text
stringlengths
1
1.02k
class_index
int64
0
10.8k
source
stringlengths
85
188
def check_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, state_dict: Dict[str, Any], **kwargs, ) -> bool: param_device = kwargs.pop("param_device", None) # check if the param_name is not in self.modules_to_not_convert if any((key + "." in param_name) or (key == param_name) for key in self.modules_to_not_convert): return False elif param_device == "cpu" and self.offload: # We don't quantize weights that we offload return False else: # we only quantize the weight of nn.Linear module, tensor_name = get_module_from_name(model, param_name) return isinstance(module, torch.nn.Linear) and (tensor_name == "weight")
345
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_torchao.py
def create_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, target_device: "torch.device", state_dict: Dict[str, Any], unexpected_keys: List[str], ): """ Each nn.Linear layer that needs to be quantized is processsed here. First, we set the value the weight tensor, then we move it to the target device. Finally, we quantize the module. """ from torchao.quantization import quantize_ module, tensor_name = get_module_from_name(model, param_name)
345
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_torchao.py
if self.pre_quantized: module._parameters[tensor_name] = torch.nn.Parameter(param_value.to(device=target_device)) if isinstance(module, nn.Linear): module.extra_repr = types.MethodType(_linear_extra_repr, module) else: module._parameters[tensor_name] = torch.nn.Parameter(param_value).to(device=target_device) quantize_(module, self.quantization_config.get_apply_tensor_subclass()) def _process_model_after_weight_loading(self, model, **kwargs): """No process required for torchao quantized model""" return
345
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_torchao.py
def is_serializable(self, safe_serialization=None): if safe_serialization: logger.warning( "torchao quantized model does not support safe serialization, " "please set `safe_serialization` to False" ) return False _is_torchao_serializable = version.parse(importlib.metadata.version("huggingface_hub")) >= version.parse( "0.25.0" ) if not _is_torchao_serializable: logger.warning("torchao quantized model is only serializable after huggingface_hub >= 0.25.0 ") if self.offload and self.quantization_config.modules_to_not_convert is None: logger.warning( "The model contains offloaded modules and these modules are not quantized. We don't recommend saving the model as we won't be able to reload them." "If you want to specify modules to not quantize, please specify modules_to_not_convert in the quantization_config." )
345
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_torchao.py
return False return _is_torchao_serializable
345
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_torchao.py
@property def is_trainable(self): supported_quant_types_for_training = [ "int8_weight_only", "int8_dynamic_activation_int8_weight", ] return self.quantization_config.quant_type in supported_quant_types_for_training
345
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_torchao.py
class GptqHfQuantizer(HfQuantizer): """ Quantizer of the GPTQ method - for GPTQ the quantizer support calibration of the model through `auto_gptq` or `gptqmodel` package. Quantization is done under the hood for users if they load a non-prequantized model. """ requires_calibration = False required_packages = ["optimum", "auto_gptq", "gptqmodel"] optimum_quantizer = None def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): super().__init__(quantization_config, **kwargs) if not is_optimum_available(): raise ImportError("Loading a GPTQ quantized model requires optimum (`pip install optimum`)") from optimum.gptq import GPTQQuantizer self.optimum_quantizer = GPTQQuantizer.from_dict(self.quantization_config.to_dict_optimum())
346
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_gptq.py
def validate_environment(self, *args, **kwargs): if not is_optimum_available(): raise ImportError("Loading a GPTQ quantized model requires optimum (`pip install optimum`)") if is_auto_gptq_available() and is_gptqmodel_available(): logger.warning("Detected gptqmodel and auto-gptq, will use gptqmodel")
346
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_gptq.py
gptq_supports_cpu = ( is_auto_gptq_available() and version.parse(importlib.metadata.version("auto-gptq")) > version.parse("0.4.2") ) or is_gptqmodel_available() if not gptq_supports_cpu and not torch.cuda.is_available(): raise RuntimeError("GPU is required to quantize or run quantize model.") elif not (is_auto_gptq_available() or is_gptqmodel_available()): raise ImportError( "Loading a GPTQ quantized model requires gptqmodel (`pip install gptqmodel`) or auto-gptq (`pip install auto-gptq`) library. " ) elif is_auto_gptq_available() and version.parse(importlib.metadata.version("auto_gptq")) < version.parse( "0.4.2" ): raise ImportError( "You need a version of auto_gptq >= 0.4.2 to use GPTQ: `pip install --upgrade auto-gptq` or use gptqmodel by `pip install gptqmodel>=1.4.3`." ) elif is_gptqmodel_available() and (
346
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_gptq.py
version.parse(importlib.metadata.version("gptqmodel")) < version.parse("1.4.3") or version.parse(importlib.metadata.version("optimum")) < version.parse("1.23.99") ): raise ImportError("The gptqmodel version should be >= 1.4.3, optimum version should >= 1.24.0")
346
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_gptq.py
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: torch_dtype = torch.float16 logger.info("Loading the model in `torch.float16`. To overwrite it, set `torch_dtype` manually.") elif torch_dtype != torch.float16: logger.info("We suggest you to set `torch_dtype=torch.float16` for better efficiency with GPTQ.") return torch_dtype def update_device_map(self, device_map): if device_map is None: device_map = {"": torch.device("cpu")} # Only with auto-gptq do not support CPU, we should move the model to cuda if available. if not is_gptqmodel_available() and device_map in ("cpu", {"": torch.device("cpu")}): device_map == {"": 0} return device_map
346
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_gptq.py
def _process_model_before_weight_loading(self, model: "PreTrainedModel", **kwargs): if model.__class__.main_input_name != "input_ids": raise RuntimeError("We can only quantize pure text model.") if self.pre_quantized: model = self.optimum_quantizer.convert_model(model, **kwargs) def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): if self.pre_quantized: model = self.optimum_quantizer.post_init_model(model) else: if self.quantization_config.tokenizer is None: self.quantization_config.tokenizer = model.name_or_path self.optimum_quantizer.quantize_model(model, self.quantization_config.tokenizer) model.config.quantization_config = GPTQConfig.from_dict(self.optimum_quantizer.to_dict()) @property def is_trainable(self, model: Optional["PreTrainedModel"] = None): return True
346
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_gptq.py
def is_serializable(self, safe_serialization=None): return True
346
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_gptq.py
class QuantoHfQuantizer(HfQuantizer): """ Quantizer for the quanto library """ required_packages = ["quanto", "accelerate"] requires_parameters_quantization = True requires_calibration = False def __init__(self, quantization_config: QuantoConfig, **kwargs): super().__init__(quantization_config, **kwargs) self.post_init() def post_init(self): r""" Safety checker """ if self.quantization_config.activations is not None and not self.pre_quantized: raise ValueError( "We don't support quantizing the activations with transformers library." "Use quanto library for more complex use cases such as activations quantization, calibration and quantization aware training." )
347
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_quanto.py
def validate_environment(self, *args, **kwargs): if not is_optimum_quanto_available(): raise ImportError( "Loading an optimum-quanto quantized model requires optimum-quanto library (`pip install optimum-quanto`)" ) if not is_accelerate_available(): raise ImportError( "Loading an optimum-quanto quantized model requires accelerate library (`pip install accelerate`)" ) def update_device_map(self, device_map): if device_map is None: device_map = {"": "cpu"} logger.info( "The device_map was not initialized. " "Setting device_map to {'':'cpu'}. " "If you want to use the model for inference, please set device_map ='auto'" ) return device_map
347
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_quanto.py
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: logger.info("You did not specify `torch_dtype` in `from_pretrained`. Setting it to `torch.float32`.") torch_dtype = torch.float32 return torch_dtype def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]: if is_optimum_quanto_available(): from optimum.quanto import QModuleMixin
347
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_quanto.py
not_missing_keys = [] for name, module in model.named_modules(): if isinstance(module, QModuleMixin): for missing in missing_keys: if ( (name in missing or name in f"{prefix}.{missing}") and not missing.endswith(".weight") and not missing.endswith(".bias") ): not_missing_keys.append(missing) return [k for k in missing_keys if k not in not_missing_keys] def check_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, state_dict: Dict[str, Any], **kwargs, ) -> bool: """ Check if a parameter needs to be quantized. """ if is_optimum_quanto_available(): from optimum.quanto import QModuleMixin
347
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_quanto.py
device_map = kwargs.get("device_map", None) param_device = kwargs.get("param_device", None) # we don't quantize the model if the module is going to be offloaded to the cpu if device_map is not None and param_device is not None: device_map_values = set(device_map.values()) if param_device == "cpu" and len(device_map_values) > 1: if not (device_map_values == {"cpu"} or device_map_values == {"cpu", "disk"}): return False module, tensor_name = get_module_from_name(model, param_name) # We only quantize the weights and the bias is not quantized. if isinstance(module, QModuleMixin) and "weight" in tensor_name: # if the weights are quantized, don't need to recreate it again with `create_quantized_param` return not module.frozen else: return False
347
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_quanto.py
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: max_memory = {key: val * 0.90 for key, val in max_memory.items()} return max_memory def create_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, target_device: "torch.device", *args, **kwargs, ): """ Create the quantized parameter by calling .freeze() after setting it to the module. """ from accelerate.utils import set_module_tensor_to_device set_module_tensor_to_device(model, param_name, target_device, param_value) module, _ = get_module_from_name(model, param_name) module.freeze() module.weight.requires_grad = False
347
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_quanto.py
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": if version.parse(importlib.metadata.version("accelerate")) > version.parse("0.27.0"): from accelerate.utils import CustomDtype mapping = { "int8": torch.int8, "float8": CustomDtype.FP8, "int4": CustomDtype.INT4, "int2": CustomDtype.INT2, } target_dtype = mapping[self.quantization_config.weights] return target_dtype else: raise ValueError( "You are using `device_map='auto'` on an optimum-quanto quantized model. To automatically compute" " the appropriate device map, you should upgrade your `accelerate` library," "`pip install --upgrade accelerate` or install it from source." )
347
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_quanto.py
def _process_model_before_weight_loading( self, model: "PreTrainedModel", keep_in_fp32_modules: List[str] = [], **kwargs ): from ..integrations import get_keys_to_not_convert, replace_with_quanto_layers # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if self.quantization_config.modules_to_not_convert is None: self.modules_to_not_convert = get_keys_to_not_convert(model) else: self.modules_to_not_convert = self.quantization_config.modules_to_not_convert if not isinstance(self.modules_to_not_convert, list): self.modules_to_not_convert = [self.modules_to_not_convert] self.modules_to_not_convert.extend(keep_in_fp32_modules) model, _ = replace_with_quanto_layers( model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config ) model.config.quantization_config = self.quantization_config
347
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_quanto.py
def _process_model_after_weight_loading(self, model, **kwargs): return model @property def is_trainable(self, model: Optional["PreTrainedModel"] = None): return True def is_serializable(self, safe_serialization=None): return False
347
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_quanto.py
class EetqHfQuantizer(HfQuantizer): """ 8-bit quantization from EETQ quantization method: before loading: converts transformer layers into W8A16Linear during loading: load 16bit weight and pass to the layer object after: quantizes individual weights in Linear8bitLt into 8bit at first .cuda() call """ requires_parameters_quantization = True requires_calibration = False required_packages = ["eetq", "accelerate"] def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) self.quantization_config = quantization_config def validate_environment(self, *args, **kwargs): if not is_eetq_available(): raise ImportError( "Using `eetq` 8-bit quantization requires eetq." "Please install the latest version of eetq from : https://github.com/NetEase-FuXi/EETQ" )
348
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_eetq.py
try: import eetq # noqa: F401 except ImportError as exc: if "shard_checkpoint" in str(exc): # EETQ 1.0.0 is currently broken with the latest transformers because it tries to import the removed # shard_checkpoint function, see https://github.com/NetEase-FuXi/EETQ/issues/34. # TODO: Update message once eetq releases a fix raise ImportError( "You are using a version of EETQ that is incompatible with the current transformers version. " "Either downgrade transformers to <= v4.46.3 or, if available, upgrade EETQ to > v1.0.0." ) from exc else: raise if not is_accelerate_available(): raise ImportError("Loading an EETQ quantized model requires accelerate (`pip install accelerate`)")
348
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_eetq.py
if kwargs.get("from_tf", False) or kwargs.get("from_flax", False): raise ValueError( "Converting into 8-bit weights from tf/flax weights is currently not supported, please make" " sure the weights are in PyTorch format." ) if not torch.cuda.is_available(): raise RuntimeError("No GPU found. A GPU is needed for quantization.")
348
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_eetq.py
device_map = kwargs.get("device_map", None) if device_map is None: logger.warning_once( "You have loaded an EETQ model on CPU and have a CUDA device available, make sure to set " "your model on a GPU device in order to run your model." ) elif device_map is not None: if isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()): raise ValueError( "You are attempting to load an EETQ model with a device_map that contains a CPU or disk device." " This is not supported. Please remove the CPU or disk device from the device_map." )
348
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_eetq.py
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: torch_dtype = torch.float16 logger.info( "Overriding torch_dtype=%s with `torch_dtype=torch.float16` due to " "requirements of `eetq` to enable model loading in 8-bit. " "Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass" " torch_dtype=torch.float16 to remove this warning.", torch_dtype, ) elif torch_dtype != torch.float16: logger.info("We suggest you to set `torch_dtype=torch.float16` for better efficiency with EETQ.") return torch_dtype def check_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, state_dict: Dict[str, Any], **kwargs, ): from eetq import EetqLinear
348
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_eetq.py
module, tensor_name = get_module_from_name(model, param_name) if isinstance(module, EetqLinear): if self.pre_quantized or tensor_name == "bias": if tensor_name == "weight" and param_value.dtype != torch.int8: raise ValueError("Expect quantized weights but got an unquantized weight") return False else: if tensor_name == "weight_scale": raise ValueError("Expect unquantized weights but got a quantized weight_scale") return True return False def create_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, target_device: "torch.device", state_dict: Dict[str, Any], unexpected_keys: Optional[List[str]] = None, ): """ quantizes weights into qweight and weight_scales """ from eetq import quantize_and_preprocess_weights
348
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_eetq.py
module, tensor_name = get_module_from_name(model, param_name) new_value, weight_scale = quantize_and_preprocess_weights(param_value) module._buffers[tensor_name] = new_value.to(target_device) module.register("weight_scales", weight_scale.to(target_device)) def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): return model def _process_model_before_weight_loading( self, model: "PreTrainedModel", device_map, keep_in_fp32_modules: List[str] = [], **kwargs, ): from ..integrations import get_keys_to_not_convert, replace_with_eetq_linear self.modules_to_not_convert = get_keys_to_not_convert(model) if self.quantization_config.modules_to_not_convert is not None: self.modules_to_not_convert.extend(self.quantization_config.modules_to_not_convert)
348
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_eetq.py
model = replace_with_eetq_linear( model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config, pre_quantized=self.pre_quantized, ) model.config.quantization_config = self.quantization_config def is_serializable(self, safe_serialization=None): return True @property def is_trainable(self) -> bool: return True
348
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_eetq.py
class BitNetHfQuantizer(HfQuantizer): """ 1.58-bit quantization from BitNet quantization method: Before loading: it converts the linear layers into BitLinear layers during loading. Checkout the paper introducing this method : https://arxiv.org/pdf/2402.17764 """ requires_parameters_quantization = False requires_calibration = True required_packages = ["accelerate"] def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) self.quantization_config = quantization_config def validate_environment(self, *args, **kwargs): if not is_accelerate_available(): raise ImportError("Loading a BitNet quantized model requires accelerate (`pip install accelerate`)")
349
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bitnet.py
if kwargs.get("from_tf", False) or kwargs.get("from_flax", False): raise ValueError( "Loading ternary weights from tf/flax is currently not supported, please make" " sure the weights are in PyTorch format." ) if not torch.cuda.is_available(): logger.warning_once( "You don't have a GPU available to load the model, the inference will be slow because of weight unpacking" ) return
349
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bitnet.py
device_map = kwargs.get("device_map", None) if device_map is None: logger.warning_once( "You have loaded a BitNet model on CPU and have a CUDA device available, make sure to set " "your model on a GPU device in order to run your model." ) elif device_map is not None: if isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()): raise ValueError( "You are attempting to load a BitNet model with a device_map that contains a CPU or disk device." "This is not supported. Please remove the CPU or disk device from the device_map." ) def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): return model
349
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bitnet.py
def _process_model_before_weight_loading( self, model: "PreTrainedModel", device_map, keep_in_fp32_modules: List[str] = [], **kwargs, ): from ..integrations import get_keys_to_not_convert, replace_with_bitnet_linear self.modules_to_not_convert = get_keys_to_not_convert(model) if self.quantization_config.modules_to_not_convert is not None: self.modules_to_not_convert.extend(self.quantization_config.modules_to_not_convert) model = replace_with_bitnet_linear( model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config, pre_quantized=self.pre_quantized, ) def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: max_memory = {key: val * 0.90 for key, val in max_memory.items()} return max_memory
349
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bitnet.py
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": target_dtype = torch.int8 return target_dtype def is_serializable(self, safe_serialization=None): return True @property def is_trainable(self) -> bool: return False
349
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bitnet.py
class AqlmHfQuantizer(HfQuantizer): """ Quantizer of the AQLM method. Enables the loading of prequantized models. """ requires_calibration = True required_packages = ["aqlm"] optimum_quantizer = None def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): super().__init__(quantization_config, **kwargs) self.quantization_config = quantization_config def validate_environment(self, *args, **kwargs): if not is_accelerate_available(): raise ImportError("Using `aqlm` quantization requires Accelerate: `pip install accelerate`") if not is_aqlm_available(): raise ImportError("Using `aqlm` quantization requires AQLM: `pip install aqlm[gpu,cpu]`")
350
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_aqlm.py
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: if torch.cuda.is_available(): torch_dtype = torch.float16 logger.info( "CUDA available. Assuming AQLM inference on GPU and loading the model in `torch.float16`. To overwrite it, set `torch_dtype` manually." ) else: torch_dtype = torch.float32 logger.info( "CUDA is unavailable. Assuming AQLM inference on CPU and loading the model in `torch.float32`. To overwrite it, set `torch_dtype` manually." ) return torch_dtype
350
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_aqlm.py
def _process_model_before_weight_loading( self, model: "PreTrainedModel", **kwargs, ): replace_with_aqlm_linear( model, quantization_config=self.quantization_config, linear_weights_not_to_quantize=self.quantization_config.linear_weights_not_to_quantize, ) model.config.quantization_config = self.quantization_config def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): return model
350
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_aqlm.py
@property def is_trainable(self, model: Optional["PreTrainedModel"] = None): aqlm_supports_training = version.parse(importlib.metadata.version("aqlm")) >= version.parse("1.0.2") if aqlm_supports_training: return True else: logger.warning( f"Currently installed `aqlm` version ({importlib.metadata.version('aqlm')}) doesn't support training. If you wish to train a quantized model, please update `aqlm` with `pip install aqlm>=1.0.2`" ) return False def is_serializable(self, safe_serialization=None): return True
350
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_aqlm.py
class HqqHfQuantizer(HfQuantizer): """ HQQ quantizer base HF class. nn.Linear modules are first tagged with quant_config in _process_model_before_weight_loading(). The actual quantization and offloading to the GPU is done in check_quantized_param(). """ use_keep_in_fp32_modules = False requires_parameters_quantization = True requires_calibration = False required_packages = ["hqq"] def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) self.torch_dtype = None self.using_multi_gpu = False def validate_environment(self, *args, **kwargs): if not (is_hqq_available()): raise ImportError( "A valid HQQ version (>=0.2.1) is not available. Please follow the instructions to install it: `https://github.com/mobiusml/hqq/`." )
351
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_hqq.py
if kwargs.get("from_tf", False) or kwargs.get("from_flax", False): raise ValueError( "Converting weights from tf/flax weights is currently not supported, please make" " sure the weights are in PyTorch format." ) if not torch.cuda.is_available(): raise RuntimeError("No GPU found. A GPU is needed for quantization.") if self.torch_dtype is None: if "torch_dtype" in kwargs: self.torch_dtype = kwargs["torch_dtype"] else: self.torch_dtype = torch.float32 logger.info("Setting torch_dtype to torch.float32 as the default value since it was not specified.")
351
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_hqq.py
device_map = kwargs.get("device_map", None) if isinstance(device_map, dict): if "cpu" in device_map.values() or "disk" in device_map.values(): raise ValueError( "You are attempting to use an HQQ model with a device_map that contains a CPU or disk device." " This is not supported. Please remove the CPU or disk device from the device_map." ) else: self.using_multi_gpu = len(set(device_map.values())) > 1 def update_missing_keys( self, model: "PreTrainedModel", missing_keys: List[str], prefix: str, **kwargs ) -> List[str]: if self.pre_quantized: return [key for key in missing_keys if ("weight" not in key)] else: return missing_keys
351
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_hqq.py
# Adds missing keys for HQQLinear modules that are loaded but the model with initialized with torch.nn.Linear def update_expected_keys( self, model: "PreTrainedModel", expected_keys: List[str], loaded_keys: List[str] ) -> List[str]: if not self.pre_quantized: return expected_keys # Collects all quantizable (linear) layers def _find_hqq_quantizable_layers(model, layers): for name, module in model.named_children(): if isinstance(module, (torch.nn.Linear)): layers.add(module.name) _find_hqq_quantizable_layers(module, layers) new_keys = set(expected_keys) if is_hqq_available(): from hqq.core.quantize import HQQLinear # Name modules for name, module in model.named_modules(): module.name = name
351
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_hqq.py
# valid modules are Linear layers that have HQQLinear state_dict. We ignore skip_modules and any layers with Linear state_dict() params _valid_modules = set() _find_hqq_quantizable_layers(model, _valid_modules) _valid_modules -= set(model.config.quantization_config["skip_modules"]) # Append new expected layers based on _ref_keys _ref_keys = HQQLinear( linear_layer=None, quant_config=None, compute_dtype=torch.float16, device="cpu" ).state_dict_keys() - {"bias"} # Clean-up _rm_keys = set() for key in new_keys: if any(_module in key for _module in _valid_modules): _rm_keys.add(key) new_keys -= _rm_keys # At this point, new_keys contains all the keys of the layers that are NOT HQQLinear or torch.nn.Linear
351
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_hqq.py
# Re-populate Linear/HQQLinear for _module in _valid_modules: if _module + ".weight" in loaded_keys: new_keys.add(_module + ".weight") else: new_keys.update({_module + "." + _ref_key for _ref_key in _ref_keys}) if _module + ".bias" in loaded_keys: new_keys.add(_module + ".bias") return list(new_keys) def check_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, state_dict: Dict[str, Any], **kwargs, ) -> bool: if is_hqq_available(): from hqq.core.quantize import HQQLinear module, tensor_name = get_module_from_name(model, param_name)
351
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_hqq.py
if self.pre_quantized: return ( (isinstance(module, torch.nn.Linear) or isinstance(module, HQQLinear)) and tensor_name != "weight" and tensor_name != "bias" ) else: return isinstance(module, torch.nn.Linear) and tensor_name == "weight" def create_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, target_device: "torch.device", state_dict: Dict[str, Any], unexpected_keys: List[str], ): """ Each nn.Linear layer is processsed here. We first check if the corresponding module state_dict contains already HQQ quantized parameters. If not, we create a temp linear layer with the module state_dict params and use it for quantization """ if is_hqq_available(): from hqq.core.quantize import HQQLinear
351
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_hqq.py
module, tensor_name = get_module_from_name(model, param_name) layer_name = ".".join(param_name.split(".")[:-1]) parent_module = find_parent(model, layer_name) node = layer_name.split(".")[-1] # set module state_dict module_state_dict = {} for k, v in state_dict.items(): if layer_name + "." in k: module_state_dict[k.split(".")[-1]] = v if unexpected_keys is not None and k in unexpected_keys: unexpected_keys.remove(k) if self.pre_quantized: if isinstance(module, HQQLinear): return else: hqq_layer = HQQLinear( linear_layer=None, quant_config=None, compute_dtype=self.torch_dtype, device=target_device, ) hqq_layer.load_state_dict(module_state_dict)
351
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_hqq.py
if hqq_layer.bias is not None and isinstance(hqq_layer.bias, torch.Tensor): hqq_layer.bias = torch.nn.Parameter(hqq_layer.bias) if self.using_multi_gpu: hqq_layer = self._patch_layer_for_multigpu(hqq_layer) setattr(parent_module, node, hqq_layer) # cleanup del module.__dict__, module torch.cuda.empty_cache() return # Step 1: populate module with weight/bias from module state dict for key in module_state_dict: setattr(module, key, torch.nn.Parameter(module_state_dict[key]))
351
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_hqq.py
# Step 2: Replace module with either HQQLinear or move it to device. We do this via setattr on the parent as doing on it on the module # directly doesn't work. if hasattr(module, "quant_config"): hqq_layer = HQQLinear( module, module.quant_config, compute_dtype=self.torch_dtype, device=target_device, del_orig=True, ) if hqq_layer.bias is not None and isinstance(hqq_layer.bias, torch.Tensor): hqq_layer.bias = torch.nn.Parameter(hqq_layer.bias) if self.using_multi_gpu: hqq_layer = self._patch_layer_for_multigpu(hqq_layer) setattr(parent_module, node, hqq_layer) else: module = module.to(dtype=self.torch_dtype, device=target_device) setattr(parent_module, node, module) torch.cuda.empty_cache()
351
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_hqq.py
# Remove accelerate hook and uses a simpler forward pass. Otherwise, this breaks with multi-gpu def _patch_layer_for_multigpu(self, hqq_layer): hqq_layer = remove_hook_from_module(hqq_layer) def forward_with_device(self, x): out = torch.matmul(x.to(self.device), self.dequantize().t()) if self.bias is not None: out += self.bias return out hqq_layer.forward = lambda x: forward_with_device(hqq_layer, x) return hqq_layer def _process_model_before_weight_loading( self, model: "PreTrainedModel", device_map, keep_in_fp32_modules: List[str] = None, **kwargs, ): keep_in_fp32_modules = keep_in_fp32_modules if keep_in_fp32_modules is not None else []
351
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_hqq.py
# Add the corresponding quant_config to each valid module. This allows us to do the actual nn.Linear -> HQQLinear conversion in create_quantized_param(). # prepare_for_hqq_linear() also sets the right quantization config inside the model (model.config.quantization_config) and the layers (hqq_layer.quant_config) model = prepare_for_hqq_linear(model, quantization_config=self.quantization_config) def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): model.is_hqq_quantized = True model.is_hqq_serializable = self.is_serializable() return model def is_serializable(self, safe_serialization=None): return True @property def is_trainable(self) -> bool: return True
351
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_hqq.py
class VptqHfQuantizer(HfQuantizer): """ Quantizer of the VPTQ method. Enables the loading of prequantized models. """ requires_calibration = True required_packages = ["vptq"] def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): super().__init__(quantization_config, **kwargs) self.quantization_config = quantization_config def validate_environment(self, *args, **kwargs): if not is_accelerate_available(): raise ImportError("Using `vptq` quantization requires Accelerate: `pip install accelerate`") if not is_vptq_available(): raise ImportError("Using `vptq` quantization requires VPTQ>=0.0.4: `pip install -U vptq`")
352
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_vptq.py
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: if torch.cuda.is_available(): torch_dtype = torch.float16 logger.info( "CUDA available. Assuming VPTQ inference on GPU and loading the model in `torch.float16`. To overwrite it, set `torch_dtype` manually." ) else: import vptq device_availability = getattr(vptq, "device_availability", lambda device: False) if device_availability("cpu") is True: raise RuntimeError("No GPU found. Please wait for the next release of VPTQ to use CPU inference") torch_dtype = torch.float32 logger.info("No GPU found. Assuming VPTQ inference on CPU and loading the model in `torch.float32`.") return torch_dtype
352
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_vptq.py
def _process_model_before_weight_loading( self, model: "PreTrainedModel", **kwargs, ): """ we don't have param like modules_to_not_convert to indicate which layers should not be quantized because `quantization_config` include the layers that should be quantized """ from ..integrations import replace_with_vptq_linear modules_to_not_convert = kwargs.get("modules_to_not_convert", []) + ( self.quantization_config.modules_to_not_convert or [] ) replace_with_vptq_linear( model, quantization_config=self.quantization_config, modules_to_not_convert=modules_to_not_convert, ) model.config.quantization_config = self.quantization_config def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): return model @property def is_trainable(self, model: Optional["PreTrainedModel"] = None): return False
352
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_vptq.py
def is_serializable(self, safe_serialization=None): return True
352
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_vptq.py
class Bnb8BitHfQuantizer(HfQuantizer): """ 8-bit quantization from bitsandbytes quantization method: before loading: converts transformer layers into Linear8bitLt during loading: load 16bit weight and pass to the layer object after: quantizes individual weights in Linear8bitLt into 8bit at fitst .cuda() call saving: from state dict, as usual; saves weights and 'SCB' component loading: need to locate SCB component and pass to the Linear8bitLt object """ use_keep_in_fp32_modules = True requires_parameters_quantization = True requires_calibration = False required_packages = ["bitsandbytes", "accelerate"] def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) if self.quantization_config.llm_int8_skip_modules is not None: self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules
353
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_8bit.py
def validate_environment(self, *args, **kwargs): if not is_accelerate_available(): raise ImportError( f"Using `bitsandbytes` 8-bit quantization requires Accelerate: `pip install 'accelerate>={ACCELERATE_MIN_VERSION}'`" ) if not is_bitsandbytes_available(): raise ImportError( "Using `bitsandbytes` 8-bit quantization requires the latest version of bitsandbytes: `pip install -U bitsandbytes`" ) from ..integrations import validate_bnb_backend_availability from ..utils import is_bitsandbytes_multi_backend_available bnb_multibackend_is_enabled = is_bitsandbytes_multi_backend_available() validate_bnb_backend_availability(raise_exception=True)
353
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_8bit.py
if kwargs.get("from_tf", False) or kwargs.get("from_flax", False): raise ValueError( "Converting into 4-bit or 8-bit weights from tf/flax weights is currently not supported, please make" " sure the weights are in PyTorch format." )
353
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_8bit.py
device_map = kwargs.get("device_map", None) if ( device_map is not None and isinstance(device_map, dict) and not self.quantization_config.llm_int8_enable_fp32_cpu_offload ): device_map_without_lm_head = { key: device_map[key] for key in device_map.keys() if key not in self.modules_to_not_convert } if set(device_map.values()) == {"cpu"} and bnb_multibackend_is_enabled: pass elif "cpu" in device_map_without_lm_head.values() or "disk" in device_map_without_lm_head.values(): raise ValueError( "Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the " "quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules " "in 32-bit, you need to set `llm_int8_enable_fp32_cpu_offload=True` and pass a custom `device_map` to "
353
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_8bit.py
"`from_pretrained`. Check " "https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu " "for more details. " )
353
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_8bit.py
if version.parse(importlib.metadata.version("bitsandbytes")) < version.parse("0.37.2"): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 8bit inference and training" " make sure you have the latest version of `bitsandbytes` installed" ) def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: # need more space for buffers that are created during quantization max_memory = {key: val * 0.90 for key, val in max_memory.items()} return max_memory
353
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_8bit.py
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: # We force the `dtype` to be float16, this is a requirement from `bitsandbytes` logger.info( "Overriding torch_dtype=%s with `torch_dtype=torch.float16` due to " "requirements of `bitsandbytes` to enable model loading in 8-bit or 4-bit. " "Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass" " torch_dtype=torch.float16 to remove this warning.", torch_dtype, ) torch_dtype = torch.float16 return torch_dtype
353
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_8bit.py
def update_device_map(self, device_map): if device_map is None: if torch.cuda.is_available(): device_map = {"": torch.cuda.current_device()} elif is_torch_xpu_available(): device_map = {"": f"xpu:{torch.xpu.current_device()}"} else: device_map = {"": "cpu"} logger.info( "The device_map was not initialized. " f"Setting device_map to {device_map}. " "If you want to use the model for inference, please set device_map ='auto' " ) return device_map def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": if target_dtype != torch.int8: logger.info("target_dtype {target_dtype} is replaced by `torch.int8` for 8-bit BnB quantization") return torch.int8
353
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_8bit.py
def check_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, state_dict: Dict[str, Any], **kwargs, ): import bitsandbytes as bnb module, tensor_name = get_module_from_name(model, param_name) if isinstance(module._parameters.get(tensor_name, None), bnb.nn.Int8Params): if self.pre_quantized: if param_name.replace("weight", "SCB") not in state_dict.keys(): raise ValueError("Missing quantization component `SCB`") if param_value.dtype != torch.int8: raise ValueError( f"Incompatible dtype `{param_value.dtype}` when loading 8-bit prequantized weight. Expected `torch.int8`." ) return True return False
353
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_8bit.py
def create_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, target_device: "torch.device", state_dict: Dict[str, Any], unexpected_keys: Optional[List[str]] = None, ): """ combines logic from _load_state_dict_into_meta_model and .integrations.bitsandbytes.py::set_module_quantized_tensor_to_device() needs aux items from state dicts, if found - removes them from unexpected_keys """ import bitsandbytes as bnb fp16_statistics_key = param_name.replace("weight", "SCB") fp16_weights_format_key = param_name.replace("weight", "weight_format") fp16_statistics = state_dict.get(fp16_statistics_key, None) fp16_weights_format = state_dict.get(fp16_weights_format_key, None)
353
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_8bit.py
module, tensor_name = get_module_from_name(model, param_name) if tensor_name not in module._parameters: raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.") old_value = getattr(module, tensor_name) if not isinstance(module._parameters[tensor_name], bnb.nn.Int8Params): raise ValueError(f"Parameter `{tensor_name}` should only be a `bnb.nn.Int8Params` instance.") if ( old_value.device == torch.device("meta") and target_device not in ["meta", torch.device("meta")] and param_value is None ): raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {target_device}.")
353
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_8bit.py
new_value = param_value.to("cpu") if self.pre_quantized and not self.is_serializable(): raise ValueError( "Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. " "Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. openai-community/gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls, Conv1D): if fp16_statistics is None: new_value = new_value.T kwargs = old_value.__dict__ new_value = bnb.nn.Int8Params(new_value, requires_grad=False, **kwargs).to(target_device)
353
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_8bit.py
module._parameters[tensor_name] = new_value if fp16_statistics is not None: setattr(module.weight, "SCB", fp16_statistics.to(target_device)) if unexpected_keys is not None: unexpected_keys.remove(fp16_statistics_key) # We just need to pop the `weight_format` keys from the state dict to remove unneeded # messages. The correct format is correctly retrieved during the first forward pass. if fp16_weights_format is not None and unexpected_keys is not None: unexpected_keys.remove(fp16_weights_format_key) def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): model.is_loaded_in_8bit = True model.is_8bit_serializable = self.is_serializable() return model
353
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_8bit.py
def _process_model_before_weight_loading( self, model: "PreTrainedModel", device_map, keep_in_fp32_modules: List[str] = [], **kwargs, ): from ..integrations import get_keys_to_not_convert, replace_with_bnb_linear llm_int8_enable_fp32_cpu_offload = self.quantization_config.llm_int8_enable_fp32_cpu_offload # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if self.quantization_config.llm_int8_skip_modules is None: self.modules_to_not_convert = get_keys_to_not_convert(model) else: self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules if not isinstance(self.modules_to_not_convert, list): self.modules_to_not_convert = [self.modules_to_not_convert] self.modules_to_not_convert.extend(keep_in_fp32_modules)
353
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_8bit.py
# Extend `self.modules_to_not_convert` to keys that are supposed to be offloaded to `cpu` or `disk` if isinstance(device_map, dict) and len(device_map.keys()) > 1: keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]] if len(keys_on_cpu) > 0 and not llm_int8_enable_fp32_cpu_offload: raise ValueError( "If you want to offload some keys to `cpu` or `disk`, you need to set " "`llm_int8_enable_fp32_cpu_offload=True`. Note that these modules will not be " " converted to 8-bit but kept in 32-bit." ) self.modules_to_not_convert.extend(keys_on_cpu) model = replace_with_bnb_linear( model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config ) # TODO: consider bringing replace_with_bnb_linear() code from ..integrations/bitsandbyter.py to here
353
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_8bit.py
model.config.quantization_config = self.quantization_config def is_serializable(self, safe_serialization=None): _bnb_supports_8bit_serialization = version.parse(importlib.metadata.version("bitsandbytes")) > version.parse( "0.37.2" ) if not _bnb_supports_8bit_serialization: logger.warning( "You are calling `save_pretrained` to a 8-bit converted model, but your `bitsandbytes` version doesn't support it. " "If you want to save 8-bit models, make sure to have `bitsandbytes>0.37.2` installed. You will most likely face errors or" " unexpected behaviours." ) return False return True @property def is_trainable(self) -> bool: return version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse("0.37.0") def _dequantize(self, model): from ..integrations import dequantize_and_replace
353
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_8bit.py
model = dequantize_and_replace( model, self.modules_to_not_convert, quantization_config=self.quantization_config ) return model
353
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_8bit.py
class HfQuantizer(ABC): """ Abstract class of the HuggingFace quantizer. Supports for now quantizing HF transformers models for inference and/or quantization. This class is used only for transformers.PreTrainedModel.from_pretrained and cannot be easily used outside the scope of that method yet.
354
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/base.py
Attributes quantization_config (`transformers.utils.quantization_config.QuantizationConfigMixin`): The quantization config that defines the quantization parameters of your model that you want to quantize. modules_to_not_convert (`List[str]`, *optional*): The list of module names to not convert when quantizing the model. required_packages (`List[str]`, *optional*): The list of required pip packages to install prior to using the quantizer requires_calibration (`bool`): Whether the quantization method requires to calibrate the model before using it. requires_parameters_quantization (`bool`): Whether the quantization method requires to create a new Parameter. For example, for bitsandbytes, it is required to create a new xxxParameter in order to properly quantize the model. """ requires_calibration = False required_packages = None requires_parameters_quantization = False
354
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/base.py
def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): self.quantization_config = quantization_config # -- Handle extra kwargs below -- self.modules_to_not_convert = kwargs.pop("modules_to_not_convert", []) self.pre_quantized = kwargs.pop("pre_quantized", True) if not self.pre_quantized and self.requires_calibration: raise ValueError( f"The quantization method {quantization_config.quant_method} does require the model to be pre-quantized." f" You explicitly passed `pre_quantized=False` meaning your model weights are not quantized. Make sure to " f"pass `pre_quantized=True` while knowing what you are doing." )
354
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/base.py
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": """ Some quantization methods require to explicitly set the dtype of the model to a target dtype. You need to override this method in case you want to make sure that behavior is preserved Args: torch_dtype (`torch.dtype`): The input dtype that is passed in `from_pretrained` """ return torch_dtype def update_device_map(self, device_map: Optional[Dict[str, Any]]) -> Optional[Dict[str, Any]]: """ Override this method if you want to pass a override the existing device map with a new one. E.g. for bitsandbytes, since `accelerate` is a hard requirement, if no device_map is passed, the device_map is set to `"auto"`` Args: device_map (`Union[dict, str]`, *optional*): The device_map that is passed through the `from_pretrained` method. """ return device_map
354
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/base.py
def adjust_target_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": """ Override this method if you want to adjust the `target_dtype` variable used in `from_pretrained` to compute the device_map in case the device_map is a `str`. E.g. for bitsandbytes we force-set `target_dtype` to `torch.int8` and for 4-bit we pass a custom enum `accelerate.CustomDtype.int4`. Args: torch_dtype (`torch.dtype`, *optional*): The torch_dtype that is used to compute the device_map. """ return torch_dtype def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]: """ Override this method if you want to adjust the `missing_keys`. Args: missing_keys (`List[str]`, *optional*): The list of missing keys in the checkpoint compared to the state dict of the model """ return missing_keys
354
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/base.py
def update_expected_keys(self, model, expected_keys: List[str], loaded_keys: List[str]) -> List[str]: """ Override this method if you want to adjust the `update_expected_keys`. Args: expected_keys (`List[str]`, *optional*): The list of the expected keys in the initialized model. loaded_keys (`List[str]`, *optional*): The list of the loaded keys in the checkpoint. """ return expected_keys def get_special_dtypes_update(self, model, torch_dtype: "torch.dtype") -> Dict[str, "torch.dtype"]: """ returns dtypes for modules that are not quantized - used for the computation of the device_map in case one passes a str as a device_map. The method will use the `modules_to_not_convert` that is modified in `_process_model_before_weight_loading`.
354
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/base.py
Args: model (`~transformers.PreTrainedModel`): The model to quantize torch_dtype (`torch.dtype`): The dtype passed in `from_pretrained` method. """ return { name: torch_dtype for name, _ in model.named_parameters() if any(m in name for m in self.modules_to_not_convert) } def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: """adjust max_memory argument for infer_auto_device_map() if extra memory is needed for quantization""" return max_memory
354
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/base.py
def check_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, state_dict: Dict[str, Any], **kwargs, ) -> bool: """ checks if a loaded state_dict component is part of quantized param + some validation; only defined if requires_parameters_quantization == True for quantization methods that require to create a new parameters for quantization. """ return False def create_quantized_param(self, *args, **kwargs) -> "torch.nn.Parameter": """ takes needed components from state_dict and creates quantized param; only applicable if requires_parameters_quantization == True """ if not self.requires_parameters_quantization: raise AttributeError( f"`.create_quantized_param()` method is not supported by quantizer class {self.__class__.__name__}." )
354
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/base.py
def validate_environment(self, *args, **kwargs): """ This method is used to potentially check for potential conflicts with arguments that are passed in `from_pretrained`. You need to define it for all future quantizers that are integrated with transformers. If no explicit check are needed, simply return nothing. """ return def preprocess_model(self, model: "PreTrainedModel", **kwargs): """ Setting model attributes and/or converting model before weights loading. At this point the model should be initialized on the meta device so you can freely manipulate the skeleton of the model in order to replace modules in-place. Make sure to override the abstract method `_process_model_before_weight_loading`.
354
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/base.py
Args: model (`~transformers.PreTrainedModel`): The model to quantize kwargs (`dict`, *optional*): The keyword arguments that are passed along `_process_model_before_weight_loading`. """ model.is_quantized = True model.quantization_method = self.quantization_config.quant_method return self._process_model_before_weight_loading(model, **kwargs) def postprocess_model(self, model: "PreTrainedModel", **kwargs): """ Post-process the model post weights loading. Make sure to override the abstract method `_process_model_after_weight_loading`. Args: model (`~transformers.PreTrainedModel`): The model to quantize kwargs (`dict`, *optional*): The keyword arguments that are passed along `_process_model_after_weight_loading`. """ return self._process_model_after_weight_loading(model, **kwargs)
354
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/base.py
def dequantize(self, model): """ Potentially dequantize the model to retrive the original model, with some loss in accuracy / performance. Note not all quantization schemes support this. """ model = self._dequantize(model) # Delete quantizer and quantization config del model.hf_quantizer del model.config.quantization_config del model.config._pre_quantization_dtype model.is_quantized = False return model def _dequantize(self, model): raise NotImplementedError( f"{self.quantization_config.quant_method} has no implementation of `dequantize`, please raise an issue on GitHub." ) @property def is_qat_trainable(self) -> bool: """Flag indicating whether the quantized model can carry out quantization aware training""" return False @abstractmethod def _process_model_before_weight_loading(self, model, **kwargs): ...
354
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/base.py
@abstractmethod def _process_model_after_weight_loading(self, model, **kwargs): ... @abstractmethod def is_serializable(self, safe_serialization=None): ... @property @abstractmethod def is_trainable(self): ...
354
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/base.py
class HiggsHfQuantizer(HfQuantizer): """ Quantizer of the HIGGS method. Enables the loading of prequantized models and in-flight quantization of full-precision models. """ requires_calibration = False requires_parameters_quantization = True required_packages = ["flute-kernel", "fast_hadamard_transform"] def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): super().__init__(quantization_config, **kwargs) self.quantization_config = quantization_config def validate_environment(self, device_map, **kwargs): if not torch.cuda.is_available(): raise NotImplementedError("HIGGS quantization is only supported on GPU. Please use a different quantizer.") if not is_accelerate_available(): raise ImportError("Using `higgs` quantization requires Accelerate: `pip install accelerate`")
355
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_higgs.py
if not is_flute_available(): raise ImportError("Using `higgs` quantization requires FLUTE: `pip install flute-kernel>=0.3.0`") if not is_hadamard_available(): raise ImportError( "Using `higgs` quantization requires fast_hadamard_transform: `pip install fast_hadamard_transform`" ) if device_map is None: raise ValueError( "You are attempting to load a HIGGS model without setting device_map." " Please set device_map comprised of 'cuda' devices." ) elif isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()): raise ValueError( "You are attempting to load a HIGGS model with a device_map that contains a CPU or disk device." " This is not supported. Please remove the CPU or disk device from the device_map." )
355
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_higgs.py
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: logger.info("`torch_dtype` is None. Setting `torch_dtype=torch.float16` for FLUTE compatibility.") torch_dtype = torch.float16 elif torch_dtype != torch.float16 and torch_dtype != torch.bfloat16: raise ValueError( f"Invalid `torch_dtype` {torch_dtype}. HIGGS quantization only supports `torch_dtype=torch.float16` or `torch_dtype=torch.bfloat16`." ) return torch_dtype def create_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, target_device: "torch.device", state_dict: Dict[str, Any], unexpected_keys: Optional[List[str]] = None, ): from ..integrations import quantize_with_higgs
355
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_higgs.py
""" Quantizes weights into weight and weight_scale """ flute_dict = quantize_with_higgs( param_value.to(target_device), self.quantization_config.bits, self.quantization_config.p, self.quantization_config.group_size, self.quantization_config.hadamard_size, ) del param_value module, tensor_name = get_module_from_name(model, param_name) for key, value in flute_dict.items(): if key in module._parameters: module._parameters[key] = torch.nn.Parameter(value, requires_grad=False) elif key in module._buffers: module._buffers[key] = torch.nn.Buffer(value) else: raise ValueError(f"Unexpected key {key} in module {module}") if unexpected_keys is not None and param_name in unexpected_keys: unexpected_keys.remove(param_name)
355
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_higgs.py
module.num_sms_packed = torch.nn.Parameter( torch.tensor(get_num_sms_from_device(target_device), device=target_device, dtype=torch.int32), requires_grad=False, ) def _process_model_before_weight_loading( self, model: "PreTrainedModel", **kwargs, ): from ..integrations import replace_with_higgs_linear replace_with_higgs_linear( model, quantization_config=self.quantization_config, ) model.config.quantization_config = self.quantization_config def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): import flute.utils from ..integrations import HiggsLinear
355
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_higgs.py
flute_workspaces = {} for name, module in model.named_modules(): if isinstance(module, HiggsLinear): # Every HiggsLinear needs a "workspace": a buffer for the unpacking operation. # This buffer needs to be on the same device as the weights, but can be reused across modules otherwise. if module.weight.device not in flute_workspaces: flute_workspaces[module.weight.device] = flute.utils.make_workspace_streamk( device=module.weight.device ) module.workspace = flute_workspaces[module.weight.device]
355
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_higgs.py
# FLUTE weights are packed in a way that is optimized for a specific number of SMs (GPU streaming multiprocessors). # If the model is loaded on a different device than the one it was saved on, we need to repack the weights. if module.num_sms_packed.item() != get_num_sms_from_device(module.weight.device): new_device = module.weight.device new_num_sms = get_num_sms_from_device(new_device) module.weight.data = flute.utils.pack( flute.utils.unpack( weight=module.weight.data, scales=module.scales.data, workspace=module.workspace, num_bits=module.num_bits, group_size=module.group_size, num_sms_packed=module.num_sms_packed.item(), ).T.contiguous(), module.num_bits,
355
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_higgs.py
module.group_size, ) module.num_sms_packed = torch.nn.Parameter( torch.tensor(new_num_sms, device=new_device, dtype=torch.int32), requires_grad=False, )
355
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_higgs.py
def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]: from ..integrations import HiggsLinear not_missing_keys = [] for name, module in model.named_modules(): if isinstance(module, HiggsLinear): for missing in missing_keys: if ( (name in missing or name in f"{prefix}.{missing}") and not missing.endswith(".weight") and not missing.endswith(".bias") ): not_missing_keys.append(missing) return [k for k in missing_keys if k not in not_missing_keys] @property def is_trainable(self, model: Optional["PreTrainedModel"] = None): return False def is_serializable(self, safe_serialization=None): return True
355
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_higgs.py
def check_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, state_dict: Dict[str, Any], **kwargs, ) -> bool: from ..integrations import HiggsLinear module, tensor_name = get_module_from_name(model, param_name) if isinstance(module, HiggsLinear) and tensor_name == "weight" and param_value.dtype != torch.int16: # Only quantize weights of HiggsLinear modules that are not already quantized return True else: return False def _dequantize(self, model): from ..integrations import dequantize_higgs model = dequantize_higgs(model) return model
355
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_higgs.py
class AutoQuantizationConfig: """ The Auto-HF quantization config class that takes care of automatically dispatching to the correct quantization config given a quantization config stored in a dictionary. """ @classmethod def from_dict(cls, quantization_config_dict: Dict): quant_method = quantization_config_dict.get("quant_method", None) # We need a special care for bnb models to make sure everything is BC .. if quantization_config_dict.get("load_in_8bit", False) or quantization_config_dict.get("load_in_4bit", False): suffix = "_4bit" if quantization_config_dict.get("load_in_4bit", False) else "_8bit" quant_method = QuantizationMethod.BITS_AND_BYTES + suffix elif quant_method is None: raise ValueError( "The model's quantization config from the arguments has no `quant_method` attribute. Make sure that the model has been correctly quantized" )
356
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/auto.py
if quant_method not in AUTO_QUANTIZATION_CONFIG_MAPPING.keys(): raise ValueError( f"Unknown quantization type, got {quant_method} - supported types are:" f" {list(AUTO_QUANTIZER_MAPPING.keys())}" ) target_cls = AUTO_QUANTIZATION_CONFIG_MAPPING[quant_method] return target_cls.from_dict(quantization_config_dict)
356
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/auto.py
@classmethod def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): model_config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) if getattr(model_config, "quantization_config", None) is None: raise ValueError( f"Did not found a `quantization_config` in {pretrained_model_name_or_path}. Make sure that the model is correctly quantized." ) quantization_config_dict = model_config.quantization_config quantization_config = cls.from_dict(quantization_config_dict) # Update with potential kwargs that are passed through from_pretrained. quantization_config.update(**kwargs) return quantization_config
356
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/auto.py
class AutoHfQuantizer: """ The Auto-HF quantizer class that takes care of automatically instantiating to the correct `HfQuantizer` given the `QuantizationConfig`. """ @classmethod def from_config(cls, quantization_config: Union[QuantizationConfigMixin, Dict], **kwargs): # Convert it to a QuantizationConfig if the q_config is a dict if isinstance(quantization_config, dict): quantization_config = AutoQuantizationConfig.from_dict(quantization_config) quant_method = quantization_config.quant_method # Again, we need a special care for bnb as we have a single quantization config # class for both 4-bit and 8-bit quantization if quant_method == QuantizationMethod.BITS_AND_BYTES: if quantization_config.load_in_8bit: quant_method += "_8bit" else: quant_method += "_4bit"
357
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/auto.py
if quant_method not in AUTO_QUANTIZER_MAPPING.keys(): raise ValueError( f"Unknown quantization type, got {quant_method} - supported types are:" f" {list(AUTO_QUANTIZER_MAPPING.keys())}" ) target_cls = AUTO_QUANTIZER_MAPPING[quant_method] return target_cls(quantization_config, **kwargs) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): quantization_config = AutoQuantizationConfig.from_pretrained(pretrained_model_name_or_path, **kwargs) return cls.from_config(quantization_config)
357
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/auto.py
@classmethod def merge_quantization_configs( cls, quantization_config: Union[dict, QuantizationConfigMixin], quantization_config_from_args: Optional[QuantizationConfigMixin], ): """ handles situations where both quantization_config from args and quantization_config from model config are present. """ if quantization_config_from_args is not None: warning_msg = ( "You passed `quantization_config` or equivalent parameters to `from_pretrained` but the model you're loading" " already has a `quantization_config` attribute. The `quantization_config` from the model will be used." ) else: warning_msg = "" if isinstance(quantization_config, dict): quantization_config = AutoQuantizationConfig.from_dict(quantization_config)
357
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/auto.py