss) else: # if no label ids are provided, set them to zeros in order to properly compute logits labels = tf.zeros_like(logits) _, logits = _single_column_cell_selection_loss( logits, column_logits, labels, cell_index, col_index, cell_mask ) if not return_dict: output = (logits, logits_aggregation) + outputs[2:] return ((total_loss,) + output) if calculate_loss else output return TFTableQuestionAnsweringOutput( loss=total_loss if calculate_loss else None, logits=logits, logits_aggregation=logits_aggregation, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "tapas", None) is not None: with tf.name_scope(self.tapas.name): self.tapas.build(None) if getattr(self, "compute_token_logits", None) is not None: with tf.name_scope(self.compute_token_logits.name): self.compute_token_logits.build(None) if getattr(self, "compute_column_logits", None) is not None: with tf.name_scope(self.compute_column_logits.name): self.compute_column_logits.build(None) if getattr(self, "aggregation_classifier", None) is not None: with tf.name_scope(self.aggregation_classifier.name): self.aggregation_classifier.build([None, None, self.config.hidden_size])
class_definition
60,556
76,839
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tf_tapas.py
null
5,329
class TFTapasForSequenceClassification(TFTapasPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: TapasConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.tapas = TFTapasMainLayer(config, name="tapas") self.dropout = keras.layers.Dropout(config.hidden_dropout_prob, name="dropout") self.classifier = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @replace_return_docstrings(output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Note: this is called "classification_class_index" in the original implementation. Returns: Examples: ```python >>> from transformers import AutoTokenizer, TapasForSequenceClassification >>> import tensorflow as tf >>> import pandas as pd >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base-finetuned-tabfact") >>> model = TapasForSequenceClassification.from_pretrained("google/tapas-base-finetuned-tabfact") >>> data = { ... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], ... "Age": ["56", "45", "59"], ... "Number of movies": ["87", "53", "69"], ... } >>> table = pd.DataFrame.from_dict(data) >>> queries = [ ... "There is only one actor who is 45 years old", ... "There are 3 actors which played in more than 60 movies", ... ] >>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="tf") >>> labels = tf.convert_to_tensor([1, 0]) # 1 means entailed, 0 means refuted >>> outputs = model(**inputs, labels=labels) >>> loss = outputs.loss >>> logits = outputs.logits ```""" outputs = self.tapas( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs[1] pooled_output = self.dropout(inputs=pooled_output, training=training) logits = self.classifier(inputs=pooled_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "tapas", None) is not None: with tf.name_scope(self.tapas.name): self.tapas.build(None) if getattr(self, "dropout", None) is not None: with tf.name_scope(self.dropout.name): self.dropout.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size])
class_definition
77,090
81,916
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tf_tapas.py
null
5,330
class AverageApproximationFunction(str, enum.Enum): RATIO = "ratio" FIRST_ORDER = "first_order" SECOND_ORDER = "second_order"
class_definition
81,945
82,082
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tf_tapas.py
null
5,331
class IndexMap: """Index grouping entries within a tensor.""" def __init__(self, indices, num_segments, batch_dims=0): """ Creates an index. Args: indices: <int32> Tensor of indices, same shape as `values`. num_segments: <int32> Scalar tensor, the number of segments. All elements in a batched segmented tensor must have the same number of segments (although many segments can be empty). batch_dims: Python integer, the number of batch dimensions. The first `batch_dims` dimensions of a SegmentedTensor are treated as batch dimensions. Segments in different batch elements are always distinct even if they have the same index. """ self.indices = tf.convert_to_tensor(indices) self.num_segments = tf.convert_to_tensor(num_segments) self.batch_dims = batch_dims def batch_shape(self): return tf.shape(self.indices)[: self.batch_dims]
class_definition
82,142
83,118
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tf_tapas.py
null
5,332
class ProductIndexMap(IndexMap): """The product of two indices.""" def __init__(self, outer_index, inner_index): """ Combines indices i and j into pairs (i, j). The result is an index where each segment (i, j) is the intersection of segments i and j. For example if the inputs represent table cells indexed by respectively rows and columns the output will be a table indexed by (row, column) pairs, i.e. by cell. The implementation combines indices {0, .., n - 1} and {0, .., m - 1} into {0, .., nm - 1}. The output has `num_segments` equal to `outer_index.num_segements` * `inner_index.num_segments`. Args: outer_index: IndexMap. inner_index: IndexMap, must have the same shape as `outer_index`. """ if outer_index.batch_dims != inner_index.batch_dims: raise ValueError("outer_index.batch_dims and inner_index.batch_dims must be the same.") super(ProductIndexMap, self).__init__( indices=( inner_index.indices + outer_index.indices * tf.cast(inner_index.num_segments, inner_index.indices.dtype) ), num_segments=inner_index.num_segments * outer_index.num_segments, batch_dims=inner_index.batch_dims, ) self.outer_index = outer_index self.inner_index = inner_index def project_outer(self, index): """Projects an index with the same index set onto the outer components.""" return IndexMap( indices=tf.math.floordiv(index.indices, self.inner_index.num_segments), num_segments=self.outer_index.num_segments, batch_dims=index.batch_dims, ) def project_inner(self, index): """Projects an index with the same index set onto the inner components.""" return IndexMap( indices=tf.math.floormod(index.indices, self.inner_index.num_segments), num_segments=self.inner_index.num_segments, batch_dims=index.batch_dims, )
class_definition
83,121
85,183
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/modeling_tf_tapas.py
null
5,333
class TapasTruncationStrategy(ExplicitEnum): """ Possible values for the `truncation` argument in [`~TapasTokenizer.__call__`]. Useful for tab-completion in an IDE. """ DROP_ROWS_TO_FIT = "drop_rows_to_fit" DO_NOT_TRUNCATE = "do_not_truncate"
class_definition
1,440
1,703
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/tokenization_tapas.py
null
5,334
class TokenCoordinates: column_index: int row_index: int token_index: int
class_definition
1,816
1,901
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/tokenization_tapas.py
null
5,335
class TokenizedTable: rows: List[List[List[str]]] selected_tokens: List[TokenCoordinates]
class_definition
1,915
2,012
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/tokenization_tapas.py
null
5,336
class SerializedExample: tokens: List[str] column_ids: List[int] row_ids: List[int] segment_ids: List[int]
class_definition
2,039
2,161
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/tokenization_tapas.py
null
5,337
class TapasTokenizer(PreTrainedTokenizer): r""" Construct a TAPAS tokenizer. Based on WordPiece. Flattens a table and one or more related sentences to be used by TAPAS models. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. [`TapasTokenizer`] creates several token type ids to encode tabular structure. To be more precise, it adds 7 token type ids, in the following order: `segment_ids`, `column_ids`, `row_ids`, `prev_labels`, `column_ranks`, `inv_column_ranks` and `numeric_relations`: - segment_ids: indicate whether a token belongs to the question (0) or the table (1). 0 for special tokens and padding. - column_ids: indicate to which column of the table a token belongs (starting from 1). Is 0 for all question tokens, special tokens and padding. - row_ids: indicate to which row of the table a token belongs (starting from 1). Is 0 for all question tokens, special tokens and padding. Tokens of column headers are also 0. - prev_labels: indicate whether a token was (part of) an answer to the previous question (1) or not (0). Useful in a conversational setup (such as SQA). - column_ranks: indicate the rank of a table token relative to a column, if applicable. For example, if you have a column "number of movies" with values 87, 53 and 69, then the column ranks of these tokens are 3, 1 and 2 respectively. 0 for all question tokens, special tokens and padding. - inv_column_ranks: indicate the inverse rank of a table token relative to a column, if applicable. For example, if you have a column "number of movies" with values 87, 53 and 69, then the inverse column ranks of these tokens are 1, 3 and 2 respectively. 0 for all question tokens, special tokens and padding. - numeric_relations: indicate numeric relations between the question and the tokens of the table. 0 for all question tokens, special tokens and padding. [`TapasTokenizer`] runs end-to-end tokenization on a table and associated sentences: punctuation splitting and wordpiece. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. do_basic_tokenize (`bool`, *optional*, defaults to `True`): Whether or not to do basic tokenization before WordPiece. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. empty_token (`str`, *optional*, defaults to `"[EMPTY]"`): The token used for empty cell values in a table. Empty cell values include "", "n/a", "nan" and "?". tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). cell_trim_length (`int`, *optional*, defaults to -1): If > 0: Trim cells so that the length is <= this value. Also disables further cell trimming, should thus be used with `truncation` set to `True`. max_column_id (`int`, *optional*): Max column id to extract. max_row_id (`int`, *optional*): Max row id to extract. strip_column_names (`bool`, *optional*, defaults to `False`): Whether to add empty strings instead of column names. update_answer_coordinates (`bool`, *optional*, defaults to `False`): Whether to recompute the answer coordinates from the answer text. min_question_length (`int`, *optional*): Minimum length of each question in terms of tokens (will be skipped otherwise). max_question_length (`int`, *optional*): Maximum length of each question in terms of tokens (will be skipped otherwise). clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`): Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like extra spaces. """ vocab_files_names = VOCAB_FILES_NAMES def __init__( self, vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", empty_token="[EMPTY]", tokenize_chinese_chars=True, strip_accents=None, cell_trim_length: int = -1, max_column_id: int = None, max_row_id: int = None, strip_column_names: bool = False, update_answer_coordinates: bool = False, min_question_length=None, max_question_length=None, model_max_length: int = 512, additional_special_tokens: Optional[List[str]] = None, clean_up_tokenization_spaces=True, **kwargs, ): if not is_pandas_available(): raise ImportError("Pandas is required for the TAPAS tokenizer.") if additional_special_tokens is not None: if empty_token not in additional_special_tokens: additional_special_tokens.append(empty_token) else: additional_special_tokens = [empty_token] if not os.path.isfile(vocab_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.vocab = load_vocab(vocab_file) self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) self.do_basic_tokenize = do_basic_tokenize if do_basic_tokenize: self.basic_tokenizer = BasicTokenizer( do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, ) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token)) # Additional properties self.cell_trim_length = cell_trim_length self.max_column_id = ( max_column_id if max_column_id is not None else model_max_length if model_max_length is not None else VERY_LARGE_INTEGER ) self.max_row_id = ( max_row_id if max_row_id is not None else model_max_length if model_max_length is not None else VERY_LARGE_INTEGER ) self.strip_column_names = strip_column_names self.update_answer_coordinates = update_answer_coordinates self.min_question_length = min_question_length self.max_question_length = max_question_length super().__init__( do_lower_case=do_lower_case, do_basic_tokenize=do_basic_tokenize, never_split=never_split, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, empty_token=empty_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, cell_trim_length=cell_trim_length, max_column_id=max_column_id, max_row_id=max_row_id, strip_column_names=strip_column_names, update_answer_coordinates=update_answer_coordinates, min_question_length=min_question_length, max_question_length=max_question_length, model_max_length=model_max_length, additional_special_tokens=additional_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs, ) @property def do_lower_case(self): return self.basic_tokenizer.do_lower_case @property def vocab_size(self): return len(self.vocab) def get_vocab(self): return dict(self.vocab, **self.added_tokens_encoder) def _tokenize(self, text): if format_text(text) == EMPTY_TEXT: return [self.additional_special_tokens[0]] split_tokens = [] if self.do_basic_tokenize: for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens): # If the token is part of the never_split set if token in self.basic_tokenizer.never_split: split_tokens.append(token) else: split_tokens += self.wordpiece_tokenizer.tokenize(token) else: split_tokens = self.wordpiece_tokenizer.tokenize(text) return split_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.ids_to_tokens.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = " ".join(tokens).replace(" ##", "").strip() return out_string def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: index = 0 if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(token + "\n") index += 1 return (vocab_file,) def create_attention_mask_from_sequences(self, query_ids: List[int], table_values: List[TableValue]) -> List[int]: """ Creates the attention mask according to the query token IDs and a list of table values. Args: query_ids (`List[int]`): list of token IDs corresponding to the ID. table_values (`List[TableValue]`): lift of table values, which are named tuples containing the token value, the column ID and the row ID of said token. Returns: `List[int]`: List of ints containing the attention mask values. """ return [1] * (1 + len(query_ids) + 1 + len(table_values)) def create_segment_token_type_ids_from_sequences( self, query_ids: List[int], table_values: List[TableValue] ) -> List[int]: """ Creates the segment token type IDs according to the query token IDs and a list of table values. Args: query_ids (`List[int]`): list of token IDs corresponding to the ID. table_values (`List[TableValue]`): lift of table values, which are named tuples containing the token value, the column ID and the row ID of said token. Returns: `List[int]`: List of ints containing the segment token type IDs values. """ table_ids = list(zip(*table_values))[0] if table_values else [] return [0] * (1 + len(query_ids) + 1) + [1] * len(table_ids) def create_column_token_type_ids_from_sequences( self, query_ids: List[int], table_values: List[TableValue] ) -> List[int]: """ Creates the column token type IDs according to the query token IDs and a list of table values. Args: query_ids (`List[int]`): list of token IDs corresponding to the ID. table_values (`List[TableValue]`): lift of table values, which are named tuples containing the token value, the column ID and the row ID of said token. Returns: `List[int]`: List of ints containing the column token type IDs values. """ table_column_ids = list(zip(*table_values))[1] if table_values else [] return [0] * (1 + len(query_ids) + 1) + list(table_column_ids) def create_row_token_type_ids_from_sequences( self, query_ids: List[int], table_values: List[TableValue] ) -> List[int]: """ Creates the row token type IDs according to the query token IDs and a list of table values. Args: query_ids (`List[int]`): list of token IDs corresponding to the ID. table_values (`List[TableValue]`): lift of table values, which are named tuples containing the token value, the column ID and the row ID of said token. Returns: `List[int]`: List of ints containing the row token type IDs values. """ table_row_ids = list(zip(*table_values))[2] if table_values else [] return [0] * (1 + len(query_ids) + 1) + list(table_row_ids) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a question and flattened table for question answering or sequence classification tasks by concatenating and adding special tokens. Args: token_ids_0 (`List[int]`): The ids of the question. token_ids_1 (`List[int]`, *optional*): The ids of the flattened table. Returns: `List[int]`: The model input with special tokens. """ if token_ids_1 is None: raise ValueError("With TAPAS, you must provide both question IDs and table IDs.") return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + token_ids_1 def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of question IDs. token_ids_1 (`List[int]`, *optional*): List of flattened table IDs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) return [1] + ([0] * len(token_ids_0)) + [1] @add_end_docstrings(TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def __call__( self, table: "pd.DataFrame", queries: Optional[ Union[ TextInput, PreTokenizedInput, EncodedInput, List[TextInput], List[PreTokenizedInput], List[EncodedInput], ] ] = None, answer_coordinates: Optional[Union[List[Tuple], List[List[Tuple]]]] = None, answer_text: Optional[Union[List[TextInput], List[List[TextInput]]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TapasTruncationStrategy] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Main method to tokenize and prepare for the model one or several sequence(s) related to a table. Args: table (`pd.DataFrame`): Table containing tabular data. Note that all cell values must be text. Use *.astype(str)* on a Pandas dataframe to convert it to string. queries (`str` or `List[str]`): Question or batch of questions related to a table to be encoded. Note that in case of a batch, all questions must refer to the **same** table. answer_coordinates (`List[Tuple]` or `List[List[Tuple]]`, *optional*): Answer coordinates of each table-question pair in the batch. In case only a single table-question pair is provided, then the answer_coordinates must be a single list of one or more tuples. Each tuple must be a (row_index, column_index) pair. The first data row (not the column header row) has index 0. The first column has index 0. In case a batch of table-question pairs is provided, then the answer_coordinates must be a list of lists of tuples (each list corresponding to a single table-question pair). answer_text (`List[str]` or `List[List[str]]`, *optional*): Answer text of each table-question pair in the batch. In case only a single table-question pair is provided, then the answer_text must be a single list of one or more strings. Each string must be the answer text of a corresponding answer coordinate. In case a batch of table-question pairs is provided, then the answer_coordinates must be a list of lists of strings (each list corresponding to a single table-question pair). """ assert isinstance(table, pd.DataFrame), "Table must be of type pd.DataFrame" # Input type checking for clearer error valid_query = False # Check that query has a valid type if queries is None or isinstance(queries, str): valid_query = True elif isinstance(queries, (list, tuple)): if len(queries) == 0 or isinstance(queries[0], str): valid_query = True if not valid_query: raise ValueError( "queries input must of type `str` (single example), `List[str]` (batch or single pretokenized" " example). " ) is_batched = isinstance(queries, (list, tuple)) if is_batched: return self.batch_encode_plus( table=table, queries=queries, answer_coordinates=answer_coordinates, answer_text=answer_text, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: return self.encode_plus( table=table, query=queries, answer_coordinates=answer_coordinates, answer_text=answer_text, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def batch_encode_plus( self, table: "pd.DataFrame", queries: Optional[ Union[ List[TextInput], List[PreTokenizedInput], List[EncodedInput], ] ] = None, answer_coordinates: Optional[List[List[Tuple]]] = None, answer_text: Optional[List[List[TextInput]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TapasTruncationStrategy] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Prepare a table and a list of strings for the model. <Tip warning={true}> This method is deprecated, `__call__` should be used instead. </Tip> Args: table (`pd.DataFrame`): Table containing tabular data. Note that all cell values must be text. Use *.astype(str)* on a Pandas dataframe to convert it to string. queries (`List[str]`): Batch of questions related to a table to be encoded. Note that all questions must refer to the **same** table. answer_coordinates (`List[Tuple]` or `List[List[Tuple]]`, *optional*): Answer coordinates of each table-question pair in the batch. Each tuple must be a (row_index, column_index) pair. The first data row (not the column header row) has index 0. The first column has index 0. The answer_coordinates must be a list of lists of tuples (each list corresponding to a single table-question pair). answer_text (`List[str]` or `List[List[str]]`, *optional*): Answer text of each table-question pair in the batch. In case a batch of table-question pairs is provided, then the answer_coordinates must be a list of lists of strings (each list corresponding to a single table-question pair). Each string must be the answer text of a corresponding answer coordinate. """ if return_token_type_ids is not None and not add_special_tokens: raise ValueError( "Asking to return token_type_ids while setting add_special_tokens to False " "results in an undefined behavior. Please set add_special_tokens to True or " "set return_token_type_ids to None." ) if (answer_coordinates and not answer_text) or (not answer_coordinates and answer_text): raise ValueError("In case you provide answers, both answer_coordinates and answer_text should be provided") elif answer_coordinates is None and answer_text is None: answer_coordinates = answer_text = [None] * len(queries) if "is_split_into_words" in kwargs: raise NotImplementedError("Currently TapasTokenizer only supports questions as strings.") if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast." ) return self._batch_encode_plus( table=table, queries=queries, answer_coordinates=answer_coordinates, answer_text=answer_text, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _get_question_tokens(self, query): """Tokenizes the query, taking into account the max and min question length.""" query_tokens = self.tokenize(query) if self.max_question_length is not None and len(query_tokens) > self.max_question_length: logger.warning("Skipping query as its tokens are longer than the max question length") return "", [] if self.min_question_length is not None and len(query_tokens) < self.min_question_length: logger.warning("Skipping query as its tokens are shorter than the min question length") return "", [] return query, query_tokens def _batch_encode_plus( self, table, queries: Union[ List[TextInput], List[PreTokenizedInput], List[EncodedInput], ], answer_coordinates: Optional[List[List[Tuple]]] = None, answer_text: Optional[List[List[TextInput]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TapasTruncationStrategy] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = True, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: table_tokens = self._tokenize_table(table) queries_tokens = [] for idx, query in enumerate(queries): query, query_tokens = self._get_question_tokens(query) queries[idx] = query queries_tokens.append(query_tokens) batch_outputs = self._batch_prepare_for_model( table, queries, tokenized_table=table_tokens, queries_tokens=queries_tokens, answer_coordinates=answer_coordinates, padding=padding, truncation=truncation, answer_text=answer_text, add_special_tokens=add_special_tokens, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, prepend_batch_axis=True, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, verbose=verbose, ) return BatchEncoding(batch_outputs) def _batch_prepare_for_model( self, raw_table: "pd.DataFrame", raw_queries: Union[ List[TextInput], List[PreTokenizedInput], List[EncodedInput], ], tokenized_table: Optional[TokenizedTable] = None, queries_tokens: Optional[List[List[str]]] = None, answer_coordinates: Optional[List[List[Tuple]]] = None, answer_text: Optional[List[List[TextInput]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TapasTruncationStrategy] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = True, return_attention_mask: Optional[bool] = True, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, prepend_batch_axis: bool = False, **kwargs, ) -> BatchEncoding: batch_outputs = {} for index, example in enumerate(zip(raw_queries, queries_tokens, answer_coordinates, answer_text)): raw_query, query_tokens, answer_coords, answer_txt = example outputs = self.prepare_for_model( raw_table, raw_query, tokenized_table=tokenized_table, query_tokens=query_tokens, answer_coordinates=answer_coords, answer_text=answer_txt, add_special_tokens=add_special_tokens, padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterwards truncation=truncation, max_length=max_length, pad_to_multiple_of=None, # we pad in batch afterwards padding_side=None, # we pad in batch afterward return_attention_mask=False, # we pad in batch afterwards return_token_type_ids=return_token_type_ids, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=None, # We convert the whole batch to tensors at the end prepend_batch_axis=False, verbose=verbose, prev_answer_coordinates=answer_coordinates[index - 1] if index != 0 else None, prev_answer_text=answer_text[index - 1] if index != 0 else None, ) for key, value in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) batch_outputs = self.pad( batch_outputs, padding=padding, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_attention_mask=return_attention_mask, ) batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) return batch_outputs @add_end_docstrings(ENCODE_KWARGS_DOCSTRING) def encode( self, table: "pd.DataFrame", query: Optional[ Union[ TextInput, PreTokenizedInput, EncodedInput, ] ] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TapasTruncationStrategy] = False, max_length: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs, ) -> List[int]: """ Prepare a table and a string for the model. This method does not return token type IDs, attention masks, etc. which are necessary for the model to work correctly. Use that method if you want to build your processing on your own, otherwise refer to `__call__`. Args: table (`pd.DataFrame`): Table containing tabular data. Note that all cell values must be text. Use *.astype(str)* on a Pandas dataframe to convert it to string. query (`str` or `List[str]`): Question related to a table to be encoded. """ encoded_inputs = self.encode_plus( table, query=query, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors, **kwargs, ) return encoded_inputs["input_ids"] @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def encode_plus( self, table: "pd.DataFrame", query: Optional[ Union[ TextInput, PreTokenizedInput, EncodedInput, ] ] = None, answer_coordinates: Optional[List[Tuple]] = None, answer_text: Optional[List[TextInput]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TapasTruncationStrategy] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Prepare a table and a string for the model. Args: table (`pd.DataFrame`): Table containing tabular data. Note that all cell values must be text. Use *.astype(str)* on a Pandas dataframe to convert it to string. query (`str` or `List[str]`): Question related to a table to be encoded. answer_coordinates (`List[Tuple]` or `List[List[Tuple]]`, *optional*): Answer coordinates of each table-question pair in the batch. The answer_coordinates must be a single list of one or more tuples. Each tuple must be a (row_index, column_index) pair. The first data row (not the column header row) has index 0. The first column has index 0. answer_text (`List[str]` or `List[List[str]]`, *optional*): Answer text of each table-question pair in the batch. The answer_text must be a single list of one or more strings. Each string must be the answer text of a corresponding answer coordinate. """ if return_token_type_ids is not None and not add_special_tokens: raise ValueError( "Asking to return token_type_ids while setting add_special_tokens to False " "results in an undefined behavior. Please set add_special_tokens to True or " "set return_token_type_ids to None." ) if (answer_coordinates and not answer_text) or (not answer_coordinates and answer_text): raise ValueError("In case you provide answers, both answer_coordinates and answer_text should be provided") if "is_split_into_words" in kwargs: raise NotImplementedError("Currently TapasTokenizer only supports questions as strings.") if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast." ) return self._encode_plus( table=table, query=query, answer_coordinates=answer_coordinates, answer_text=answer_text, add_special_tokens=add_special_tokens, truncation=truncation, padding=padding, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _encode_plus( self, table: "pd.DataFrame", query: Union[ TextInput, PreTokenizedInput, EncodedInput, ], answer_coordinates: Optional[List[Tuple]] = None, answer_text: Optional[List[TextInput]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TapasTruncationStrategy] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = True, return_attention_mask: Optional[bool] = True, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ): if query is None: query = "" logger.warning( "TAPAS is a question answering model but you have not passed a query. Please be aware that the " "model will probably not behave correctly." ) table_tokens = self._tokenize_table(table) query, query_tokens = self._get_question_tokens(query) return self.prepare_for_model( table, query, tokenized_table=table_tokens, query_tokens=query_tokens, answer_coordinates=answer_coordinates, answer_text=answer_text, add_special_tokens=add_special_tokens, truncation=truncation, padding=padding, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, prepend_batch_axis=True, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, verbose=verbose, ) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def prepare_for_model( self, raw_table: "pd.DataFrame", raw_query: Union[ TextInput, PreTokenizedInput, EncodedInput, ], tokenized_table: Optional[TokenizedTable] = None, query_tokens: Optional[TokenizedTable] = None, answer_coordinates: Optional[List[Tuple]] = None, answer_text: Optional[List[TextInput]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TapasTruncationStrategy] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = True, return_attention_mask: Optional[bool] = True, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, prepend_batch_axis: bool = False, **kwargs, ) -> BatchEncoding: """ Prepares a sequence of input id so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens. Args: raw_table (`pd.DataFrame`): The original table before any transformation (like tokenization) was applied to it. raw_query (`TextInput` or `PreTokenizedInput` or `EncodedInput`): The original query before any transformation (like tokenization) was applied to it. tokenized_table (`TokenizedTable`): The table after tokenization. query_tokens (`List[str]`): The query after tokenization. answer_coordinates (`List[Tuple]` or `List[List[Tuple]]`, *optional*): Answer coordinates of each table-question pair in the batch. The answer_coordinates must be a single list of one or more tuples. Each tuple must be a (row_index, column_index) pair. The first data row (not the column header row) has index 0. The first column has index 0. answer_text (`List[str]` or `List[List[str]]`, *optional*): Answer text of each table-question pair in the batch. The answer_text must be a single list of one or more strings. Each string must be the answer text of a corresponding answer coordinate. """ if isinstance(padding, bool): if padding and (max_length is not None or pad_to_multiple_of is not None): padding = PaddingStrategy.MAX_LENGTH else: padding = PaddingStrategy.DO_NOT_PAD elif not isinstance(padding, PaddingStrategy): padding = PaddingStrategy(padding) if isinstance(truncation, bool): if truncation: truncation = TapasTruncationStrategy.DROP_ROWS_TO_FIT else: truncation = TapasTruncationStrategy.DO_NOT_TRUNCATE elif not isinstance(truncation, TapasTruncationStrategy): truncation = TapasTruncationStrategy(truncation) encoded_inputs = {} is_part_of_batch = False prev_answer_coordinates, prev_answer_text = None, None if "prev_answer_coordinates" in kwargs and "prev_answer_text" in kwargs: is_part_of_batch = True prev_answer_coordinates = kwargs["prev_answer_coordinates"] prev_answer_text = kwargs["prev_answer_text"] num_rows = self._get_num_rows(raw_table, truncation != TapasTruncationStrategy.DO_NOT_TRUNCATE) num_columns = self._get_num_columns(raw_table) _, _, num_tokens = self._get_table_boundaries(tokenized_table) if truncation != TapasTruncationStrategy.DO_NOT_TRUNCATE: num_rows, num_tokens = self._get_truncated_table_rows( query_tokens, tokenized_table, num_rows, num_columns, max_length, truncation_strategy=truncation ) table_data = list(self._get_table_values(tokenized_table, num_columns, num_rows, num_tokens)) query_ids = self.convert_tokens_to_ids(query_tokens) table_ids = list(zip(*table_data))[0] if len(table_data) > 0 else list(zip(*table_data)) table_ids = self.convert_tokens_to_ids(list(table_ids)) if "return_overflowing_tokens" in kwargs and kwargs["return_overflowing_tokens"]: raise ValueError("TAPAS does not return overflowing tokens as it works on tables.") if add_special_tokens: input_ids = self.build_inputs_with_special_tokens(query_ids, table_ids) else: input_ids = query_ids + table_ids if max_length is not None and len(input_ids) > max_length: raise ValueError( "Could not encode the query and table header given the maximum length. Encoding the query and table " f"header results in a length of {len(input_ids)} which is higher than the max_length of {max_length}" ) encoded_inputs["input_ids"] = input_ids segment_ids = self.create_segment_token_type_ids_from_sequences(query_ids, table_data) column_ids = self.create_column_token_type_ids_from_sequences(query_ids, table_data) row_ids = self.create_row_token_type_ids_from_sequences(query_ids, table_data) if not is_part_of_batch or (prev_answer_coordinates is None and prev_answer_text is None): # simply set the prev_labels to zeros prev_labels = [0] * len(row_ids) else: prev_labels = self.get_answer_ids( column_ids, row_ids, table_data, prev_answer_text, prev_answer_coordinates ) # FIRST: parse both the table and question in terms of numeric values raw_table = add_numeric_table_values(raw_table) raw_query = add_numeric_values_to_question(raw_query) # SECOND: add numeric-related features (and not parse them in these functions): column_ranks, inv_column_ranks = self._get_numeric_column_ranks(column_ids, row_ids, raw_table) numeric_relations = self._get_numeric_relations(raw_query, column_ids, row_ids, raw_table) # Load from model defaults if return_token_type_ids is None: return_token_type_ids = "token_type_ids" in self.model_input_names if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names if return_attention_mask: attention_mask = self.create_attention_mask_from_sequences(query_ids, table_data) encoded_inputs["attention_mask"] = attention_mask if answer_coordinates is not None and answer_text is not None: labels = self.get_answer_ids(column_ids, row_ids, table_data, answer_text, answer_coordinates) numeric_values = self._get_numeric_values(raw_table, column_ids, row_ids) numeric_values_scale = self._get_numeric_values_scale(raw_table, column_ids, row_ids) encoded_inputs["labels"] = labels encoded_inputs["numeric_values"] = numeric_values encoded_inputs["numeric_values_scale"] = numeric_values_scale if return_token_type_ids: token_type_ids = [ segment_ids, column_ids, row_ids, prev_labels, column_ranks, inv_column_ranks, numeric_relations, ] token_type_ids = [list(ids) for ids in list(zip(*token_type_ids))] encoded_inputs["token_type_ids"] = token_type_ids if return_special_tokens_mask: if add_special_tokens: encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(query_ids, table_ids) else: encoded_inputs["special_tokens_mask"] = [0] * len(input_ids) # Check lengths if max_length is None and len(encoded_inputs["input_ids"]) > self.model_max_length and verbose: if not self.deprecation_warnings.get("sequence-length-is-longer-than-the-specified-maximum", False): logger.warning( "Token indices sequence length is longer than the specified maximum sequence length " f"for this model ({len(encoded_inputs['input_ids'])} > {self.model_max_length}). Running this " "sequence through the model will result in indexing errors." ) self.deprecation_warnings["sequence-length-is-longer-than-the-specified-maximum"] = True # Padding if padding != PaddingStrategy.DO_NOT_PAD or return_attention_mask: encoded_inputs = self.pad( encoded_inputs, max_length=max_length, padding=padding.value, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_attention_mask=return_attention_mask, ) if return_length: encoded_inputs["length"] = len(encoded_inputs["input_ids"]) batch_outputs = BatchEncoding( encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis ) return batch_outputs def _get_truncated_table_rows( self, query_tokens: List[str], tokenized_table: TokenizedTable, num_rows: int, num_columns: int, max_length: int, truncation_strategy: Union[str, TapasTruncationStrategy], ) -> Tuple[int, int]: """ Truncates a sequence pair in-place following the strategy. Args: query_tokens (`List[str]`): List of strings corresponding to the tokenized query. tokenized_table (`TokenizedTable`): Tokenized table num_rows (`int`): Total number of table rows num_columns (`int`): Total number of table columns max_length (`int`): Total maximum length. truncation_strategy (`str` or [`TapasTruncationStrategy]`): Truncation strategy to use. Seeing as this method should only be called when truncating, the only available strategy is the `"drop_rows_to_fit"` strategy. Returns: `Tuple(int, int)`: tuple containing the number of rows after truncation, and the number of tokens available for each table element. """ if not isinstance(truncation_strategy, TapasTruncationStrategy): truncation_strategy = TapasTruncationStrategy(truncation_strategy) if max_length is None: max_length = self.model_max_length if truncation_strategy == TapasTruncationStrategy.DROP_ROWS_TO_FIT: while True: num_tokens = self._get_max_num_tokens( query_tokens, tokenized_table, num_rows=num_rows, num_columns=num_columns, max_length=max_length ) if num_tokens is not None: # We could fit the table. break # Try to drop a row to fit the table. num_rows -= 1 if num_rows < 1: break elif truncation_strategy != TapasTruncationStrategy.DO_NOT_TRUNCATE: raise ValueError(f"Unknown truncation strategy {truncation_strategy}.") return num_rows, num_tokens or 1 def _tokenize_table( self, table=None, ): """ Tokenizes column headers and cell texts of a table. Args: table (`pd.Dataframe`): Table. Returns: `TokenizedTable`: TokenizedTable object. """ tokenized_rows = [] tokenized_row = [] # tokenize column headers for column in table: if self.strip_column_names: tokenized_row.append(self.tokenize("")) else: tokenized_row.append(self.tokenize(column)) tokenized_rows.append(tokenized_row) # tokenize cell values for idx, row in table.iterrows(): tokenized_row = [] for cell in row: tokenized_row.append(self.tokenize(cell)) tokenized_rows.append(tokenized_row) token_coordinates = [] for row_index, row in enumerate(tokenized_rows): for column_index, cell in enumerate(row): for token_index, _ in enumerate(cell): token_coordinates.append( TokenCoordinates( row_index=row_index, column_index=column_index, token_index=token_index, ) ) return TokenizedTable( rows=tokenized_rows, selected_tokens=token_coordinates, ) def _question_encoding_cost(self, question_tokens): # Two extra spots of SEP and CLS. return len(question_tokens) + 2 def _get_token_budget(self, question_tokens, max_length=None): """ Computes the number of tokens left for the table after tokenizing a question, taking into account the max sequence length of the model. Args: question_tokens (`List[String]`): List of question tokens. Returns: `int`: the number of tokens left for the table, given the model max length. """ return (max_length if max_length is not None else self.model_max_length) - self._question_encoding_cost( question_tokens ) def _get_table_values(self, table, num_columns, num_rows, num_tokens) -> Generator[TableValue, None, None]: """Iterates over partial table and returns token, column and row indexes.""" for tc in table.selected_tokens: # First row is header row. if tc.row_index >= num_rows + 1: continue if tc.column_index >= num_columns: continue cell = table.rows[tc.row_index][tc.column_index] token = cell[tc.token_index] word_begin_index = tc.token_index # Don't add partial words. Find the starting word piece and check if it # fits in the token budget. while word_begin_index >= 0 and _is_inner_wordpiece(cell[word_begin_index]): word_begin_index -= 1 if word_begin_index >= num_tokens: continue yield TableValue(token, tc.column_index + 1, tc.row_index) def _get_table_boundaries(self, table): """Return maximal number of rows, columns and tokens.""" max_num_tokens = 0 max_num_columns = 0 max_num_rows = 0 for tc in table.selected_tokens: max_num_columns = max(max_num_columns, tc.column_index + 1) max_num_rows = max(max_num_rows, tc.row_index + 1) max_num_tokens = max(max_num_tokens, tc.token_index + 1) max_num_columns = min(self.max_column_id, max_num_columns) max_num_rows = min(self.max_row_id, max_num_rows) return max_num_rows, max_num_columns, max_num_tokens def _get_table_cost(self, table, num_columns, num_rows, num_tokens): return sum(1 for _ in self._get_table_values(table, num_columns, num_rows, num_tokens)) def _get_max_num_tokens(self, question_tokens, tokenized_table, num_columns, num_rows, max_length): """Computes max number of tokens that can be squeezed into the budget.""" token_budget = self._get_token_budget(question_tokens, max_length) _, _, max_num_tokens = self._get_table_boundaries(tokenized_table) if self.cell_trim_length >= 0 and max_num_tokens > self.cell_trim_length: max_num_tokens = self.cell_trim_length num_tokens = 0 for num_tokens in range(max_num_tokens + 1): cost = self._get_table_cost(tokenized_table, num_columns, num_rows, num_tokens + 1) if cost > token_budget: break if num_tokens < max_num_tokens: if self.cell_trim_length >= 0: # We don't allow dynamic trimming if a cell_trim_length is set. return None if num_tokens == 0: return None return num_tokens def _get_num_columns(self, table): num_columns = table.shape[1] if num_columns >= self.max_column_id: raise ValueError("Too many columns") return num_columns def _get_num_rows(self, table, drop_rows_to_fit): num_rows = table.shape[0] if num_rows >= self.max_row_id: if drop_rows_to_fit: num_rows = self.max_row_id - 1 else: raise ValueError("Too many rows") return num_rows def _serialize_text(self, question_tokens): """Serializes texts in index arrays.""" tokens = [] segment_ids = [] column_ids = [] row_ids = [] # add [CLS] token at the beginning tokens.append(self.cls_token) segment_ids.append(0) column_ids.append(0) row_ids.append(0) for token in question_tokens: tokens.append(token) segment_ids.append(0) column_ids.append(0) row_ids.append(0) return tokens, segment_ids, column_ids, row_ids def _serialize( self, question_tokens, table, num_columns, num_rows, num_tokens, ): """Serializes table and text.""" tokens, segment_ids, column_ids, row_ids = self._serialize_text(question_tokens) # add [SEP] token between question and table tokens tokens.append(self.sep_token) segment_ids.append(0) column_ids.append(0) row_ids.append(0) for token, column_id, row_id in self._get_table_values(table, num_columns, num_rows, num_tokens): tokens.append(token) segment_ids.append(1) column_ids.append(column_id) row_ids.append(row_id) return SerializedExample( tokens=tokens, segment_ids=segment_ids, column_ids=column_ids, row_ids=row_ids, ) def _get_column_values(self, table, col_index): table_numeric_values = {} for row_index, row in table.iterrows(): cell = row[col_index] if cell.numeric_value is not None: table_numeric_values[row_index] = cell.numeric_value return table_numeric_values def _get_cell_token_indexes(self, column_ids, row_ids, column_id, row_id): for index in range(len(column_ids)): if column_ids[index] - 1 == column_id and row_ids[index] - 1 == row_id: yield index def _get_numeric_column_ranks(self, column_ids, row_ids, table): """Returns column ranks for all numeric columns.""" ranks = [0] * len(column_ids) inv_ranks = [0] * len(column_ids) # original code from tf_example_utils.py of the original implementation if table is not None: for col_index in range(len(table.columns)): table_numeric_values = self._get_column_values(table, col_index) if not table_numeric_values: continue try: key_fn = get_numeric_sort_key_fn(table_numeric_values.values()) except ValueError: continue table_numeric_values = {row_index: key_fn(value) for row_index, value in table_numeric_values.items()} table_numeric_values_inv = collections.defaultdict(list) for row_index, value in table_numeric_values.items(): table_numeric_values_inv[value].append(row_index) unique_values = sorted(table_numeric_values_inv.keys()) for rank, value in enumerate(unique_values): for row_index in table_numeric_values_inv[value]: for index in self._get_cell_token_indexes(column_ids, row_ids, col_index, row_index): ranks[index] = rank + 1 inv_ranks[index] = len(unique_values) - rank return ranks, inv_ranks def _get_numeric_sort_key_fn(self, table_numeric_values, value): """ Returns the sort key function for comparing value to table values. The function returned will be a suitable input for the key param of the sort(). See number_annotation_utils._get_numeric_sort_key_fn for details Args: table_numeric_values: Numeric values of a column value: Numeric value in the question Returns: A function key function to compare column and question values. """ if not table_numeric_values: return None all_values = list(table_numeric_values.values()) all_values.append(value) try: return get_numeric_sort_key_fn(all_values) except ValueError: return None def _get_numeric_relations(self, question, column_ids, row_ids, table): """ Returns numeric relations embeddings Args: question: Question object. column_ids: Maps word piece position to column id. row_ids: Maps word piece position to row id. table: The table containing the numeric cell values. """ numeric_relations = [0] * len(column_ids) # first, we add any numeric value spans to the question: # Create a dictionary that maps a table cell to the set of all relations # this cell has with any value in the question. cell_indices_to_relations = collections.defaultdict(set) if question is not None and table is not None: for numeric_value_span in question.numeric_spans: for value in numeric_value_span.values: for column_index in range(len(table.columns)): table_numeric_values = self._get_column_values(table, column_index) sort_key_fn = self._get_numeric_sort_key_fn(table_numeric_values, value) if sort_key_fn is None: continue for row_index, cell_value in table_numeric_values.items(): relation = get_numeric_relation(value, cell_value, sort_key_fn) if relation is not None: cell_indices_to_relations[column_index, row_index].add(relation) # For each cell add a special feature for all its word pieces. for (column_index, row_index), relations in cell_indices_to_relations.items(): relation_set_index = 0 for relation in relations: assert relation.value >= Relation.EQ.value relation_set_index += 2 ** (relation.value - Relation.EQ.value) for cell_token_index in self._get_cell_token_indexes(column_ids, row_ids, column_index, row_index): numeric_relations[cell_token_index] = relation_set_index return numeric_relations def _get_numeric_values(self, table, column_ids, row_ids): """Returns numeric values for computation of answer loss.""" numeric_values = [float("nan")] * len(column_ids) if table is not None: num_rows = table.shape[0] num_columns = table.shape[1] for col_index in range(num_columns): for row_index in range(num_rows): numeric_value = table.iloc[row_index, col_index].numeric_value if numeric_value is not None: if numeric_value.float_value is None: continue float_value = numeric_value.float_value if float_value == float("inf"): continue for index in self._get_cell_token_indexes(column_ids, row_ids, col_index, row_index): numeric_values[index] = float_value return numeric_values def _get_numeric_values_scale(self, table, column_ids, row_ids): """Returns a scale to each token to down weigh the value of long words.""" numeric_values_scale = [1.0] * len(column_ids) if table is None: return numeric_values_scale num_rows = table.shape[0] num_columns = table.shape[1] for col_index in range(num_columns): for row_index in range(num_rows): indices = list(self._get_cell_token_indexes(column_ids, row_ids, col_index, row_index)) num_indices = len(indices) if num_indices > 1: for index in indices: numeric_values_scale[index] = float(num_indices) return numeric_values_scale def _pad_to_seq_length(self, inputs): while len(inputs) > self.model_max_length: inputs.pop() while len(inputs) < self.model_max_length: inputs.append(0) def _get_all_answer_ids_from_coordinates( self, column_ids, row_ids, answers_list, ): """Maps lists of answer coordinates to token indexes.""" answer_ids = [0] * len(column_ids) found_answers = set() all_answers = set() for answers in answers_list: column_index, row_index = answers all_answers.add((column_index, row_index)) for index in self._get_cell_token_indexes(column_ids, row_ids, column_index, row_index): found_answers.add((column_index, row_index)) answer_ids[index] = 1 missing_count = len(all_answers) - len(found_answers) return answer_ids, missing_count def _get_all_answer_ids(self, column_ids, row_ids, answer_coordinates): """ Maps answer coordinates of a question to token indexes. In the SQA format (TSV), the coordinates are given as (row, column) tuples. Here, we first swap them to (column, row) format before calling _get_all_answer_ids_from_coordinates. """ def _to_coordinates(answer_coordinates_question): return [(coords[1], coords[0]) for coords in answer_coordinates_question] return self._get_all_answer_ids_from_coordinates( column_ids, row_ids, answers_list=(_to_coordinates(answer_coordinates)) ) def _find_tokens(self, text, segment): """Return start index of segment in text or None.""" logging.info(f"text: {text} {segment}") for index in range(1 + len(text) - len(segment)): for seg_index, seg_token in enumerate(segment): if text[index + seg_index].piece != seg_token.piece: break else: return index return None def _find_answer_coordinates_from_answer_text( self, tokenized_table, answer_text, ): """Returns all occurrences of answer_text in the table.""" logging.info(f"answer text: {answer_text}") for row_index, row in enumerate(tokenized_table.rows): if row_index == 0: # We don't search for answers in the header. continue for col_index, cell in enumerate(row): token_index = self._find_tokens(cell, answer_text) if token_index is not None: yield TokenCoordinates( row_index=row_index, column_index=col_index, token_index=token_index, ) def _find_answer_ids_from_answer_texts( self, column_ids, row_ids, tokenized_table, answer_texts, ): """Maps question with answer texts to the first matching token indexes.""" answer_ids = [0] * len(column_ids) for answer_text in answer_texts: for coordinates in self._find_answer_coordinates_from_answer_text( tokenized_table, answer_text, ): # Maps answer coordinates to indexes this can fail if tokens / rows have # been pruned. indexes = list( self._get_cell_token_indexes( column_ids, row_ids, column_id=coordinates.column_index, row_id=coordinates.row_index - 1, ) ) indexes.sort() coordinate_answer_ids = [] if indexes: begin_index = coordinates.token_index + indexes[0] end_index = begin_index + len(answer_text) for index in indexes: if index >= begin_index and index < end_index: coordinate_answer_ids.append(index) if len(coordinate_answer_ids) == len(answer_text): for index in coordinate_answer_ids: answer_ids[index] = 1 break return answer_ids def _get_answer_ids(self, column_ids, row_ids, answer_coordinates): """Maps answer coordinates of a question to token indexes.""" answer_ids, missing_count = self._get_all_answer_ids(column_ids, row_ids, answer_coordinates) if missing_count: raise ValueError("Couldn't find all answers") return answer_ids def get_answer_ids(self, column_ids, row_ids, tokenized_table, answer_texts_question, answer_coordinates_question): if self.update_answer_coordinates: return self._find_answer_ids_from_answer_texts( column_ids, row_ids, tokenized_table, answer_texts=[self.tokenize(at) for at in answer_texts_question], ) return self._get_answer_ids(column_ids, row_ids, answer_coordinates_question) def _pad( self, encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], max_length: Optional[int] = None, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_attention_mask: Optional[bool] = None, ) -> dict: """ Pad encoded inputs (on left/right and up to predefined length or max length in the batch) Args: encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). max_length: maximum length of the returned list and optionally padding length (see below). Will truncate by taking into account the special tokens. padding_strategy: PaddingStrategy to use for padding. - PaddingStrategy.LONGEST Pad to the longest sequence in the batch - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) - PaddingStrategy.DO_NOT_PAD: Do not pad The tokenizer padding sides are defined in self.padding_side: - 'left': pads on the left of the sequences - 'right': pads on the right of the sequences pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta). padding_side: The side on which the model should have padding applied. Should be selected between ['right', 'left']. Default value is picked from the class attribute of the same name. return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics) """ # Load from model defaults if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names if padding_strategy == PaddingStrategy.LONGEST: max_length = len(encoded_inputs["input_ids"]) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of needs_to_be_padded = ( padding_strategy != PaddingStrategy.DO_NOT_PAD and len(encoded_inputs["input_ids"]) != max_length ) # Initialize attention mask if not present. if return_attention_mask and "attention_mask" not in encoded_inputs: encoded_inputs["attention_mask"] = [1] * len(encoded_inputs["input_ids"]) if needs_to_be_padded: difference = max_length - len(encoded_inputs["input_ids"]) padding_side = padding_side if padding_side is not None else self.padding_side if padding_side == "right": if return_attention_mask: encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = ( encoded_inputs["token_type_ids"] + [[self.pad_token_type_id] * 7] * difference ) if "labels" in encoded_inputs: encoded_inputs["labels"] = encoded_inputs["labels"] + [0] * difference if "numeric_values" in encoded_inputs: encoded_inputs["numeric_values"] = encoded_inputs["numeric_values"] + [float("nan")] * difference if "numeric_values_scale" in encoded_inputs: encoded_inputs["numeric_values_scale"] = ( encoded_inputs["numeric_values_scale"] + [1.0] * difference ) if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference encoded_inputs["input_ids"] = encoded_inputs["input_ids"] + [self.pad_token_id] * difference elif padding_side == "left": if return_attention_mask: encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = [[self.pad_token_type_id] * 7] * difference + encoded_inputs[ "token_type_ids" ] if "labels" in encoded_inputs: encoded_inputs["labels"] = [0] * difference + encoded_inputs["labels"] if "numeric_values" in encoded_inputs: encoded_inputs["numeric_values"] = [float("nan")] * difference + encoded_inputs["numeric_values"] if "numeric_values_scale" in encoded_inputs: encoded_inputs["numeric_values_scale"] = [1.0] * difference + encoded_inputs[ "numeric_values_scale" ] if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] encoded_inputs["input_ids"] = [self.pad_token_id] * difference + encoded_inputs["input_ids"] else: raise ValueError("Invalid padding strategy:" + str(padding_side)) return encoded_inputs # Everything related to converting logits to predictions def _get_cell_token_probs(self, probabilities, segment_ids, row_ids, column_ids): for i, p in enumerate(probabilities): segment_id = segment_ids[i] col = column_ids[i] - 1 row = row_ids[i] - 1 if col >= 0 and row >= 0 and segment_id == 1: yield i, p def _get_mean_cell_probs(self, probabilities, segment_ids, row_ids, column_ids): """Computes average probability per cell, aggregating over tokens.""" coords_to_probs = collections.defaultdict(list) for i, prob in self._get_cell_token_probs(probabilities, segment_ids, row_ids, column_ids): col = column_ids[i] - 1 row = row_ids[i] - 1 coords_to_probs[(col, row)].append(prob) return {coords: np.array(cell_probs).mean() for coords, cell_probs in coords_to_probs.items()} def convert_logits_to_predictions(self, data, logits, logits_agg=None, cell_classification_threshold=0.5): """ Converts logits of [`TapasForQuestionAnswering`] to actual predicted answer coordinates and optional aggregation indices. The original implementation, on which this function is based, can be found [here](https://github.com/google-research/tapas/blob/4908213eb4df7aa988573350278b44c4dbe3f71b/tapas/experiments/prediction_utils.py#L288). Args: data (`dict`): Dictionary mapping features to actual values. Should be created using [`TapasTokenizer`]. logits (`torch.Tensor` or `tf.Tensor` of shape `(batch_size, sequence_length)`): Tensor containing the logits at the token level. logits_agg (`torch.Tensor` or `tf.Tensor` of shape `(batch_size, num_aggregation_labels)`, *optional*): Tensor containing the aggregation logits. cell_classification_threshold (`float`, *optional*, defaults to 0.5): Threshold to be used for cell selection. All table cells for which their probability is larger than this threshold will be selected. Returns: `tuple` comprising various elements depending on the inputs: - predicted_answer_coordinates (`List[List[[tuple]]` of length `batch_size`): Predicted answer coordinates as a list of lists of tuples. Each element in the list contains the predicted answer coordinates of a single example in the batch, as a list of tuples. Each tuple is a cell, i.e. (row index, column index). - predicted_aggregation_indices (`List[int]`of length `batch_size`, *optional*, returned when `logits_aggregation` is provided): Predicted aggregation operator indices of the aggregation head. """ # converting to numpy arrays to work with PT/TF logits = logits.numpy() if logits_agg is not None: logits_agg = logits_agg.numpy() data = {key: value.numpy() for key, value in data.items() if key != "training"} # input data is of type float32 # np.log(np.finfo(np.float32).max) = 88.72284 # Any value over 88.72284 will overflow when passed through the exponential, sending a warning # We disable this warning by truncating the logits. logits[logits < -88.7] = -88.7 # Compute probabilities from token logits probabilities = 1 / (1 + np.exp(-logits)) * data["attention_mask"] token_types = [ "segment_ids", "column_ids", "row_ids", "prev_labels", "column_ranks", "inv_column_ranks", "numeric_relations", ] # collect input_ids, segment ids, row ids and column ids of batch. Shape (batch_size, seq_len) input_ids = data["input_ids"] segment_ids = data["token_type_ids"][:, :, token_types.index("segment_ids")] row_ids = data["token_type_ids"][:, :, token_types.index("row_ids")] column_ids = data["token_type_ids"][:, :, token_types.index("column_ids")] # next, get answer coordinates for every example in the batch num_batch = input_ids.shape[0] predicted_answer_coordinates = [] for i in range(num_batch): probabilities_example = probabilities[i].tolist() segment_ids_example = segment_ids[i] row_ids_example = row_ids[i] column_ids_example = column_ids[i] max_width = column_ids_example.max() max_height = row_ids_example.max() if max_width == 0 and max_height == 0: continue cell_coords_to_prob = self._get_mean_cell_probs( probabilities_example, segment_ids_example.tolist(), row_ids_example.tolist(), column_ids_example.tolist(), ) # Select the answers above the classification threshold. answer_coordinates = [] for col in range(max_width): for row in range(max_height): cell_prob = cell_coords_to_prob.get((col, row), None) if cell_prob is not None: if cell_prob > cell_classification_threshold: answer_coordinates.append((row, col)) answer_coordinates = sorted(answer_coordinates) predicted_answer_coordinates.append(answer_coordinates) output = (predicted_answer_coordinates,) if logits_agg is not None: predicted_aggregation_indices = logits_agg.argmax(axis=-1) output = (predicted_answer_coordinates, predicted_aggregation_indices.tolist()) return output # End of everything related to converting logits to predictions
class_definition
5,907
89,933
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/tokenization_tapas.py
null
5,338
class BasicTokenizer: """ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). Args: do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). do_split_on_punc (`bool`, *optional*, defaults to `True`): In some instances we want to skip the basic punctuation splitting so that later tokenization can capture the full context of the words, such as contractions. """ def __init__( self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None, do_split_on_punc=True, ): if never_split is None: never_split = [] self.do_lower_case = do_lower_case self.never_split = set(never_split) self.tokenize_chinese_chars = tokenize_chinese_chars self.strip_accents = strip_accents self.do_split_on_punc = do_split_on_punc def tokenize(self, text, never_split=None): """ Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. Args: never_split (`List[str]`, *optional*) Kept for backward compatibility purposes. Now implemented directly at the base class level (see [`PreTrainedTokenizer.tokenize`]) List of token not to split. """ # union() returns a new set by concatenating the two sets. never_split = self.never_split.union(set(never_split)) if never_split else self.never_split text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). if self.tokenize_chinese_chars: text = self._tokenize_chinese_chars(text) # prevents treating the same character with different unicode codepoints as different characters unicode_normalized_text = unicodedata.normalize("NFC", text) orig_tokens = whitespace_tokenize(unicode_normalized_text) split_tokens = [] for token in orig_tokens: if token not in never_split: if self.do_lower_case: token = token.lower() if self.strip_accents is not False: token = self._run_strip_accents(token) elif self.strip_accents: token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token, never_split)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text, never_split=None): """Splits punctuation on a piece of text.""" if not self.do_split_on_punc or (never_split is not None and text in never_split): return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xFFFD or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output)
class_definition
90,008
96,756
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/tokenization_tapas.py
null
5,339
class WordpieceTokenizer: """Runs WordPiece tokenization.""" def __init__(self, vocab, unk_token, max_input_chars_per_word=100): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. Args: text: A single token or whitespace separated tokens. This should have already been passed through *BasicTokenizer*. Returns: A list of wordpiece tokens. """ output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens
class_definition
96,835
98,723
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/tokenization_tapas.py
null
5,340
class Relation(enum.Enum): HEADER_TO_CELL = 1 # Connects header to cell. CELL_TO_HEADER = 2 # Connects cell to header. QUERY_TO_HEADER = 3 # Connects query to headers. QUERY_TO_CELL = 4 # Connects query to cells. ROW_TO_CELL = 5 # Connects row to cells. CELL_TO_ROW = 6 # Connects cells to row. EQ = 7 # Annotation value is same as cell value LT = 8 # Annotation value is less than cell value GT = 9 # Annotation value is greater than cell value
class_definition
99,320
99,810
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/tokenization_tapas.py
null
5,341
class Date: year: Optional[int] = None month: Optional[int] = None day: Optional[int] = None
class_definition
99,824
99,928
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/tokenization_tapas.py
null
5,342
class NumericValue: float_value: Optional[float] = None date: Optional[Date] = None
class_definition
99,942
100,033
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/tokenization_tapas.py
null
5,343
class NumericValueSpan: begin_index: int = None end_index: int = None values: List[NumericValue] = None
class_definition
100,047
100,162
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/tokenization_tapas.py
null
5,344
class Cell: text: str numeric_value: Optional[NumericValue] = None
class_definition
100,176
100,250
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/tokenization_tapas.py
null
5,345
class Question: original_text: str # The original raw question string. text: str # The question string after normalization. numeric_spans: Optional[List[NumericValueSpan]] = None
class_definition
100,264
100,456
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/tokenization_tapas.py
null
5,346
class TapasConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`TapasModel`]. It is used to instantiate a TAPAS model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the TAPAS [google/tapas-base-finetuned-sqa](https://huggingface.co/google/tapas-base-finetuned-sqa) architecture. Configuration objects inherit from [`PreTrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Hyperparameters additional to BERT are taken from run_task_main.py and hparam_utils.py of the original implementation. Original implementation available at https://github.com/google-research/tapas/tree/master. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the TAPAS model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`TapasModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"swish"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 1024): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_sizes (`List[int]`, *optional*, defaults to `[3, 256, 256, 2, 256, 256, 10]`): The vocabulary sizes of the `token_type_ids` passed when calling [`TapasModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. positive_label_weight (`float`, *optional*, defaults to 10.0): Weight for positive labels. num_aggregation_labels (`int`, *optional*, defaults to 0): The number of aggregation operators to predict. aggregation_loss_weight (`float`, *optional*, defaults to 1.0): Importance weight for the aggregation loss. use_answer_as_supervision (`bool`, *optional*): Whether to use the answer as the only supervision for aggregation examples. answer_loss_importance (`float`, *optional*, defaults to 1.0): Importance weight for the regression loss. use_normalized_answer_loss (`bool`, *optional*, defaults to `False`): Whether to normalize the answer loss by the maximum of the predicted and expected value. huber_loss_delta (`float`, *optional*): Delta parameter used to calculate the regression loss. temperature (`float`, *optional*, defaults to 1.0): Value used to control (OR change) the skewness of cell logits probabilities. aggregation_temperature (`float`, *optional*, defaults to 1.0): Scales aggregation logits to control the skewness of probabilities. use_gumbel_for_cells (`bool`, *optional*, defaults to `False`): Whether to apply Gumbel-Softmax to cell selection. use_gumbel_for_aggregation (`bool`, *optional*, defaults to `False`): Whether to apply Gumbel-Softmax to aggregation selection. average_approximation_function (`string`, *optional*, defaults to `"ratio"`): Method to calculate the expected average of cells in the weak supervision case. One of `"ratio"`, `"first_order"` or `"second_order"`. cell_selection_preference (`float`, *optional*): Preference for cell selection in ambiguous cases. Only applicable in case of weak supervision for aggregation (WTQ, WikiSQL). If the total mass of the aggregation probabilities (excluding the "NONE" operator) is higher than this hyperparameter, then aggregation is predicted for an example. answer_loss_cutoff (`float`, *optional*): Ignore examples with answer loss larger than cutoff. max_num_rows (`int`, *optional*, defaults to 64): Maximum number of rows. max_num_columns (`int`, *optional*, defaults to 32): Maximum number of columns. average_logits_per_cell (`bool`, *optional*, defaults to `False`): Whether to average logits per cell. select_one_column (`bool`, *optional*, defaults to `True`): Whether to constrain the model to only select cells from a single column. allow_empty_column_selection (`bool`, *optional*, defaults to `False`): Whether to allow not to select any column. init_cell_selection_weights_to_zero (`bool`, *optional*, defaults to `False`): Whether to initialize cell selection weights to 0 so that the initial probabilities are 50%. reset_position_index_per_cell (`bool`, *optional*, defaults to `True`): Whether to restart position indexes at every cell (i.e. use relative position embeddings). disable_per_token_loss (`bool`, *optional*, defaults to `False`): Whether to disable any (strong or weak) supervision on cells. aggregation_labels (`Dict[int, label]`, *optional*): The aggregation labels used to aggregate the results. For example, the WTQ models have the following aggregation labels: `{0: "NONE", 1: "SUM", 2: "AVERAGE", 3: "COUNT"}` no_aggregation_label_index (`int`, *optional*): If the aggregation labels are defined and one of these labels represents "No aggregation", this should be set to its index. For example, the WTQ models have the "NONE" aggregation label at index 0, so that value should be set to 0 for these models. Example: ```python >>> from transformers import TapasModel, TapasConfig >>> # Initializing a default (SQA) Tapas configuration >>> configuration = TapasConfig() >>> # Initializing a model from the configuration >>> model = TapasModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "tapas" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=1024, type_vocab_sizes=[3, 256, 256, 2, 256, 256, 10], initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, positive_label_weight=10.0, num_aggregation_labels=0, aggregation_loss_weight=1.0, use_answer_as_supervision=None, answer_loss_importance=1.0, use_normalized_answer_loss=False, huber_loss_delta=None, temperature=1.0, aggregation_temperature=1.0, use_gumbel_for_cells=False, use_gumbel_for_aggregation=False, average_approximation_function="ratio", cell_selection_preference=None, answer_loss_cutoff=None, max_num_rows=64, max_num_columns=32, average_logits_per_cell=False, select_one_column=True, allow_empty_column_selection=False, init_cell_selection_weights_to_zero=False, reset_position_index_per_cell=True, disable_per_token_loss=False, aggregation_labels=None, no_aggregation_label_index=None, **kwargs, ): super().__init__(pad_token_id=pad_token_id, **kwargs) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_sizes = type_vocab_sizes self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps # Fine-tuning task hyperparameters self.positive_label_weight = positive_label_weight self.num_aggregation_labels = num_aggregation_labels self.aggregation_loss_weight = aggregation_loss_weight self.use_answer_as_supervision = use_answer_as_supervision self.answer_loss_importance = answer_loss_importance self.use_normalized_answer_loss = use_normalized_answer_loss self.huber_loss_delta = huber_loss_delta self.temperature = temperature self.aggregation_temperature = aggregation_temperature self.use_gumbel_for_cells = use_gumbel_for_cells self.use_gumbel_for_aggregation = use_gumbel_for_aggregation self.average_approximation_function = average_approximation_function self.cell_selection_preference = cell_selection_preference self.answer_loss_cutoff = answer_loss_cutoff self.max_num_rows = max_num_rows self.max_num_columns = max_num_columns self.average_logits_per_cell = average_logits_per_cell self.select_one_column = select_one_column self.allow_empty_column_selection = allow_empty_column_selection self.init_cell_selection_weights_to_zero = init_cell_selection_weights_to_zero self.reset_position_index_per_cell = reset_position_index_per_cell self.disable_per_token_loss = disable_per_token_loss # Aggregation hyperparameters self.aggregation_labels = aggregation_labels self.no_aggregation_label_index = no_aggregation_label_index if isinstance(self.aggregation_labels, dict): self.aggregation_labels = {int(k): v for k, v in aggregation_labels.items()}
class_definition
1,034
12,264
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/tapas/configuration_tapas.py
null
5,347
class Data2VecTextConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Data2VecTextModel`] and [`Data2VecTextModel`]. It is used to instantiate a Data2VecText model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Data2VecText [facebook/data2vec-text-base](https://huggingface.co/facebook/data2vec-text-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the DATA2VEC model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Data2VecModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`Data2VecModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). is_decoder (`bool`, *optional*, defaults to `False`): Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. Examples: ```python >>> from transformers import Data2VecTextConfig, Data2VecTextModel >>> # Initializing a Data2VecText facebook/data2vec-text-base style configuration >>> configuration = Data2VecTextConfig() >>> # Initializing a model (with random weights) from the facebook/data2vec-text-base style configuration >>> model = Data2VecTextModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "data2vec-text" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=1, bos_token_id=0, eos_token_id=2, position_embedding_type="absolute", use_cache=True, classifier_dropout=None, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache self.classifier_dropout = classifier_dropout
class_definition
878
6,818
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/configuration_data2vec_text.py
null
5,348
class Data2VecTextOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
class_definition
6,821
7,274
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/configuration_data2vec_text.py
null
5,349
class Data2VecVisionModelOutputWithPooling(BaseModelOutputWithPooling): """ Class for outputs of [`Data2VecVisionModel`]. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if *config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token will be returned. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """
class_definition
1,972
3,524
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_vision.py
null
5,350
class Data2VecVisionDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob)
class_definition
4,774
5,262
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_vision.py
null
5,351
class Data2VecVisionEmbeddings(nn.Module): """ Construct the CLS token, position and patch embeddings. Optionally, also the mask token. """ def __init__(self, config: Data2VecVisionConfig) -> None: super().__init__() self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if config.use_mask_token: self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) else: self.mask_token = None self.patch_embeddings = Data2VecVisionPatchEmbeddings(config) self.patch_size = config.patch_size self.image_size = ( config.image_size if isinstance(config.image_size, collections.abc.Iterable) else (config.image_size, config.image_size) ) num_patches = self.patch_embeddings.num_patches if config.use_absolute_position_embeddings: self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size)) else: self.position_embeddings = None self.dropout = nn.Dropout(config.hidden_dropout_prob) # Copied from transformers.models.vit.modeling_vit.ViTEmbeddings.interpolate_pos_encoding def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: """ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. This method is also adapted to support torch.jit tracing. Adapted from: - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211 """ num_patches = embeddings.shape[1] - 1 num_positions = self.position_embeddings.shape[1] - 1 # always interpolate when tracing to ensure the exported model works for dynamic input shapes if not torch.jit.is_tracing() and num_patches == num_positions and height == width: return self.position_embeddings class_pos_embed = self.position_embeddings[:, :1] patch_pos_embed = self.position_embeddings[:, 1:] dim = embeddings.shape[-1] new_height = height // self.patch_size new_width = width // self.patch_size sqrt_num_positions = torch_int(num_positions**0.5) patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim) patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) patch_pos_embed = nn.functional.interpolate( patch_pos_embed, size=(new_height, new_width), mode="bicubic", align_corners=False, ) patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_pos_embed, patch_pos_embed), dim=1) def forward( self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None, interpolate_pos_encoding: bool = False, ) -> torch.Tensor: _, _, height, width = pixel_values.shape embeddings, (patch_height, patch_width) = self.patch_embeddings( pixel_values, self.position_embeddings[:, 1:, :] if self.position_embeddings is not None else None ) batch_size, seq_len, _ = embeddings.size() if bool_masked_pos is not None: mask_tokens = self.mask_token.expand(batch_size, seq_len, -1) # replace the masked visual tokens by mask_tokens w = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) embeddings = embeddings * (1 - w) + mask_tokens * w cls_tokens = self.cls_token.expand(batch_size, -1, -1) if self.position_embeddings is not None: if interpolate_pos_encoding: cls_tokens = cls_tokens + self.interpolate_pos_encoding(embeddings, height, width) else: cls_tokens = cls_tokens + self.position_embeddings[:, :1, :] embeddings = torch.cat((cls_tokens, embeddings), dim=1) embeddings = self.dropout(embeddings) return embeddings, (patch_height, patch_width)
class_definition
5,359
9,691
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_vision.py
null
5,352
class Data2VecVisionPatchEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.patch_shape = patch_shape self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def forward( self, pixel_values: torch.Tensor, position_embedding: Optional[torch.Tensor] = None, ) -> torch.Tensor: batch_size, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) embeddings = self.projection(pixel_values) patch_height, patch_width = embeddings.shape[2], embeddings.shape[3] if position_embedding is not None: # interpolate the position embedding to the corresponding size position_embedding = position_embedding.view(1, self.patch_shape[0], self.patch_shape[1], -1).permute( 0, 3, 1, 2 ) position_embedding = nn.functional.interpolate( position_embedding, size=(patch_height, patch_width), mode="bicubic" ) embeddings = embeddings + position_embedding embeddings = embeddings.flatten(2).transpose(1, 2) return embeddings, (patch_height, patch_width)
class_definition
9,793
12,164
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_vision.py
null
5,353
class Data2VecVisionSelfAttention(nn.Module): def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None) -> None: super().__init__() self.config = config if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) if window_size: self.relative_position_bias = Data2VecVisionRelativePositionBias(config, window_size=window_size) else: self.relative_position_bias = None def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, relative_position_bias: Optional["Data2VecVisionRelativePositionBias"] = None, interpolate_pos_encoding: bool = False, resolution: Optional[Tuple[int]] = None, ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]: mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Add relative position bias if present. if self.relative_position_bias is not None: height, width = resolution window_size = (height // self.config.patch_size, width // self.config.patch_size) attention_scores = attention_scores + self.relative_position_bias( window_size, interpolate_pos_encoding, dim_size=hidden_states.shape[1] ) # Add shared relative position bias if provided. if relative_position_bias is not None: attention_scores = attention_scores + relative_position_bias # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs
class_definition
12,264
16,122
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_vision.py
null
5,354
class Data2VecVisionSdpaSelfAttention(Data2VecVisionSelfAttention): def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, relative_position_bias: Optional["Data2VecVisionRelativePositionBias"] = None, interpolate_pos_encoding: bool = False, resolution: Optional[Tuple[int]] = None, ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]: if output_attentions or head_mask is not None: logger.warning_once( "`Data2VecVisionSdpaSelfAttention` is used but `torch.nn.functional.scaled_dot_product_attention` does not " "support `output_attentions=True` or `head_mask`. Falling back to the manual attention implementation, " "but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. " 'This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states=hidden_states, head_mask=head_mask, output_attentions=output_attentions, relative_position_bias=relative_position_bias, interpolate_pos_encoding=interpolate_pos_encoding, resolution=resolution, ) mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) attn_bias = None if self.relative_position_bias is not None: height, width = resolution window_size = (height // self.config.patch_size, width // self.config.patch_size) attn_bias = self.relative_position_bias( window_size, interpolate_pos_encoding, dim_size=hidden_states.shape[1] ) # Add shared relative position bias if provided. if relative_position_bias is not None: if attn_bias is None: attn_bias = relative_position_bias else: attn_bias += relative_position_bias scaling = 1 / math.sqrt(self.attention_head_size) context_layer = torch.nn.functional.scaled_dot_product_attention( query_layer, key_layer, value_layer, attn_mask=attn_bias, dropout_p=self.config.attention_probs_dropout_prob if self.training else 0.0, is_causal=False, scale=scaling, ) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) return context_layer, None
class_definition
16,226
19,195
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_vision.py
null
5,355
class Data2VecVisionSelfOutput(nn.Module): """ The residual connection is defined in Data2VecVisionLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: Data2VecVisionConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor, gamma=None) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states
class_definition
19,292
19,980
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_vision.py
null
5,356
class Data2VecVisionAttention(nn.Module): def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None) -> None: super().__init__() self.attention = DATA2VEC_VISION_SELF_ATTENTION_CLASSES[config._attn_implementation]( config, window_size=window_size ) self.output = Data2VecVisionSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, relative_position_bias: Optional["Data2VecVisionRelativePositionBias"] = None, interpolate_pos_encoding: bool = False, resolution: Optional[Tuple[int]] = None, ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]: self_outputs = self.attention( hidden_states, head_mask, output_attentions, relative_position_bias, interpolate_pos_encoding, resolution ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs
class_definition
20,226
22,321
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_vision.py
null
5,357
class Data2VecVisionIntermediate(nn.Module): def __init__(self, config: Data2VecVisionConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states
class_definition
22,420
23,026
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_vision.py
null
5,358
class Data2VecVisionOutput(nn.Module): def __init__(self, config: Data2VecVisionConfig) -> None: super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states
class_definition
23,119
23,586
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_vision.py
null
5,359
class Data2VecVisionLayer(nn.Module): """This corresponds to the Block class in the timm implementation.""" def __init__( self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, drop_path_rate: float = 0.0 ) -> None: super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = Data2VecVisionAttention(config, window_size=window_size) self.intermediate = Data2VecVisionIntermediate(config) self.output = Data2VecVisionOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.drop_path = Data2VecVisionDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) init_values = config.layer_scale_init_value if init_values > 0: self.lambda_1 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True) self.lambda_2 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True) else: self.lambda_1, self.lambda_2 = None, None def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, relative_position_bias: Optional["Data2VecVisionRelativePositionBias"] = None, interpolate_pos_encoding: bool = False, resolution: Optional[Tuple[int]] = None, ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]: self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in Data2VecVision, layernorm is applied before self-attention head_mask, output_attentions=output_attentions, relative_position_bias=relative_position_bias, interpolate_pos_encoding=interpolate_pos_encoding, resolution=resolution, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # apply lambda_1 if present if self.lambda_1 is not None: attention_output = self.lambda_1 * attention_output # first residual connection hidden_states = self.drop_path(attention_output) + hidden_states # in Data2VecVision, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) layer_output = self.output(layer_output) if self.lambda_2 is not None: layer_output = self.lambda_2 * layer_output # second residual connection layer_output = self.drop_path(layer_output) + hidden_states outputs = (layer_output,) + outputs return outputs
class_definition
23,699
26,663
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_vision.py
null
5,360
class Data2VecVisionRelativePositionBias(nn.Module): def __init__(self, config: Data2VecVisionConfig, window_size: tuple) -> None: super().__init__() self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, config.num_attention_heads) ) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls self.relative_position_indices = {} def generate_relative_position_index(self, window_size: Tuple[int, int]) -> torch.Tensor: """ This method creates the relative position index, modified to support arbitrary window sizes, as introduced in [MiDaS v3.1](https://arxiv.org/abs/2307.14460). """ num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window window_area = window_size[0] * window_size[1] grid = torch.meshgrid(torch.arange(window_size[0]), torch.arange(window_size[1]), indexing="ij") coords = torch.stack(grid) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = torch.zeros(size=(window_area + 1,) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = num_relative_distance - 3 relative_position_index[0:, 0] = num_relative_distance - 2 relative_position_index[0, 0] = num_relative_distance - 1 return relative_position_index def forward(self, window_size, interpolate_pos_encoding: bool = False, dim_size=None) -> torch.Tensor: """ Modification of timm.models.beit.py: Attention._get_rel_pos_bias to support arbitrary window sizes. """ old_height = 2 * self.window_size[0] - 1 old_width = 2 * self.window_size[1] - 1 new_height = 2 * window_size[0] - 1 new_width = 2 * window_size[1] - 1 old_relative_position_bias_table = self.relative_position_bias_table old_num_relative_distance = self.num_relative_distance new_num_relative_distance = new_height * new_width + 3 old_sub_table = old_relative_position_bias_table[: old_num_relative_distance - 3] old_sub_table = old_sub_table.reshape(1, old_width, old_height, -1).permute(0, 3, 1, 2) new_sub_table = nn.functional.interpolate( old_sub_table, size=(torch_int(new_height), torch_int(new_width)), mode="bilinear" ) new_sub_table = new_sub_table.permute(0, 2, 3, 1).reshape(new_num_relative_distance - 3, -1) new_relative_position_bias_table = torch.cat( [new_sub_table, old_relative_position_bias_table[old_num_relative_distance - 3 :]] ) key = window_size if key not in self.relative_position_indices.keys(): self.relative_position_indices[key] = self.generate_relative_position_index(window_size) relative_position_bias = new_relative_position_bias_table[self.relative_position_indices[key].view(-1)] # patch_size*num_patches_height, patch_size*num_patches_width, num_attention_heads relative_position_bias = relative_position_bias.view( window_size[0] * window_size[1] + 1, window_size[0] * window_size[1] + 1, -1 ) # num_attention_heads, patch_size*num_patches_width, patch_size*num_patches_height relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() if interpolate_pos_encoding: relative_position_bias = nn.functional.interpolate( relative_position_bias.unsqueeze(1), size=(dim_size, dim_size), mode="bilinear", align_corners=False, ).squeeze(1) return relative_position_bias.unsqueeze(0)
class_definition
26,770
31,232
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_vision.py
null
5,361
class Data2VecVisionEncoder(nn.Module): def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None) -> None: super().__init__() self.config = config if config.use_shared_relative_position_bias: self.relative_position_bias = Data2VecVisionRelativePositionBias(config, window_size=window_size) else: self.relative_position_bias = None # stochastic depth decay rule dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)] self.layer = nn.ModuleList( [ Data2VecVisionLayer( config, window_size=window_size if config.use_relative_position_bias else None, drop_path_rate=dpr[i], ) for i in range(config.num_hidden_layers) ] ) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, interpolate_pos_encoding: bool = False, resolution: Optional[Tuple[int]] = None, return_dict: bool = True, ) -> Union[tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, layer_head_mask, output_attentions, ) else: height, width = resolution window_size = (height // self.config.patch_size, width // self.config.patch_size) relative_position_bias = ( self.relative_position_bias( window_size, interpolate_pos_encoding=interpolate_pos_encoding, dim_size=hidden_states.shape[1] ) if self.relative_position_bias is not None else None ) layer_outputs = layer_module( hidden_states, layer_head_mask, output_attentions, relative_position_bias, interpolate_pos_encoding, resolution, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, )
class_definition
31,326
34,707
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_vision.py
null
5,362
class Data2VecVisionPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Data2VecVisionConfig base_model_prefix = "data2vec_vision" main_input_name = "pixel_values" supports_gradient_checkpointing = True _no_split_modules = ["Data2VecVisionLayer"] _keys_to_ignore_on_load_unexpected = [r".*relative_position_index.*"] _supports_sdpa = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0)
class_definition
34,831
36,184
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_vision.py
null
5,363
class Data2VecVisionModel(Data2VecVisionPreTrainedModel): def __init__(self, config: Data2VecVisionConfig, add_pooling_layer: bool = False) -> None: super().__init__(config) self.config = config self.embeddings = Data2VecVisionEmbeddings(config) self.encoder = Data2VecVisionEncoder(config, window_size=self.embeddings.patch_embeddings.patch_shape) self.layernorm = ( nn.Identity() if config.use_mean_pooling else nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) ) self.pooler = Data2VecVisionPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=Data2VecVisionModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: bool = False, return_dict: Optional[bool] = None, ) -> Union[tuple, Data2VecVisionModelOutputWithPooling]: r""" bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output, _ = self.embeddings( pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding ) resolution = pixel_values.shape[2:] encoder_outputs = self.encoder( embedding_output, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, resolution=resolution, return_dict=return_dict, interpolate_pos_encoding=interpolate_pos_encoding, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) return head_outputs + encoder_outputs[1:] return Data2VecVisionModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, )
class_definition
38,411
42,514
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_vision.py
null
5,364
class Data2VecVisionPooler(nn.Module): def __init__(self, config: Data2VecVisionConfig) -> None: super().__init__() self.layernorm = ( nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if config.use_mean_pooling else None ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: if self.layernorm is not None: # Mean pool the final hidden states of the patch tokens patch_tokens = hidden_states[:, 1:, :] pooled_output = self.layernorm(patch_tokens.mean(1)) else: # Pool by simply taking the final hidden state of the [CLS] token pooled_output = hidden_states[:, 0] return pooled_output
class_definition
42,607
43,342
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_vision.py
null
5,365
class Data2VecVisionForImageClassification(Data2VecVisionPreTrainedModel): def __init__(self, config: Data2VecVisionConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.data2vec_vision = Data2VecVisionModel(config, add_pooling_layer=True) # Classifier head self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: bool = False, return_dict: Optional[bool] = None, ) -> Union[tuple, ImageClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.data2vec_vision( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, interpolate_pos_encoding=interpolate_pos_encoding, return_dict=return_dict, ) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
43,761
47,420
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_vision.py
null
5,366
class Data2VecVisionConvModule(nn.Module): """ A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU). Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, Tuple[int, int]], padding: Union[int, Tuple[int, int], str] = 0, bias: bool = False, dilation: Union[int, Tuple[int, int]] = 1, ) -> None: super().__init__() self.conv = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, padding=padding, bias=bias, dilation=dilation, ) self.bn = nn.BatchNorm2d(out_channels) self.activation = nn.ReLU() def forward(self, input: torch.Tensor) -> torch.Tensor: output = self.conv(input) output = self.bn(output) output = self.activation(output) return output
class_definition
47,517
48,718
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_vision.py
null
5,367
class Data2VecVisionPyramidPoolingBlock(nn.Module): def __init__(self, pool_scale: int, in_channels: int, channels: int) -> None: super().__init__() self.layers = [ nn.AdaptiveAvgPool2d(pool_scale), Data2VecVisionConvModule(in_channels, channels, kernel_size=1), ] for i, layer in enumerate(self.layers): self.add_module(str(i), layer) def forward(self, input: torch.Tensor) -> torch.Tensor: hidden_state = input for layer in self.layers: hidden_state = layer(hidden_state) return hidden_state
class_definition
48,824
49,430
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_vision.py
null
5,368
class Data2VecVisionPyramidPoolingModule(nn.Module): """ Pyramid Pooling Module (PPM) used in PSPNet. Args: pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid Module. in_channels (int): Input channels. channels (int): Channels after modules, before conv_seg. align_corners (bool): align_corners argument of F.interpolate. Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__(self, pool_scales: Tuple[int, ...], in_channels: int, channels: int, align_corners: bool) -> None: super().__init__() self.pool_scales = pool_scales self.align_corners = align_corners self.in_channels = in_channels self.channels = channels self.blocks = [] for i, pool_scale in enumerate(pool_scales): block = Data2VecVisionPyramidPoolingBlock( pool_scale=pool_scale, in_channels=in_channels, channels=channels ) self.blocks.append(block) self.add_module(str(i), block) def forward(self, x: torch.Tensor) -> List[torch.Tensor]: ppm_outs = [] for ppm in self.blocks: ppm_out = ppm(x) upsampled_ppm_out = nn.functional.interpolate( ppm_out, size=x.size()[2:], mode="bilinear", align_corners=self.align_corners ) ppm_outs.append(upsampled_ppm_out) return ppm_outs
class_definition
49,537
51,026
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_vision.py
null
5,369
class Data2VecVisionUperHead(nn.Module): """ Unified Perceptual Parsing for Scene Understanding. This head is the implementation of [UPerNet](https://arxiv.org/abs/1807.10221). Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__(self, config: Data2VecVisionConfig) -> None: super().__init__() self.pool_scales = config.pool_scales # e.g. (1, 2, 3, 6) self.in_channels = [config.hidden_size] * 4 # e.g. [768, 768, 768, 768] self.channels = config.hidden_size self.align_corners = False self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1) # PSP Module self.psp_modules = Data2VecVisionPyramidPoolingModule( self.pool_scales, self.in_channels[-1], self.channels, align_corners=self.align_corners, ) self.bottleneck = Data2VecVisionConvModule( self.in_channels[-1] + len(self.pool_scales) * self.channels, self.channels, kernel_size=3, padding=1, ) # FPN Module self.lateral_convs = nn.ModuleList() self.fpn_convs = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer l_conv = Data2VecVisionConvModule(in_channels, self.channels, kernel_size=1) fpn_conv = Data2VecVisionConvModule(self.channels, self.channels, kernel_size=3, padding=1) self.lateral_convs.append(l_conv) self.fpn_convs.append(fpn_conv) self.fpn_bottleneck = Data2VecVisionConvModule( len(self.in_channels) * self.channels, self.channels, kernel_size=3, padding=1, ) def psp_forward(self, inputs): x = inputs[-1] psp_outs = [x] psp_outs.extend(self.psp_modules(x)) psp_outs = torch.cat(psp_outs, dim=1) output = self.bottleneck(psp_outs) return output def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor: # build laterals laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)] laterals.append(self.psp_forward(encoder_hidden_states)) # build top-down path used_backbone_levels = len(laterals) for i in range(used_backbone_levels - 1, 0, -1): prev_shape = laterals[i - 1].shape[2:] laterals[i - 1] = laterals[i - 1] + nn.functional.interpolate( laterals[i], size=prev_shape, mode="bilinear", align_corners=self.align_corners ) # build outputs fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)] # append psp feature fpn_outs.append(laterals[-1]) for i in range(used_backbone_levels - 1, 0, -1): fpn_outs[i] = nn.functional.interpolate( fpn_outs[i], size=fpn_outs[0].shape[2:], mode="bilinear", align_corners=self.align_corners ) fpn_outs = torch.cat(fpn_outs, dim=1) output = self.fpn_bottleneck(fpn_outs) output = self.classifier(output) return output
class_definition
51,121
54,381
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_vision.py
null
5,370
class Data2VecVisionFCNHead(nn.Module): """ Fully Convolution Networks for Semantic Segmentation. This head is implemented of [FCNNet](https://arxiv.org/abs/1411.4038>). Args: config (Data2VecVisionConfig): Configuration. in_channels kernel_size (int): The kernel size for convs in the head. Default: 3. dilation (int): The dilation rate for convs in the head. Default: 1. Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__( self, config: Data2VecVisionConfig, in_index: int = 2, kernel_size: int = 3, dilation: Union[int, Tuple[int, int]] = 1, ) -> None: super().__init__() self.in_channels = config.hidden_size self.channels = config.auxiliary_channels self.num_convs = config.auxiliary_num_convs self.concat_input = config.auxiliary_concat_input self.in_index = in_index conv_padding = (kernel_size // 2) * dilation convs = [] convs.append( Data2VecVisionConvModule( self.in_channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation ) ) for i in range(self.num_convs - 1): convs.append( Data2VecVisionConvModule( self.channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation ) ) if self.num_convs == 0: self.convs = nn.Identity() else: self.convs = nn.Sequential(*convs) if self.concat_input: self.conv_cat = Data2VecVisionConvModule( self.in_channels + self.channels, self.channels, kernel_size=kernel_size, padding=kernel_size // 2 ) self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1) def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor: # just take the relevant feature maps hidden_states = encoder_hidden_states[self.in_index] output = self.convs(hidden_states) if self.concat_input: output = self.conv_cat(torch.cat([hidden_states, output], dim=1)) output = self.classifier(output) return output
class_definition
54,475
56,821
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_vision.py
null
5,371
class Data2VecVisionForSemanticSegmentation(Data2VecVisionPreTrainedModel): def __init__(self, config: Data2VecVisionConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.data2vec_vision = Data2VecVisionModel(config, add_pooling_layer=False) # FPNs if len(self.config.out_indices) != 4: raise ValueError( "Data2VecVisionForSemanticSegmentation requires config.out_indices to be a list of 4 integers, " "specifying which features to use from the backbone. One can use [3, 5, 7, 11] in case of " "a base-sized architecture." ) self.fpn1 = nn.Sequential( nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2), nn.BatchNorm2d(config.hidden_size), nn.GELU(), nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2), ) self.fpn2 = nn.Sequential( nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2), ) self.fpn3 = nn.Identity() self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2) # Semantic segmentation head(s) self.decode_head = Data2VecVisionUperHead(config) self.auxiliary_head = Data2VecVisionFCNHead(config) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() def compute_loss(self, logits, auxiliary_logits, labels): # upsample logits to the images' original size upsampled_logits = nn.functional.interpolate( logits, size=labels.shape[-2:], mode="bilinear", align_corners=False ) if auxiliary_logits is not None: upsampled_auxiliary_logits = nn.functional.interpolate( auxiliary_logits, size=labels.shape[-2:], mode="bilinear", align_corners=False ) # compute weighted loss loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index) main_loss = loss_fct(upsampled_logits, labels) loss = main_loss if auxiliary_logits is not None: auxiliary_loss = loss_fct(upsampled_auxiliary_logits, labels) loss += self.config.auxiliary_loss_weight * auxiliary_loss return loss @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: bool = False, return_dict: Optional[bool] = None, ) -> Union[tuple, SemanticSegmenterOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, Data2VecVisionForSemanticSegmentation >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("facebook/data2vec-vision-base") >>> model = Data2VecVisionForSemanticSegmentation.from_pretrained("facebook/data2vec-vision-base") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> # logits are of shape (batch_size, num_labels, height, width) >>> logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if labels is not None and self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one") outputs = self.data2vec_vision( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=True, # we need the intermediate hidden states interpolate_pos_encoding=interpolate_pos_encoding, return_dict=return_dict, ) encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] # only keep certain features, and reshape # note that we do +1 as the encoder_hidden_states also includes the initial embeddings features = [feature for idx, feature in enumerate(encoder_hidden_states) if idx + 1 in self.config.out_indices] batch_size = pixel_values.shape[0] patch_resolution = self.config.image_size // self.config.patch_size features = [ x[:, 1:, :].permute(0, 2, 1).reshape(batch_size, -1, patch_resolution, patch_resolution) for x in features ] # apply FPNs ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4] for i in range(len(features)): features[i] = ops[i](features[i]) logits = self.decode_head(features) auxiliary_logits = None if self.auxiliary_head is not None: auxiliary_logits = self.auxiliary_head(features) loss = None if labels is not None: loss = self.compute_loss(logits, auxiliary_logits, labels) if not return_dict: if output_hidden_states: output = (logits,) + outputs[1:] else: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, )
class_definition
57,234
63,640
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_vision.py
null
5,372
class TFData2VecVisionModelOutputWithPooling(TFBaseModelOutputWithPooling): """ Class for outputs of [`TFData2VecVisionModel`]. Args: last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (`tf.Tensor` of shape `(batch_size, hidden_size)`): Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if *config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token will be returned. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: tf.Tensor = None pooler_output: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None
class_definition
1,942
3,626
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_tf_data2vec_vision.py
null
5,373
class TFData2VecVisionDropPath(keras.layers.Layer): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). References: (1) github.com:rwightman/pytorch-image-models """ def __init__(self, drop_path, **kwargs): super().__init__(**kwargs) self.drop_path = drop_path def call(self, x, training=None): if training: keep_prob = 1 - self.drop_path shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1) random_tensor = keep_prob + tf.random.uniform(shape, 0, 1) random_tensor = tf.floor(random_tensor) return (x / keep_prob) * random_tensor return x
class_definition
3,629
4,334
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_tf_data2vec_vision.py
null
5,374
class TFData2VecVisionEmbeddings(keras.layers.Layer): """ Construct the CLS token, position and patch embeddings. Optionally, also the mask token. """ def __init__(self, config: Data2VecVisionConfig, **kwargs): super().__init__(**kwargs) self.config = config self.patch_embeddings = TFData2VecVisionPatchEmbeddings(config, name="patch_embeddings") self.num_patches = self.patch_embeddings.num_patches self.config = config self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) def build(self, input_shape=None): self.cls_token = self.add_weight( shape=(1, 1, self.config.hidden_size), initializer=tf.random_normal_initializer(stddev=self.config.initializer_range), trainable=True, name="cls_token", ) if self.config.use_mask_token: self.mask_token = self.add_weight( shape=(1, 1, self.config.hidden_size), initializer=tf.random_normal_initializer(stddev=self.config.initializer_range), trainable=True, name="mask_token", ) else: self.mask_token = None if self.config.use_absolute_position_embeddings: self.position_embeddings = self.add_weight( shape=(1, self.num_patches + 1, self.config.hidden_size), initializer=tf.random_normal_initializer(stddev=self.config.initializer_range), trainable=True, name="position_embeddings", ) else: self.position_embeddings = None if self.built: return self.built = True if getattr(self, "patch_embeddings", None) is not None: with tf.name_scope(self.patch_embeddings.name): self.patch_embeddings.build(None) def call(self, pixel_values: tf.Tensor, bool_masked_pos: tf.Tensor | None = None) -> tf.Tensor: embeddings = self.patch_embeddings(pixel_values) batch_size, seq_len, projection_dim = shape_list(embeddings) cls_tokens = tf.tile(self.cls_token, (batch_size, 1, 1)) if bool_masked_pos is not None: mask_tokens = tf.broadcast_to(self.mask_token, (batch_size, seq_len, projection_dim)) # replace the masked visual tokens by mask_tokens w = bool_masked_pos[..., None] w = tf.cast(w, mask_tokens.dtype) # since TF doesn't support eager tensor assignment embeddings = embeddings * (1 - w) + mask_tokens * w embeddings = tf.concat([cls_tokens, embeddings], axis=1) if self.position_embeddings is not None: embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings
class_definition
4,337
7,186
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_tf_data2vec_vision.py
null
5,375
class TFData2VecVisionPatchEmbeddings(keras.layers.Layer): """ Image to Patch Embedding. """ def __init__(self, config: Data2VecVisionConfig, **kwargs): super().__init__(**kwargs) self.config = config image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) self.image_size = image_size self.patch_size = patch_size self.num_patches = num_patches self.patch_shape = patch_shape self.num_channels = num_channels self.projection = keras.layers.Conv2D( filters=hidden_size, kernel_size=patch_size, strides=patch_size, padding="valid", data_format="channels_last", kernel_initializer="glorot_uniform", # following torch.nn.Linear bias_initializer="zeros", name="projection", ) def call(self, pixel_values: tf.Tensor, training: bool = False) -> tf.Tensor: batch_size, num_channels, height, width = shape_list(pixel_values) if tf.executing_eagerly(): if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the" " configuration." ) if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size[0]}*{self.image_size[1]})." ) # When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) projection = self.projection(pixel_values) # Change the 2D spatial dimensions to a single temporal dimension. # shape = (batch_size, num_patches, out_channels=embed_dim) num_patches = (width // self.patch_size[1]) * (height // self.patch_size[0]) return tf.reshape(tensor=projection, shape=(batch_size, num_patches, -1)) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "projection", None) is not None: with tf.name_scope(self.projection.name): self.projection.build([None, None, None, self.num_channels])
class_definition
7,189
10,215
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_tf_data2vec_vision.py
null
5,376
class TFData2VecVisionSelfAttention(keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number " f"of attention heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.sqrt_att_head_size = math.sqrt(self.attention_head_size) self.query = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key", use_bias=False, ) self.value = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob) if window_size: self.relative_position_bias = TFData2VecVisionRelativePositionBias( config, window_size=window_size, name="relative_position_bias" ) else: self.relative_position_bias = None self.config = config def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, relative_position_bias: Optional["TFData2VecVisionRelativePositionBias"] = None, training: bool = False, ) -> Tuple[tf.Tensor]: batch_size = shape_list(hidden_states)[0] mixed_query_layer = self.query(inputs=hidden_states) mixed_key_layer = self.key(inputs=hidden_states) mixed_value_layer = self.value(inputs=hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) # Take the dot product between "query" and "key" to get the raw attention scores. # (batch size, num_heads, seq_len_q, seq_len_k) attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) attention_scores = attention_scores / self.sqrt_att_head_size # Add relative position bias if present. if self.relative_position_bias is not None: # Passing `0.0` to the `relative_position_bias()` layer because otherwise Keras # might complain about `Layer.call()` not being invoked properly. In this case this input # i.e., 0.0 is not going to be used in any calculations so we're safe. attention_scores = attention_scores + self.relative_position_bias(0.0)[None, ...] # Add shared relative position bias if provided. if relative_position_bias is not None: attention_scores = attention_scores + relative_position_bias # Normalize the attention scores to probabilities. attention_probs = stable_softmax(logits=attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(inputs=attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = tf.multiply(attention_probs, head_mask) attention_output = tf.matmul(attention_probs, value_layer) attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, all_head_size) attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "query", None) is not None: with tf.name_scope(self.query.name): self.query.build([None, None, self.config.hidden_size]) if getattr(self, "key", None) is not None: with tf.name_scope(self.key.name): self.key.build([None, None, self.config.hidden_size]) if getattr(self, "value", None) is not None: with tf.name_scope(self.value.name): self.value.build([None, None, self.config.hidden_size]) if getattr(self, "relative_position_bias", None) is not None: with tf.name_scope(self.relative_position_bias.name): self.relative_position_bias.build(None)
class_definition
10,218
15,908
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_tf_data2vec_vision.py
null
5,377
class TFData2VecVisionSelfOutput(keras.layers.Layer): """ The residual connection is defined in TFData2VecVisionLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: Data2VecVisionConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, gamma=None, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size])
class_definition
15,911
17,087
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_tf_data2vec_vision.py
null
5,378
class TFData2VecVisionAttention(keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, **kwargs): super().__init__(**kwargs) self.attention = TFData2VecVisionSelfAttention(config, window_size=window_size, name="attention") self.dense_output = TFData2VecVisionSelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call( self, input_tensor: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, relative_position_bias: Optional["TFData2VecVisionRelativePositionBias"] = None, training: bool = False, ) -> Tuple[tf.Tensor]: self_outputs = self.attention( hidden_states=input_tensor, head_mask=head_mask, output_attentions=output_attentions, relative_position_bias=relative_position_bias, training=training, ) attention_output = self.dense_output( hidden_states=self_outputs[0], input_tensor=input_tensor, training=training ) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "dense_output", None) is not None: with tf.name_scope(self.dense_output.name): self.dense_output.build(None)
class_definition
17,090
18,750
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_tf_data2vec_vision.py
null
5,379
class TFData2VecVisionIntermediate(keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size])
class_definition
18,850
19,892
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_tf_data2vec_vision.py
null
5,380
class TFData2VecVisionOutput(keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.intermediate_size])
class_definition
19,895
20,851
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_tf_data2vec_vision.py
null
5,381
class TFData2VecVisionLayer(keras.layers.Layer): """This corresponds to the Block class in the timm implementation.""" def __init__( self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, drop_path_rate: float = 0.0, **kwargs ): super().__init__(**kwargs) self.config = config self.attention = TFData2VecVisionAttention(config, window_size=window_size, name="attention") self.intermediate = TFData2VecVisionIntermediate(config, name="intermediate") self.data2vec_output = TFData2VecVisionOutput(config, name="output") self.layernorm_before = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_before") self.layernorm_after = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_after") # Using `layers.Activation` instead of `tf.identity` to better control `training` # behaviour. self.drop_path = ( TFData2VecVisionDropPath(drop_path_rate, name="drop_path") if drop_path_rate > 0.0 else keras.layers.Activation("linear", name="drop_path") ) self.init_values = config.layer_scale_init_value def build(self, input_shape: tf.TensorShape = None): if self.init_values > 0: self.lambda_1 = self.add_weight( shape=(self.config.hidden_size), initializer="ones", trainable=True, name="lambda_1", ) self.lambda_2 = self.add_weight( shape=(self.config.hidden_size), initializer="ones", trainable=True, name="lambda_2", ) self.lambda_1.assign(self.init_values * tf.ones((self.config.hidden_size))) self.lambda_2.assign(self.init_values * tf.ones((self.config.hidden_size))) else: self.lambda_1, self.lambda_2 = None, None if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "data2vec_output", None) is not None: with tf.name_scope(self.data2vec_output.name): self.data2vec_output.build(None) if getattr(self, "layernorm_before", None) is not None: with tf.name_scope(self.layernorm_before.name): self.layernorm_before.build([None, None, self.config.hidden_size]) if getattr(self, "layernorm_after", None) is not None: with tf.name_scope(self.layernorm_after.name): self.layernorm_after.build([None, None, self.config.hidden_size]) if getattr(self, "drop_path", None) is not None: with tf.name_scope(self.drop_path.name): self.drop_path.build(None) def call( self, hidden_states: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, relative_position_bias: Optional["TFData2VecVisionRelativePositionBias"] = None, training: bool = False, ) -> Tuple[tf.Tensor]: self_attention_outputs = self.attention( # in Data2VecVision, layernorm is applied before self-attention input_tensor=self.layernorm_before(inputs=hidden_states), head_mask=head_mask, output_attentions=output_attentions, relative_position_bias=relative_position_bias, training=training, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # apply lambda_1 if present if self.lambda_1 is not None: attention_output = self.lambda_1 * attention_output # first residual connection hidden_states = self.drop_path(attention_output) + hidden_states # in Data2VecVision, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) layer_output = self.data2vec_output(layer_output) if self.lambda_2 is not None: layer_output = self.lambda_2 * layer_output # second residual connection layer_output = self.drop_path(layer_output) + hidden_states outputs = (layer_output,) + outputs return outputs
class_definition
20,854
25,515
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_tf_data2vec_vision.py
null
5,382
class TFData2VecVisionRelativePositionBias(keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, window_size: tuple, **kwargs) -> None: super().__init__(**kwargs) self.config = config self.window_size = window_size # +3 for cls_token_pos_len # window_size can be something like (14, 14) self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_index = self.get_position_index() def build(self, input_shape): self.relative_position_bias_table = self.add_weight( shape=(self.num_relative_distance, self.config.num_attention_heads), initializer="zeros", trainable=True, name="relative_position_bias_table", ) # [2*Wh-1 * 2*Ww-1, nH] # cls to token & token 2 cls & cls to cls super().build(input_shape) def get_position_index(self): # get pair-wise relative position index for each token inside the window xx, yy = tf.meshgrid(range(self.window_size[0]), range(self.window_size[1])) coords = tf.stack([yy, xx], axis=0) # [2, Wh, Ww] coords_flatten = tf.reshape(coords, [2, -1]) # [2, Wh*Ww] relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # [2, Wh*Ww, Wh*Ww] relative_coords = tf.transpose(relative_coords, perm=[1, 2, 0]) # [Wh*Ww, Wh*Ww, 2] xx = (relative_coords[:, :, 0] + self.window_size[0] - 1) * (2 * self.window_size[1] - 1) yy = relative_coords[:, :, 1] + self.window_size[1] - 1 relative_coords = tf.stack([xx, yy], axis=-1) relative_position_index = tf.reduce_sum(relative_coords, axis=-1) # [Wh*Ww, Wh*Ww] top = tf.ones((1, relative_position_index.shape[1]), dtype=relative_position_index.dtype) * ( self.num_relative_distance - 3 ) left = tf.ones((relative_position_index.shape[0], 1), dtype=relative_position_index.dtype) * ( self.num_relative_distance - 2 ) corner = tf.ones((1, 1), dtype=relative_position_index.dtype) * (self.num_relative_distance - 1) left_corner = tf.concat([corner, left], axis=0) relative_position_index = tf.concat([top, relative_position_index], axis=0) relative_position_index = tf.concat([left_corner, relative_position_index], axis=1) # [Wh*Ww + 1, Wh*Ww + 1] return relative_position_index def call(self, inputs=None) -> tf.Tensor: relative_position_bias = tf.gather(self.relative_position_bias_table, self.relative_position_index, axis=0) return tf.transpose(relative_position_bias, [2, 0, 1])
class_definition
25,661
28,350
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_tf_data2vec_vision.py
null
5,383
class TFData2VecVisionEncoder(keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, **kwargs): super().__init__(**kwargs) self.config = config if config.use_shared_relative_position_bias: self.relative_position_bias = TFData2VecVisionRelativePositionBias( config, window_size=window_size, name="relative_position_bias" ) else: self.relative_position_bias = None # stochastic depth decay rule dpr = list(tf.linspace(0.0, config.drop_path_rate, config.num_hidden_layers)) self.layer = [ TFData2VecVisionLayer( config, window_size=window_size if config.use_relative_position_bias else None, drop_path_rate=dpr[i], name=f"layer_._{i}", ) for i in range(config.num_hidden_layers) ] def call( self, hidden_states: tf.Tensor, head_mask: tf.Tensor | None = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, TFBaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None # Passing `0.0` to the `relative_position_bias()` layer because otherwise Keras # might complain about `Layer.call()` not being invoked properly. In this case this input # i.e., 0.0 is not going to be used in any calculations so we're safe. relative_position_bias = ( self.relative_position_bias(0.0) if self.relative_position_bias is not None else None ) layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions, relative_position_bias) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "relative_position_bias", None) is not None: with tf.name_scope(self.relative_position_bias.name): self.relative_position_bias.build(None) if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None)
class_definition
28,353
31,550
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_tf_data2vec_vision.py
null
5,384
class TFData2VecVisionMainLayer(keras.layers.Layer): config_class = Data2VecVisionConfig def __init__(self, config: Data2VecVisionConfig, add_pooling_layer: bool = True, **kwargs): super().__init__(**kwargs) self.config = config self.add_pooling_layer = add_pooling_layer self.embeddings = TFData2VecVisionEmbeddings(config, name="embeddings") self.encoder = TFData2VecVisionEncoder( config, window_size=self.embeddings.patch_embeddings.patch_shape, name="encoder" ) self.layernorm = ( tf.identity if config.use_mean_pooling else keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") ) # We are setting the `data_format` like so because from here on we will revert to the # NCHW output format self.pooler = TFData2VecVisionPooler(config, name="pooler") if add_pooling_layer else None def get_input_embeddings(self) -> keras.layers.Layer: return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs def call( self, pixel_values: tf.Tensor | None = None, bool_masked_pos: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[tuple, TFData2VecVisionModelOutputWithPooling]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.config.num_hidden_layers embedding_output = self.embeddings(pixel_values, bool_masked_pos, training=training) encoder_outputs = self.encoder( embedding_output, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) return head_outputs + encoder_outputs[1:] return TFData2VecVisionModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "layernorm", None) is not None: if hasattr(self.layernorm, "name"): with tf.name_scope(self.layernorm.name): self.layernorm.build((None, self.config.hidden_size)) if getattr(self, "pooler", None) is not None: with tf.name_scope(self.pooler.name): self.pooler.build(None)
class_definition
31,573
36,094
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_tf_data2vec_vision.py
null
5,385
class TFData2VecVisionPooler(keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, **kwargs): super().__init__(**kwargs) self.layernorm = ( keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") if config.use_mean_pooling else None ) self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: if self.layernorm is not None: # Mean pool the final hidden states of the patch tokens patch_tokens = hidden_states[:, 1:, :] pooled_output = self.layernorm(tf.reduce_mean(patch_tokens, axis=1)) else: # Pool by simply taking the final hidden state of the [CLS] token pooled_output = hidden_states[:, 0] return pooled_output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layernorm", None) is not None: if hasattr(self.layernorm, "name"): with tf.name_scope(self.layernorm.name): self.layernorm.build((None, self.config.hidden_size))
class_definition
36,097
37,278
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_tf_data2vec_vision.py
null
5,386
class TFData2VecVisionPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Data2VecVisionConfig base_model_prefix = "data2vec_vision" main_input_name = "pixel_values" _keys_to_ignore_on_load_unexpected = [r"relative_position_index"]
class_definition
37,281
37,673
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_tf_data2vec_vision.py
null
5,387
class TFData2VecVisionModel(TFData2VecVisionPreTrainedModel): def __init__(self, config: Data2VecVisionConfig, add_pooling_layer: bool = False, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.config = config self.data2vec_vision = TFData2VecVisionMainLayer( config, add_pooling_layer=add_pooling_layer, name="data2vec_vision" ) def get_input_embeddings(self): return self.data2vec_vision.get_input_embeddings() @unpack_inputs @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFData2VecVisionModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def call( self, pixel_values: TFModelInputType | None = None, bool_masked_pos: tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[tuple, TFData2VecVisionModelOutputWithPooling]: r""" bool_masked_pos (`tf.Tensor` of shape `(batch_size, num_patches)`, *optional*): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). """ outputs = self.data2vec_vision( pixel_values=pixel_values, bool_masked_pos=bool_masked_pos, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "data2vec_vision", None) is not None: with tf.name_scope(self.data2vec_vision.name): self.data2vec_vision.build(None)
class_definition
41,939
44,066
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_tf_data2vec_vision.py
null
5,388
class TFData2VecVisionForImageClassification(TFData2VecVisionPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: Data2VecVisionConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.data2vec_vision = TFData2VecVisionMainLayer(config, add_pooling_layer=True, name="data2vec_vision") # Classifier head self.classifier = keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier", ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def call( self, pixel_values: TFModelInputType | None = None, head_mask: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFSequenceClassifierOutput, tuple]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.data2vec_vision( pixel_values=pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(pooled_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "data2vec_vision", None) is not None: with tf.name_scope(self.data2vec_vision.name): self.data2vec_vision.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size])
class_definition
44,335
47,569
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_tf_data2vec_vision.py
null
5,389
class TFData2VecVisionConvModule(keras.layers.Layer): """ A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU). Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, Tuple[int, int]], padding: str = "valid", bias: bool = False, dilation: Union[int, Tuple[int, int]] = 1, **kwargs, ) -> None: super().__init__(**kwargs) self.conv = keras.layers.Conv2D( filters=out_channels, kernel_size=kernel_size, padding=padding, use_bias=bias, dilation_rate=dilation, name="conv", ) self.bn = keras.layers.BatchNormalization(name="bn", momentum=0.9, epsilon=1e-5) self.activation = tf.nn.relu self.in_channels = in_channels self.out_channels = out_channels def call(self, input: tf.Tensor) -> tf.Tensor: output = self.conv(input) output = self.bn(output) output = self.activation(output) return output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "conv", None) is not None: with tf.name_scope(self.conv.name): self.conv.build([None, None, None, self.in_channels]) if getattr(self, "bn", None) is not None: with tf.name_scope(self.bn.name): self.bn.build((None, None, None, self.out_channels))
class_definition
47,572
49,345
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_tf_data2vec_vision.py
null
5,390
class TFAdaptiveAvgPool2D(keras.layers.Layer): def __init__(self, output_dims: Tuple[int, int], input_ordering: str = "NHWC", **kwargs): super().__init__(**kwargs) self.output_dims = output_dims self.input_ordering = input_ordering if input_ordering not in ("NCHW", "NHWC"): raise ValueError("Unrecognized input_ordering, should be 'NCHW' or 'NHWC'!") self.h_axis = input_ordering.index("H") self.w_axis = input_ordering.index("W") def pseudo_1d_pool(self, inputs: tf.Tensor, h_pooling: bool): # Figure out which axis we're pooling on if h_pooling: axis = self.h_axis output_dim = self.output_dims[0] else: axis = self.w_axis output_dim = self.output_dims[1] input_dim = inputs.shape[axis] # Figure out the potential pooling windows # This is the key idea - the torch op always uses only two # consecutive pooling window sizes, like 3 and 4. Therefore, # if we pool with both possible sizes, we simply need to gather # the 'correct' pool at each position to reimplement the torch op. small_window = math.ceil(input_dim / output_dim) big_window = small_window + 1 if h_pooling: output_dim = self.output_dims[0] small_window_shape = (small_window, 1) big_window_shape = (big_window, 1) else: output_dim = self.output_dims[1] small_window_shape = (1, small_window) big_window_shape = (1, big_window) # For resizes to 1, or integer resizes, we can take quick shortcuts if output_dim == input_dim: return inputs elif output_dim == 1: return tf.reduce_mean(inputs, axis=axis, keepdims=True) elif input_dim % output_dim == 0: return tf.nn.avg_pool2d( inputs, ksize=small_window_shape, strides=small_window_shape, padding="VALID", data_format=self.input_ordering, ) # When upscaling by an integer factor we can also take a quick shortcut elif output_dim > input_dim and output_dim % input_dim == 0: return tf.repeat(inputs, repeats=output_dim // input_dim, axis=axis) # For non-integer resizes, we pool with both possible window sizes and concatenate them if output_dim < input_dim: small_pool = tf.nn.avg_pool2d( inputs, ksize=small_window_shape, strides=1, padding="VALID", data_format=self.input_ordering ) big_pool = tf.nn.avg_pool2d( inputs, ksize=big_window_shape, strides=1, padding="VALID", data_format=self.input_ordering ) both_pool = tf.concat([small_pool, big_pool], axis=axis) else: # When we're actually upscaling instead, then we build the pools a bit differently small_pool = inputs big_pool = tf.nn.avg_pool2d( inputs, ksize=big_window_shape, strides=1, padding="VALID", data_format=self.input_ordering ) both_pool = tf.concat([small_pool, big_pool], axis=axis) # We compute vectors of the start and end positions for each pooling window # Each (start, end) pair here corresponds to a single output position window_starts = tf.math.floor((tf.range(output_dim, dtype=tf.float32) * input_dim) / output_dim) window_starts = tf.cast(window_starts, tf.int64) window_ends = tf.math.ceil((tf.range(1, output_dim + 1, dtype=tf.float32) * input_dim) / output_dim) window_ends = tf.cast(window_ends, tf.int64) # pool_selector is a boolean array of shape (output_dim,) where 1 indicates that output position # has a big receptive field and 0 indicates that that output position has a small receptive field pool_selector = tf.cast(window_ends - window_starts - small_window, tf.bool) # Since we concatenated the small and big pools, we need to do a bit of # pointer arithmetic to get the indices of the big pools small_indices = window_starts big_indices = window_starts + small_pool.shape[axis] # Finally, we use the pool_selector to generate a list of indices, one per output position gather_indices = tf.where(pool_selector, big_indices, small_indices) # Gathering from those indices yields the final, correct pooling return tf.gather(both_pool, gather_indices, axis=axis) def call(self, inputs: tf.Tensor): if self.input_ordering == "NHWC": input_shape = inputs.shape[1:3] else: input_shape = inputs.shape[2:] # We break the task down into each possible case # Firstly, if we're resizing down to 1, it's just tf.reduce_mean if self.output_dims[0] == self.output_dims[1] == 1: if self.input_ordering == "NHWC": reduce_dims = [1, 2] else: reduce_dims = [2, 3] return tf.reduce_mean(inputs, axis=reduce_dims, keepdims=True) # Secondly, if we're resizing by an integer factor on both dimensions, we can take a quick shortcut elif input_shape[0] % self.output_dims[0] == 0 and input_shape[1] % self.output_dims[1] == 0: h_resize = int(input_shape[0] // self.output_dims[0]) w_resize = int(input_shape[1] // self.output_dims[1]) return tf.nn.avg_pool2d( inputs, ksize=(h_resize, w_resize), strides=(h_resize, w_resize), padding="VALID", data_format=self.input_ordering, ) else: # Finally, if we can't take the shortcut, we do a 1D pool on each axis. pseudo_1d_pool will take a shortcut # for dimensions where an integer resize is possible. It can also handle upscaling. h_pooled = self.pseudo_1d_pool(inputs, h_pooling=True) return self.pseudo_1d_pool(h_pooled, h_pooling=False)
class_definition
49,348
55,476
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_tf_data2vec_vision.py
null
5,391
class TFData2VecVisionPyramidPoolingModule(keras.layers.Layer): """ Pyramid Pooling Module (PPM) used in PSPNet. Args: pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid Module. channels (int): Channels after modules, before conv_seg. Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__(self, pool_scales: Tuple[int, ...], in_channels: int, out_channels: int, **kwargs) -> None: super().__init__(**kwargs) self.pool_scales = pool_scales self.in_channels = in_channels self.out_channels = out_channels self.layer_list = [] for idx, pool_scale in enumerate(pool_scales): pool_scale = pool_scale if isinstance(pool_scale, collections.abc.Iterable) else (pool_scale, pool_scale) self.layer_list.append( [ TFAdaptiveAvgPool2D(output_dims=pool_scale), TFData2VecVisionConvModule( in_channels=in_channels, out_channels=self.out_channels, kernel_size=1, name=f"{idx}.1" ), ] ) def call(self, x: tf.Tensor) -> List[tf.Tensor]: ppm_outs = [] inputs = x for ppm in self.layer_list: for layer_module in ppm: ppm_out = layer_module(x) x = ppm_out upsampled_ppm_out = tf.image.resize(ppm_out, size=shape_list(inputs)[1:-1], method="bilinear") ppm_outs.append(upsampled_ppm_out) return ppm_outs def build(self, input_shape=None): for layer in self.layer_list: for layer_module in layer: with tf.name_scope(layer_module.name): layer_module.build(None)
class_definition
55,479
57,309
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_tf_data2vec_vision.py
null
5,392
class TFData2VecVisionUperHead(keras.layers.Layer): """ Unified Perceptual Parsing for Scene Understanding. This head is the implementation of [UPerNet](https://arxiv.org/abs/1807.10221). Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__(self, config: Data2VecVisionConfig, **kwargs) -> None: super().__init__(**kwargs) self.pool_scales = config.pool_scales # e.g. (1, 2, 3, 6) self.in_channels = [config.hidden_size] * 4 # e.g. [768, 768, 768, 768] self.channels = config.hidden_size self.classifier = keras.layers.Conv2D(config.num_labels, kernel_size=1, name="classifier") # PSP Module self.psp_modules = TFData2VecVisionPyramidPoolingModule( self.pool_scales, self.in_channels[-1], self.channels, name="psp_modules" ) self.bottleneck = TFData2VecVisionConvModule( self.in_channels[-1] + len(self.pool_scales) * self.channels, self.channels, kernel_size=3, padding="same", name="bottleneck", ) # FPN Module self.lateral_convs = [] self.fpn_convs = [] for idx, in_channels in enumerate(self.in_channels[:-1]): # skip the top layer l_conv = TFData2VecVisionConvModule( in_channels, out_channels=self.channels, kernel_size=1, name=f"lateral_convs.{idx}" ) fpn_conv = TFData2VecVisionConvModule( in_channels=self.channels, out_channels=self.channels, kernel_size=3, padding="same", name=f"fpn_convs.{idx}", ) self.lateral_convs.append(l_conv) self.fpn_convs.append(fpn_conv) self.fpn_bottleneck = TFData2VecVisionConvModule( in_channels=len(self.in_channels) * self.channels, out_channels=self.channels, kernel_size=3, padding="same", name="fpn_bottleneck", ) def psp_forward(self, inputs): x = inputs[-1] psp_outs = [x] psp_outs.extend(self.psp_modules(x)) psp_outs = tf.concat(psp_outs, axis=-1) output = self.bottleneck(psp_outs) return output def call(self, encoder_hidden_states: tf.Tensor) -> tf.Tensor: # build laterals laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)] laterals.append(self.psp_forward(encoder_hidden_states)) # build top-down path used_backbone_levels = len(laterals) for i in range(used_backbone_levels - 1, 0, -1): prev_shape = shape_list(laterals[i - 1])[1:-1] laterals[i - 1] = laterals[i - 1] + tf.image.resize(laterals[i], size=prev_shape, method="bilinear") # build outputs fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)] # append psp feature fpn_outs.append(laterals[-1]) for i in range(used_backbone_levels - 1, 0, -1): fpn_outs[i] = tf.image.resize(fpn_outs[i], size=shape_list(fpn_outs[0])[1:-1], method="bilinear") fpn_outs = tf.concat(fpn_outs, axis=-1) output = self.fpn_bottleneck(fpn_outs) output = self.classifier(output) return output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, None, self.channels]) if getattr(self, "psp_modules", None) is not None: with tf.name_scope(self.psp_modules.name): self.psp_modules.build(None) if getattr(self, "bottleneck", None) is not None: with tf.name_scope(self.bottleneck.name): self.bottleneck.build(None) if getattr(self, "fpn_bottleneck", None) is not None: with tf.name_scope(self.fpn_bottleneck.name): self.fpn_bottleneck.build(None) for layer in self.lateral_convs: with tf.name_scope(layer.name): layer.build(None) for layer in self.fpn_convs: with tf.name_scope(layer.name): layer.build(None)
class_definition
57,312
61,729
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_tf_data2vec_vision.py
null
5,393
class TFData2VecVisionFCNHead(keras.layers.Layer): """ Fully Convolution Networks for Semantic Segmentation. This head is implemented from [FCNNet](https://arxiv.org/abs/1411.4038). Args: config (Data2VecVisionConfig): Configuration. kernel_size (int): The kernel size for convs in the head. Default: 3. dilation (int): The dilation rate for convs in the head. Default: 1. Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__( self, config: Data2VecVisionConfig, in_index: int = 2, kernel_size: int = 3, dilation: Union[int, Tuple[int, int]] = 1, **kwargs, ) -> None: super().__init__(**kwargs) self.in_channels = config.hidden_size self.channels = config.auxiliary_channels self.num_convs = config.auxiliary_num_convs self.concat_input = config.auxiliary_concat_input self.in_index = in_index convs = [] convs.append( TFData2VecVisionConvModule( in_channels=self.in_channels, out_channels=self.channels, kernel_size=kernel_size, padding="same", dilation=dilation, name="convs.0", ) ) for i in range(self.num_convs - 1): convs.append( TFData2VecVisionConvModule( in_channels=self.channels, out_channels=self.channels, kernel_size=kernel_size, padding="same", dilation=dilation, name=f"conv_module_{i+2}", ) ) if self.num_convs == 0: self.convs = [tf.identity] else: self.convs = convs if self.concat_input: self.conv_cat = TFData2VecVisionConvModule( self.in_channels + self.channels, out_channels=self.channels, kernel_size=kernel_size, padding="same", name="conv_cat", ) self.classifier = keras.layers.Conv2D(config.num_labels, kernel_size=1, name="classifier") def call(self, encoder_hidden_states: tf.Tensor) -> tf.Tensor: # just take the relevant feature maps hidden_states = encoder_hidden_states[self.in_index] output = hidden_states for layer_module in self.convs: output = layer_module(output) if self.concat_input: output = self.conv_cat(tf.concat([hidden_states, output], axis=-1)) output = self.classifier(output) return output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, None, self.channels]) if getattr(self, "conv_cat", None) is not None: with tf.name_scope(self.conv_cat.name): self.conv_cat.build(None)
class_definition
61,732
64,901
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_tf_data2vec_vision.py
null
5,394
class TFData2VecVisionForSemanticSegmentation(TFData2VecVisionPreTrainedModel): def __init__(self, config: Data2VecVisionConfig, *inputs, **kwargs) -> None: super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.data2vec_vision = TFData2VecVisionMainLayer(config, add_pooling_layer=False, name="data2vec_vision") # FPNs self.fpn1 = [ keras.layers.Conv2DTranspose(config.hidden_size, kernel_size=2, strides=2, name="fpn1.0"), keras.layers.BatchNormalization(name="fpn1.1", momentum=0.9, epsilon=1e-5), keras.layers.Activation("gelu"), keras.layers.Conv2DTranspose(config.hidden_size, kernel_size=2, strides=2, name="fpn1.3"), ] self.fpn2 = [keras.layers.Conv2DTranspose(config.hidden_size, kernel_size=2, strides=2, name="fpn2.0")] self.fpn3 = tf.identity self.fpn4 = keras.layers.MaxPool2D(pool_size=2, strides=2) # Semantic segmentation head(s) self.decode_head = TFData2VecVisionUperHead(config, name="decode_head") self.auxiliary_head = ( TFData2VecVisionFCNHead(config, name="auxiliary_head") if config.use_auxiliary_head else None ) def compute_loss(self, logits, auxiliary_logits, labels): # upsample logits to the images' original size if len(shape_list(labels)) > 3: label_interp_shape = shape_list(labels)[1:-1] else: label_interp_shape = shape_list(labels)[-2:] upsampled_logits = tf.image.resize(logits, size=label_interp_shape, method="bilinear") if auxiliary_logits is not None: upsampled_auxiliary_logits = tf.image.resize(auxiliary_logits, size=label_interp_shape, method="bilinear") # compute weighted loss loss_fct = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction="none") # Copied from https://www.tensorflow.org/text/tutorials/transformer#loss_and_metrics. # Utility to mask the index to ignore during computing the loss. def masked_loss(real, pred): mask = tf.math.logical_not(tf.math.equal(real, self.config.semantic_loss_ignore_index)) loss_ = loss_fct(real, pred) mask = tf.cast(mask, dtype=loss_.dtype) loss_ *= mask reduced_masked_loss = tf.reduce_sum(loss_) / tf.reduce_sum(mask) return tf.reshape(reduced_masked_loss, (1,)) main_loss = masked_loss(labels, upsampled_logits) auxiliary_loss = masked_loss(labels, upsampled_auxiliary_logits) loss = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss return loss @unpack_inputs @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) def call( self, pixel_values: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, labels: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, TFSemanticSegmenterOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, height, width)`, *optional*): Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, TFData2VecVisionForSemanticSegmentation >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("facebook/data2vec-vision-base") >>> model = TFData2VecVisionForSemanticSegmentation.from_pretrained("facebook/data2vec-vision-base") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> # logits are of shape (batch_size, num_labels, height, width) >>> logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if labels is not None and self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one") outputs = self.data2vec_vision( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] # only keep certain features, and reshape # note that we do +1 as the encoder_hidden_states also includes the initial embeddings features = [feature for idx, feature in enumerate(encoder_hidden_states) if idx + 1 in self.config.out_indices] patch_resolution = self.config.image_size // self.config.patch_size def reshape_features(x): # We do it this way so TF can always infer the non-batch dims at compile time x = tf.reshape(x, (-1, patch_resolution, patch_resolution, self.config.hidden_size)) return x features = [reshape_features(x[:, 1:, :]) for x in features] # apply FPNs ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4] for module in ops[0]: features[0] = module(features[0]) features[1] = ops[1][0](features[1]) for i in range(len(features[2:])): features[i + 2] = ops[i + 2](features[i + 2]) logits = self.decode_head(features) # Tranpose the logits to maintain consistency in the output formats. transposed_logits = tf.transpose(logits, perm=[0, 3, 1, 2]) auxiliary_logits = None if self.auxiliary_head is not None: auxiliary_logits = self.auxiliary_head(features) loss = None if labels is not None: loss = self.compute_loss(logits, auxiliary_logits, labels) if not return_dict: if output_hidden_states: output = (logits,) + outputs[1:] else: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSemanticSegmenterOutput( loss=loss, logits=transposed_logits, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "data2vec_vision", None) is not None: with tf.name_scope(self.data2vec_vision.name): self.data2vec_vision.build(None) if getattr(self, "decode_head", None) is not None: with tf.name_scope(self.decode_head.name): self.decode_head.build(None) if getattr(self, "auxiliary_head", None) is not None: with tf.name_scope(self.auxiliary_head.name): self.auxiliary_head.build(None) if getattr(self, "fpn1", None) is not None: with tf.name_scope(self.fpn1[0].name): self.fpn1[0].build([None, None, None, self.config.hidden_size]) with tf.name_scope(self.fpn1[1].name): self.fpn1[1].build((None, None, None, self.config.hidden_size)) with tf.name_scope(self.fpn1[3].name): self.fpn1[3].build([None, None, None, self.config.hidden_size]) if getattr(self, "fpn2", None) is not None: with tf.name_scope(self.fpn2[0].name): self.fpn2[0].build([None, None, None, self.config.hidden_size])
class_definition
65,090
73,347
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_tf_data2vec_vision.py
null
5,395
class Data2VecVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Data2VecVisionModel`]. It is used to instantiate an Data2VecVision model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Data2VecVision [facebook/data2vec-vision-base](https://huggingface.co/facebook/data2vec-vision-base) architecture. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to 3): The number of input channels. use_mask_token (`bool`, *optional*, defaults to `False`): Whether to use a mask token for masked image modeling. use_absolute_position_embeddings (`bool`, *optional*, defaults to `False`): Whether to use BERT-style absolute position embeddings. use_relative_position_bias (`bool`, *optional*, defaults to `False`): Whether to use T5-style relative position embeddings in the self-attention layers. use_shared_relative_position_bias (`bool`, *optional*, defaults to `False`): Whether to use the same relative position embeddings across all self-attention layers of the Transformer. layer_scale_init_value (`float`, *optional*, defaults to 0.1): Scale to use in the self-attention layers. 0.1 for base, 1e-5 for large. Set 0 to disable layer scale. drop_path_rate (`float`, *optional*, defaults to 0.1): Stochastic depth rate per sample (when applied in the main path of residual layers). use_mean_pooling (`bool`, *optional*, defaults to `True`): Whether to mean pool the final hidden states of the patches instead of using the final hidden state of the CLS token, before applying the classification head. out_indices (`List[int]`, *optional*, defaults to `[3, 5, 7, 11]`): Indices of the feature maps to use for semantic segmentation. pool_scales (`Tuple[int]`, *optional*, defaults to `[1, 2, 3, 6]`): Pooling scales used in Pooling Pyramid Module applied on the last feature map. use_auxiliary_head (`bool`, *optional*, defaults to `True`): Whether to use an auxiliary head during training. auxiliary_loss_weight (`float`, *optional*, defaults to 0.4): Weight of the cross-entropy loss of the auxiliary head. auxiliary_channels (`int`, *optional*, defaults to 256): Number of channels to use in the auxiliary head. auxiliary_num_convs (`int`, *optional*, defaults to 1): Number of convolutional layers to use in the auxiliary head. auxiliary_concat_input (`bool`, *optional*, defaults to `False`): Whether to concatenate the output of the auxiliary head with the input before the classification layer. semantic_loss_ignore_index (`int`, *optional*, defaults to 255): The index that is ignored by the loss function of the semantic segmentation model. Example: ```python >>> from transformers import Data2VecVisionConfig, Data2VecVisionModel >>> # Initializing a Data2VecVision data2vec_vision-base-patch16-224-in22k style configuration >>> configuration = Data2VecVisionConfig() >>> # Initializing a model (with random weights) from the data2vec_vision-base-patch16-224-in22k style configuration >>> model = Data2VecVisionModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "data2vec-vision" def __init__( self, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-12, image_size=224, patch_size=16, num_channels=3, use_mask_token=False, use_absolute_position_embeddings=False, use_relative_position_bias=False, use_shared_relative_position_bias=False, layer_scale_init_value=0.1, drop_path_rate=0.1, use_mean_pooling=True, out_indices=[3, 5, 7, 11], pool_scales=[1, 2, 3, 6], use_auxiliary_head=True, auxiliary_loss_weight=0.4, auxiliary_channels=256, auxiliary_num_convs=1, auxiliary_concat_input=False, semantic_loss_ignore_index=255, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.use_mask_token = use_mask_token self.use_absolute_position_embeddings = use_absolute_position_embeddings self.use_relative_position_bias = use_relative_position_bias self.use_shared_relative_position_bias = use_shared_relative_position_bias self.layer_scale_init_value = layer_scale_init_value self.drop_path_rate = drop_path_rate self.use_mean_pooling = use_mean_pooling # decode head attributes (semantic segmentation) self.out_indices = out_indices self.pool_scales = pool_scales # auxiliary head attributes (semantic segmentation) self.use_auxiliary_head = use_auxiliary_head self.auxiliary_loss_weight = auxiliary_loss_weight self.auxiliary_channels = auxiliary_channels self.auxiliary_num_convs = auxiliary_num_convs self.auxiliary_concat_input = auxiliary_concat_input self.semantic_loss_ignore_index = semantic_loss_ignore_index
class_definition
931
8,759
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/configuration_data2vec_vision.py
null
5,396
class Data2VecVisionOnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def atol_for_validation(self) -> float: return 1e-4
class_definition
8,832
9,239
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/configuration_data2vec_vision.py
null
5,397
class Data2VecTextForTextEmbeddings(nn.Module): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False ) # End copy self.padding_idx = config.pad_token_id self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx ) def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 ): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape)
class_definition
1,907
6,099
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_text.py
null
5,398
class Data2VecTextSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) use_cache = past_key_value is not None if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": query_length, key_length = query_layer.shape[2], key_layer.shape[2] if use_cache: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( -1, 1 ) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in Data2VecTextModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs
class_definition
6,209
13,567
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/data2vec/modeling_data2vec_text.py
null
5,399