text
stringlengths
1
1.02k
class_index
int64
0
10.8k
source
stringlengths
85
188
info["gpu"] = "N/A" info["gpu_ram_mb"] = "N/A" info["gpu_power_watts"] = "N/A" info["gpu_performance_state"] = "N/A"
324
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/benchmark/benchmark_utils.py
info["use_tpu"] = self.args.is_tpu # TODO(PVP): See if we can add more information about TPU # see: https://github.com/pytorch/xla/issues/2180 self._environment_info = info return self._environment_info
324
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/benchmark/benchmark_utils.py
def print_results(self, result_dict, type_label): self.print_fn(80 * "-") self.print_fn( "Model Name".center(30) + "Batch Size".center(15) + "Seq Length".center(15) + type_label.center(15) ) self.print_fn(80 * "-") for model_name in self.args.model_names: for batch_size in result_dict[model_name]["bs"]: for sequence_length in result_dict[model_name]["ss"]: result = result_dict[model_name]["result"][batch_size][sequence_length] if isinstance(result, float): result = round(1000 * result) / 1000 result = "< 0.001" if result == 0.0 else str(result) else: result = str(result) self.print_fn( model_name[:30].center(30) + str(batch_size).center(15), str(sequence_length).center(15), result.center(15),
324
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/benchmark/benchmark_utils.py
) self.print_fn(80 * "-")
324
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/benchmark/benchmark_utils.py
def print_memory_trace_statistics(self, summary: MemorySummary): self.print_fn( "\nLine by line memory consumption:\n" + "\n".join( f"{state.frame.filename}:{state.frame.line_number}: mem {state.cpu_gpu}: {state.frame.line_text}" for state in summary.sequential ) ) self.print_fn( "\nLines with top memory consumption:\n" + "\n".join( f"=> {state.frame.filename}:{state.frame.line_number}: mem {state.cpu_gpu}: {state.frame.line_text}" for state in summary.cumulative[:6] ) ) self.print_fn( "\nLines with lowest memory consumption:\n" + "\n".join( f"=> {state.frame.filename}:{state.frame.line_number}: mem {state.cpu_gpu}: {state.frame.line_text}" for state in summary.cumulative[-6:] ) ) self.print_fn(f"\nTotal memory increase: {summary.total}")
324
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/benchmark/benchmark_utils.py
def save_to_csv(self, result_dict, filename): if not self.args.save_to_csv: return self.print_fn("Saving results to csv.") with open(filename, mode="w") as csv_file: if len(self.args.model_names) <= 0: raise ValueError(f"At least 1 model should be defined, but got {self.model_names}") fieldnames = ["model", "batch_size", "sequence_length"] writer = csv.DictWriter(csv_file, fieldnames=fieldnames + ["result"]) writer.writeheader()
324
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/benchmark/benchmark_utils.py
for model_name in self.args.model_names: result_dict_model = result_dict[model_name]["result"] for bs in result_dict_model: for ss in result_dict_model[bs]: result_model = result_dict_model[bs][ss] writer.writerow( { "model": model_name, "batch_size": bs, "sequence_length": ss, "result": ("{}" if not isinstance(result_model, float) else "{:.4f}").format( result_model ), } )
324
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/benchmark/benchmark_utils.py
class TensorFlowBenchmarkArguments(BenchmarkArguments): deprecated_args = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ]
325
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/benchmark/benchmark_args_tf.py
def __init__(self, **kwargs): """ This __init__ is there for legacy code. When removing deprecated args completely, the class can simply be deleted """ for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: positive_arg = deprecated_arg[3:] kwargs[positive_arg] = not kwargs.pop(deprecated_arg) logger.warning( f"{deprecated_arg} is depreciated. Please use --no-{positive_arg} or" f" {positive_arg}={kwargs[positive_arg]}" ) self.tpu_name = kwargs.pop("tpu_name", self.tpu_name) self.device_idx = kwargs.pop("device_idx", self.device_idx) self.eager_mode = kwargs.pop("eager_mode", self.eager_mode) self.use_xla = kwargs.pop("use_xla", self.use_xla) super().__init__(**kwargs)
325
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/benchmark/benchmark_args_tf.py
tpu_name: str = field( default=None, metadata={"help": "Name of TPU"}, ) device_idx: int = field( default=0, metadata={"help": "CPU / GPU device index. Defaults to 0."}, ) eager_mode: bool = field(default=False, metadata={"help": "Benchmark models in eager model."}) use_xla: bool = field( default=False, metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." }, )
325
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/benchmark/benchmark_args_tf.py
@cached_property def _setup_tpu(self) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self, ["tf"]) tpu = None if self.tpu: try: if self.tpu_name: tpu = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name) else: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: tpu = None return tpu @cached_property def _setup_strategy(self) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self, ["tf"]) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu)
325
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/benchmark/benchmark_args_tf.py
strategy = tf.distribute.TPUStrategy(self._setup_tpu) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx], "GPU") strategy = tf.distribute.OneDeviceStrategy(device=f"/gpu:{self.device_idx}") else: tf.config.set_visible_devices([], "GPU") # disable GPU strategy = tf.distribute.OneDeviceStrategy(device=f"/cpu:{self.device_idx}") return strategy @property def is_tpu(self) -> bool: requires_backends(self, ["tf"]) return self._setup_tpu is not None @property def strategy(self) -> "tf.distribute.Strategy": requires_backends(self, ["tf"]) return self._setup_strategy @property def gpu_list(self): requires_backends(self, ["tf"]) return tf.config.list_physical_devices("GPU")
325
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/benchmark/benchmark_args_tf.py
@property def n_gpu(self) -> int: requires_backends(self, ["tf"]) if self.cuda: return len(self.gpu_list) return 0 @property def is_gpu(self) -> bool: return self.n_gpu > 0
325
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/benchmark/benchmark_args_tf.py
class SelectiveScanFn(torch.autograd.Function): @staticmethod def forward( ctx, u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False, return_last_state=False ): if u.stride(-1) != 1: u = u.contiguous() if delta.stride(-1) != 1: delta = delta.contiguous() if D is not None: D = D.contiguous() if B.stride(-1) != 1: B = B.contiguous() if C.stride(-1) != 1: C = C.contiguous() if z is not None and z.stride(-1) != 1: z = z.contiguous() if B.dim() == 3: B = rearrange(B, "b dstate l -> b 1 dstate l") ctx.squeeze_B = True if C.dim() == 3: C = rearrange(C, "b dstate l -> b 1 dstate l") ctx.squeeze_C = True out, x, *rest = selective_scan_cuda.fwd(u, delta, A, B, C, D, z, delta_bias, delta_softplus) ctx.delta_softplus = delta_softplus ctx.has_z = z is not None
326
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py
last_state = x[:, :, -1, 1::2] # (batch, dim, dstate) if not ctx.has_z: ctx.save_for_backward(u, delta, A, B, C, D, delta_bias, x) return out if not return_last_state else (out, last_state) else: ctx.save_for_backward(u, delta, A, B, C, D, z, delta_bias, x, out) out_z = rest[0] return out_z if not return_last_state else (out_z, last_state)
326
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py
@staticmethod def backward(ctx, dout, *args): if not ctx.has_z: u, delta, A, B, C, D, delta_bias, x = ctx.saved_tensors z = None out = None else: u, delta, A, B, C, D, z, delta_bias, x, out = ctx.saved_tensors if dout.stride(-1) != 1: dout = dout.contiguous() # The kernel supports passing in a pre-allocated dz (e.g., in case we want to fuse the # backward of selective_scan_cuda with the backward of chunk). # Here we just pass in None and dz will be allocated in the C++ code. du, ddelta, dA, dB, dC, dD, ddelta_bias, *rest = selective_scan_cuda.bwd( u, delta, A, B, C, D, z, delta_bias, dout, x, out, None, ctx.delta_softplus, False, # option to recompute out_z, not used here )
326
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py
dz = rest[0] if ctx.has_z else None dB = dB.squeeze(1) if getattr(ctx, "squeeze_B", False) else dB dC = dC.squeeze(1) if getattr(ctx, "squeeze_C", False) else dC return ( du, ddelta, dA, dB, dC, dD if D is not None else None, dz, ddelta_bias if delta_bias is not None else None, None, None, )
326
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py
class MambaInnerFn(torch.autograd.Function): @staticmethod @custom_fwd def forward( ctx, xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight, out_proj_weight, out_proj_bias, A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None, C_proj_bias=None, delta_softplus=True, checkpoint_lvl=1, b_rms_weight=None, c_rms_weight=None, dt_rms_weight=None, b_c_dt_rms_eps=1e-6, ): """ xz: (batch, dim, seqlen) """ assert causal_conv1d_cuda is not None, "causal_conv1d_cuda is not available. Please install causal-conv1d." assert checkpoint_lvl in [0, 1] L = xz.shape[-1] delta_rank = delta_proj_weight.shape[1] d_state = A.shape[-1] * (1 if not A.is_complex() else 2) if torch.is_autocast_enabled():
327
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py
x_proj_weight = x_proj_weight.to(dtype=torch.get_autocast_gpu_dtype()) delta_proj_weight = delta_proj_weight.to(dtype=torch.get_autocast_gpu_dtype()) out_proj_weight = out_proj_weight.to(dtype=torch.get_autocast_gpu_dtype()) out_proj_bias = ( out_proj_bias.to(dtype=torch.get_autocast_gpu_dtype()) if out_proj_bias is not None else None ) if xz.stride(-1) != 1: xz = xz.contiguous() conv1d_weight = rearrange(conv1d_weight, "d 1 w -> d w") x, z = xz.chunk(2, dim=1) conv1d_bias = conv1d_bias.contiguous() if conv1d_bias is not None else None conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd(x, conv1d_weight, conv1d_bias, None, None, None, True) # We're being very careful here about the layout, to avoid extra transposes. # We want delta to have d as the slowest moving dimension
327
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py
# and L as the fastest moving dimension, since those are what the ssm_scan kernel expects. x_dbl = F.linear(rearrange(conv1d_out, "b d l -> (b l) d"), x_proj_weight) # (bl d) delta = rearrange(delta_proj_weight @ x_dbl[:, :delta_rank].t(), "d (b l) -> b d l", l=L) ctx.is_variable_B = B is None ctx.is_variable_C = C is None ctx.B_proj_bias_is_None = B_proj_bias is None ctx.C_proj_bias_is_None = C_proj_bias is None if B is None: # variable B B = x_dbl[:, delta_rank : delta_rank + d_state] # (bl dstate) if B_proj_bias is not None: B = B + B_proj_bias.to(dtype=B.dtype) if not A.is_complex(): # B = rearrange(B, "(b l) dstate -> b dstate l", l=L).contiguous() B = rearrange(B, "(b l) dstate -> b 1 dstate l", l=L).contiguous() else: B = rearrange(B, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2).contiguous() else:
327
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py
if B.stride(-1) != 1: B = B.contiguous() if C is None: # variable C C = x_dbl[:, -d_state:] # (bl dstate) if C_proj_bias is not None: C = C + C_proj_bias.to(dtype=C.dtype) if not A.is_complex(): # C = rearrange(C, "(b l) dstate -> b dstate l", l=L).contiguous() C = rearrange(C, "(b l) dstate -> b 1 dstate l", l=L).contiguous() else: C = rearrange(C, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2).contiguous() else: if C.stride(-1) != 1: C = C.contiguous() if D is not None: D = D.contiguous()
327
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py
if b_rms_weight is not None: B = rearrange(B, "b 1 dstate l -> (b l) dstate", l=L).contiguous() B = rms_norm_forward(B, b_rms_weight, bias=None, eps=b_c_dt_rms_eps) B = rearrange(B, "(b l) dstate -> b 1 dstate l", l=L).contiguous() if c_rms_weight is not None: C = rearrange(C, "b 1 dstate l -> (b l) dstate", l=L).contiguous() C = rms_norm_forward(C, c_rms_weight, bias=None, eps=b_c_dt_rms_eps) C = rearrange(C, "(b l) dstate -> b 1 dstate l", l=L).contiguous() if dt_rms_weight is not None: delta = rearrange(delta, "b d l -> (b l) d", l=L).contiguous() delta = rms_norm_forward(delta, dt_rms_weight, bias=None, eps=b_c_dt_rms_eps) delta = rearrange(delta, "(b l) d -> b d l", l=L).contiguous()
327
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py
out, scan_intermediates, out_z = selective_scan_cuda.fwd( conv1d_out, delta, A, B, C, D, z, delta_bias, delta_softplus ) ctx.delta_softplus = delta_softplus ctx.out_proj_bias_is_None = out_proj_bias is None ctx.checkpoint_lvl = checkpoint_lvl ctx.b_rms_weight = b_rms_weight ctx.c_rms_weight = c_rms_weight ctx.dt_rms_weight = dt_rms_weight ctx.b_c_dt_rms_eps = b_c_dt_rms_eps if checkpoint_lvl >= 1: # Will recompute conv1d_out and delta in the backward pass conv1d_out, delta = None, None ctx.save_for_backward( xz, conv1d_weight, conv1d_bias, x_dbl, x_proj_weight, delta_proj_weight, out_proj_weight, conv1d_out, delta, A, B, C, D, delta_bias, scan_intermediates, b_rms_weight, c_rms_weight,
327
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py
dt_rms_weight, out, ) return F.linear(rearrange(out_z, "b d l -> b l d"), out_proj_weight, out_proj_bias)
327
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py
@staticmethod @custom_bwd def backward(ctx, dout): # dout: (batch, seqlen, dim) assert causal_conv1d_cuda is not None, "causal_conv1d_cuda is not available. Please install causal-conv1d." ( xz, conv1d_weight, conv1d_bias, x_dbl, x_proj_weight, delta_proj_weight, out_proj_weight, conv1d_out, delta, A, B, C, D, delta_bias, scan_intermediates, b_rms_weight, c_rms_weight, dt_rms_weight, out, ) = ctx.saved_tensors L = xz.shape[-1] delta_rank = delta_proj_weight.shape[1] d_state = A.shape[-1] * (1 if not A.is_complex() else 2) x, z = xz.chunk(2, dim=1) if dout.stride(-1) != 1: dout = dout.contiguous() if ctx.checkpoint_lvl == 1:
327
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py
conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd(x, conv1d_weight, conv1d_bias, None, None, None, True) delta = rearrange(delta_proj_weight @ x_dbl[:, :delta_rank].t(), "d (b l) -> b d l", l=L) if dt_rms_weight is not None: delta = rearrange(delta, "b d l -> (b l) d", l=L).contiguous() delta = rms_norm_forward(delta, ctx.dt_rms_weight, None, ctx.b_c_dt_rms_eps) delta = rearrange(delta, "(b l) d -> b d l", l=L).contiguous() if b_rms_weight is not None: # Recompute & RMSNorm B B = rearrange(B, "b 1 dstate l -> (b l) dstate", l=L).contiguous() B = rms_norm_forward(B, ctx.b_rms_weight, None, ctx.b_c_dt_rms_eps) B = rearrange(B, "(b l) dstate -> b 1 dstate l", l=L).contiguous() if c_rms_weight is not None: # Recompute & RMSNorm C C = rearrange(C, "b 1 dstate l -> (b l) dstate", l=L).contiguous()
327
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py
C = rms_norm_forward(C, ctx.c_rms_weight, None, ctx.b_c_dt_rms_eps) C = rearrange(C, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
327
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py
# The kernel supports passing in a pre-allocated dz (e.g., in case we want to fuse the # backward of selective_scan_cuda with the backward of chunk). dxz = torch.empty_like(xz) # (batch, dim, seqlen) dx, dz = dxz.chunk(2, dim=1) dout = rearrange(dout, "b l e -> e (b l)") dout_y = rearrange(out_proj_weight.t() @ dout, "d (b l) -> b d l", l=L) dconv1d_out, ddelta, dA, dB, dC, dD, ddelta_bias, dz, out_z = selective_scan_cuda.bwd( conv1d_out, delta, A, B, C, D, z, delta_bias, dout_y, scan_intermediates, out, dz, ctx.delta_softplus, True, # option to recompute out_z ) dout_proj_weight = torch.einsum("eB,dB->ed", dout, rearrange(out_z, "b d l -> d (b l)")) dout_proj_bias = dout.sum(dim=(0, 1)) if not ctx.out_proj_bias_is_None else None
327
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py
dD = dD if D is not None else None dx_dbl = torch.empty_like(x_dbl) dB_proj_bias = None if ctx.is_variable_B: if not A.is_complex(): dB = rearrange(dB, "b 1 dstate l -> (b l) dstate").contiguous() else: dB = rearrange(dB, "b 1 dstate (l two) -> (b l) (dstate two)", two=2).contiguous() dB_proj_bias = dB.sum(0) if not ctx.B_proj_bias_is_None else None dx_dbl[:, delta_rank : delta_rank + d_state] = dB # (bl d) dB = None dC_proj_bias = None if ctx.is_variable_C: if not A.is_complex(): dC = rearrange(dC, "b 1 dstate l -> (b l) dstate").contiguous() else: dC = rearrange(dC, "b 1 dstate (l two) -> (b l) (dstate two)", two=2).contiguous() dC_proj_bias = dC.sum(0) if not ctx.C_proj_bias_is_None else None dx_dbl[:, -d_state:] = dC # (bl d) dC = None
327
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py
ddelta = rearrange(ddelta, "b d l -> d (b l)") ddelta_proj_weight = torch.einsum("dB,Br->dr", ddelta, x_dbl[:, :delta_rank]) dx_dbl[:, :delta_rank] = torch.einsum("dB,dr->Br", ddelta, delta_proj_weight) dconv1d_out = rearrange(dconv1d_out, "b d l -> d (b l)") dx_proj_weight = torch.einsum("Br,Bd->rd", dx_dbl, rearrange(conv1d_out, "b d l -> (b l) d")) dconv1d_out = torch.addmm(dconv1d_out, x_proj_weight.t(), dx_dbl.t(), out=dconv1d_out) dconv1d_out = rearrange(dconv1d_out, "d (b l) -> b d l", b=x.shape[0], l=x.shape[-1]) # The kernel supports passing in a pre-allocated dx (e.g., in case we want to fuse the # backward of conv1d with the backward of chunk). dx, dconv1d_weight, dconv1d_bias, *_ = causal_conv1d_cuda.causal_conv1d_bwd( x, conv1d_weight, conv1d_bias, dconv1d_out, None, None, None, dx, False, True ) dconv1d_bias = dconv1d_bias if conv1d_bias is not None else None
327
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py
dconv1d_weight = rearrange(dconv1d_weight, "d w -> d 1 w") return ( dxz, dconv1d_weight, dconv1d_bias, dx_proj_weight, ddelta_proj_weight, dout_proj_weight, dout_proj_bias, dA, dB, dC, dD, ddelta_bias if delta_bias is not None else None, # 6-None are delta_softplus, checkpoint_lvl, b_rms_weight, c_rms_weight, dt_rms_weight, b_c_dt_rms_eps dB_proj_bias, dC_proj_bias, None, None, None, None, None, None, )
327
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py
class PatchingSpec: """ Data class that holds patching specifications. Args: o: Module / object where the op to patch is located name: Name of the op to monkey patch custom_op: Custom op that patches the original op orig_op: Original op that is being patched op_wrapper: Wrapper (optional) that wraps both the original and custom ops. It is useful for ops that are class or static methods for instance. """ o: Any name: str custom_op: Callable orig_op: Optional[Callable] = None op_wrapper: Optional[Callable] = None
328
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
class OnnxConfig(ABC): """ Base class for ONNX exportable model describing metadata on how to export the model through the ONNX format. """
329
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
default_fixed_batch = 2 default_fixed_sequence = 8 default_fixed_num_choices = 4 torch_onnx_minimum_version = version.parse("1.8") _tasks_to_common_outputs = { "causal-lm": OrderedDict({"logits": {0: "batch", 1: "sequence"}}), "default": OrderedDict({"last_hidden_state": {0: "batch", 1: "sequence"}}), "image-classification": OrderedDict({"logits": {0: "batch", 1: "sequence"}}), "image-segmentation": OrderedDict( { "logits": {0: "batch", 1: "sequence"}, "pred_boxes": {0: "batch", 1: "sequence"}, "pred_masks": {0: "batch", 1: "sequence"}, } ), "masked-im": OrderedDict({"logits": {0: "batch", 1: "sequence"}}), "masked-lm": OrderedDict({"logits": {0: "batch", 1: "sequence"}}), "multiple-choice": OrderedDict({"logits": {0: "batch"}}), "object-detection": OrderedDict( { "logits": {0: "batch", 1: "sequence"},
329
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
"pred_boxes": {0: "batch", 1: "sequence"}, } ), "question-answering": OrderedDict( { "start_logits": {0: "batch", 1: "sequence"}, "end_logits": {0: "batch", 1: "sequence"}, } ), "semantic-segmentation": OrderedDict({"logits": {0: "batch", 1: "num_labels", 2: "height", 3: "width"}}), "seq2seq-lm": OrderedDict({"logits": {0: "batch", 1: "decoder_sequence"}}), "sequence-classification": OrderedDict({"logits": {0: "batch"}}), "token-classification": OrderedDict({"logits": {0: "batch", 1: "sequence"}}), "vision2seq-lm": OrderedDict({"logits": {0: "batch", 1: "sequence"}}), "speech2seq-lm": OrderedDict({"logits": {0: "batch", 1: "sequence"}}), }
329
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
def __init__(self, config: "PretrainedConfig", task: str = "default", patching_specs: List[PatchingSpec] = None): self._config = config if task not in self._tasks_to_common_outputs: raise ValueError( f"{task} is not a supported task, supported tasks: {self._tasks_to_common_outputs.keys()}" ) self.task = task self._patching_specs = [] for spec in patching_specs if patching_specs is not None else []: final_spec = spec if spec.orig_op is None: final_spec = dataclasses.replace(spec, orig_op=getattr(spec.o, spec.name)) self._patching_specs.append(final_spec) @classmethod def from_model_config(cls, config: "PretrainedConfig", task: str = "default") -> "OnnxConfig": """ Instantiate a OnnxConfig for a specific model Args: config: The model's configuration to use when exporting to ONNX
329
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
Returns: OnnxConfig for this model """ return cls(config, task=task) @property @abstractmethod def inputs(self) -> Mapping[str, Mapping[int, str]]: """ Mapping containing the axis definition of the input tensors to provide to the model Returns: For each input: its name associated to the axes symbolic name and the axis position within the tensor """ raise NotImplementedError() @property def outputs(self) -> Mapping[str, Mapping[int, str]]: """ Mapping containing the axis definition of the output tensors to provide to the model Returns: For each output: its name associated to the axes symbolic name and the axis position within the tensor """ common_outputs = self._tasks_to_common_outputs[self.task] return copy.deepcopy(common_outputs)
329
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
@property def values_override(self) -> Optional[Mapping[str, Any]]: """ Dictionary of keys to override in the model's config before exporting Returns: Dictionary with the keys (and their corresponding values) to override """ if hasattr(self._config, "use_cache"): return {"use_cache": False} return None @property def default_batch_size(self) -> int: """ The default batch size to use if no other indication Returns: Integer > 0 """ # Using 2 avoid ONNX making assumption about single sample batch return OnnxConfig.default_fixed_batch @property def default_sequence_length(self) -> int: """ The default sequence length to use if no other indication Returns: Integer > 0 """ return OnnxConfig.default_fixed_sequence
329
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
@property def default_num_choices(self) -> int: """ The default number of choices to use if no other indication Returns: Integer > 0 """ return OnnxConfig.default_fixed_num_choices @property def default_onnx_opset(self) -> int: """ Which onnx opset to use when exporting the model Returns: Integer ONNX Opset version """ return DEFAULT_ONNX_OPSET @property def atol_for_validation(self) -> float: """ What absolute tolerance value to use during model conversion validation. Returns: Float absolute tolerance value. """ return 1e-5 @property def is_torch_support_available(self) -> bool: """ The minimum PyTorch version required to export the model.
329
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
Returns: `bool`: Whether the installed version of PyTorch is compatible with the model. """ if is_torch_available(): from transformers.utils import get_torch_version return version.parse(get_torch_version()) >= self.torch_onnx_minimum_version else: return False @staticmethod def use_external_data_format(num_parameters: int) -> bool: """ Flag indicating if the model requires using external data format Args: num_parameters: Number of parameter on the model Returns: True if model.num_parameters() * size_of(float32) >= 2Gb False otherwise """ return ( compute_serialized_parameters_size(num_parameters, ParameterFormat.Float) >= EXTERNAL_DATA_FORMAT_SIZE_LIMIT )
329
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
def _generate_dummy_images( self, batch_size: int = 2, num_channels: int = 3, image_height: int = 40, image_width: int = 40 ): images = [] for _ in range(batch_size): data = np.random.rand(image_height, image_width, num_channels) * 255 images.append(Image.fromarray(data.astype("uint8")).convert("RGB")) return images def _generate_dummy_audio( self, batch_size: int = 2, sampling_rate: int = 22050, time_duration: float = 5.0, frequency: int = 220 ): audio_data = [] for _ in range(batch_size): # time variable t = np.linspace(0, time_duration, int(time_duration * sampling_rate), endpoint=False) # generate pure sine wave at `frequency` Hz audio_data.append(0.5 * np.sin(2 * np.pi * frequency * t)) return audio_data
329
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
def generate_dummy_inputs( self, preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin", "ImageProcessingMixin"], batch_size: int = -1, seq_length: int = -1, num_choices: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, num_channels: int = 3, image_width: int = 40, image_height: int = 40, sampling_rate: int = 22050, time_duration: float = 5.0, frequency: int = 220, tokenizer: "PreTrainedTokenizerBase" = None, ) -> Mapping[str, Any]: """ Generate inputs to provide to the ONNX exporter for the specific framework
329
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
Args: preprocessor: ([`PreTrainedTokenizerBase`], [`FeatureExtractionMixin`], or [`ImageProcessingMixin`]): The preprocessor associated with this model configuration. batch_size (`int`, *optional*, defaults to -1): The batch size to export the model for (-1 means dynamic axis). num_choices (`int`, *optional*, defaults to -1): The number of candidate answers provided for multiple choice task (-1 means dynamic axis). seq_length (`int`, *optional*, defaults to -1): The sequence length to export the model for (-1 means dynamic axis). is_pair (`bool`, *optional*, defaults to `False`): Indicate if the input is a pair (sentence 1, sentence 2) framework (`TensorType`, *optional*, defaults to `None`): The framework (PyTorch or TensorFlow) that the tokenizer will generate tensors for. num_channels (`int`, *optional*, defaults to 3):
329
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
The number of channels of the generated images. image_width (`int`, *optional*, defaults to 40): The width of the generated images. image_height (`int`, *optional*, defaults to 40): The height of the generated images. sampling_rate (`int`, *optional* defaults to 22050) The sampling rate for audio data generation. time_duration (`float`, *optional* defaults to 5.0) Total seconds of sampling for audio data generation. frequency (`int`, *optional* defaults to 220) The desired natural frequency of generated audio.
329
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
Returns: Mapping[str, Tensor] holding the kwargs to provide to the model's forward function """ from ..feature_extraction_utils import FeatureExtractionMixin from ..image_processing_utils import ImageProcessingMixin from ..tokenization_utils_base import PreTrainedTokenizerBase
329
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
if isinstance(preprocessor, PreTrainedTokenizerBase) and tokenizer is not None: raise ValueError("You cannot provide both a tokenizer and a preprocessor to generate dummy inputs.") if tokenizer is not None: warnings.warn( "The `tokenizer` argument is deprecated and will be removed in version 5 of Transformers. Use" " `preprocessor` instead.", FutureWarning, ) logger.warning("Overwriting the `preprocessor` argument with `tokenizer` to generate dummmy inputs.") preprocessor = tokenizer if isinstance(preprocessor, PreTrainedTokenizerBase): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX batch_size = compute_effective_axis_dimension( batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 )
329
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX token_to_add = preprocessor.num_special_tokens_to_add(is_pair) seq_length = compute_effective_axis_dimension( seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add ) # Generate dummy inputs according to compute batch and sequence input_token = ( preprocessor.unk_token if (preprocessor.unk_token is not None and len(preprocessor.unk_token) > 0) else "0" ) dummy_input = [" ".join([input_token]) * seq_length] * batch_size if self.task == "multiple-choice": # If dynamic axis (-1) we forward with a fixed dimension of 4 candidate answers to avoid optimizations # made by ONNX num_choices = compute_effective_axis_dimension(
329
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
num_choices, fixed_dimension=OnnxConfig.default_fixed_num_choices, num_token_to_add=0 ) dummy_input = dummy_input * num_choices # The shape of the tokenized inputs values is [batch_size * num_choices, seq_length] tokenized_input = preprocessor(dummy_input, text_pair=dummy_input) # Unflatten the tokenized inputs values expanding it to the shape [batch_size, num_choices, seq_length] for k, v in tokenized_input.items(): tokenized_input[k] = [v[i : i + num_choices] for i in range(0, len(v), num_choices)] return dict(tokenized_input.convert_to_tensors(tensor_type=framework)) return dict(preprocessor(dummy_input, return_tensors=framework)) elif isinstance(preprocessor, ImageProcessingMixin): if preprocessor.model_input_names[0] != "pixel_values": raise ValueError(
329
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
f"The `preprocessor` is an image processor ({preprocessor.__class__.__name__}) and expects" f' `model_input_names[0]` to be "pixel_values", but got {preprocessor.model_input_names[0]}' ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) dummy_input = self._generate_dummy_images(batch_size, num_channels, image_height, image_width) return dict(preprocessor(images=dummy_input, return_tensors=framework)) elif isinstance(preprocessor, FeatureExtractionMixin) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
329
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) dummy_input = self._generate_dummy_images(batch_size, num_channels, image_height, image_width) return dict(preprocessor(images=dummy_input, return_tensors=framework)) elif ( isinstance(preprocessor, FeatureExtractionMixin) and preprocessor.model_input_names[0] == "input_features" ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) dummy_input = self._generate_dummy_audio(batch_size, sampling_rate, time_duration, frequency) return dict(preprocessor(dummy_input, return_tensors=framework)) else: raise ValueError(
329
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
"Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
329
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
def generate_dummy_inputs_onnxruntime(self, reference_model_inputs: Mapping[str, Any]) -> Mapping[str, Any]: """ Generate inputs for ONNX Runtime using the reference model inputs. Override this to run inference with seq2seq models which have the encoder and decoder exported as separate ONNX files. Args: reference_model_inputs ([`Mapping[str, Tensor]`): Reference inputs for the model. Returns: `Mapping[str, Tensor]`: The mapping holding the kwargs to provide to the model's forward function """ return reference_model_inputs def patch_ops(self): for spec in self._patching_specs: custom_op = spec.custom_op if spec.op_wrapper is None else spec.op_wrapper(spec.custom_op) setattr(spec.o, spec.name, custom_op)
329
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
def restore_ops(self): for spec in self._patching_specs: orig_op = spec.orig_op if spec.op_wrapper is None else spec.op_wrapper(spec.orig_op) setattr(spec.o, spec.name, orig_op) @classmethod def flatten_output_collection_property(cls, name: str, field: Iterable[Any]) -> Dict[str, Any]: """ Flatten any potential nested structure expanding the name of the field with the index of the element within the structure. Args: name: The name of the nested structure field: The structure to, potentially, be flattened Returns: (Dict[str, Any]): Outputs with flattened structure and key mapping this new structure. """ from itertools import chain return {f"{name}.{idx}": item for idx, item in enumerate(chain.from_iterable(field))}
329
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
class OnnxConfigWithPast(OnnxConfig, ABC): def __init__( self, config: "PretrainedConfig", task: str = "default", patching_specs: List[PatchingSpec] = None, use_past: bool = False, ): super().__init__(config, task=task, patching_specs=patching_specs) self.use_past = use_past @classmethod def with_past(cls, config: "PretrainedConfig", task: str = "default") -> "OnnxConfigWithPast": """ Instantiate a OnnxConfig with `use_past` attribute set to True Args: config: The underlying model's config to use when exporting to ONNX Returns: OnnxConfig with `.use_past = True` """ return cls(config, task=task, use_past=True) @property def outputs(self) -> Mapping[str, Mapping[int, str]]: common_outputs = super().outputs if self.use_past: self.fill_with_past_key_values_(common_outputs, direction="outputs") return common_outputs
330
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
@property def values_override(self) -> Optional[Mapping[str, Any]]: if hasattr(self._config, "use_cache"): return {"use_cache": self.use_past} return None @property def num_layers(self) -> int: """ The number of layers attribute retrieved from the model config. Override this for model configs where the number of layers attribute is not called `num_layers`. """ if not hasattr(self._config, "num_layers"): raise AttributeError( "could not find the number of layers attribute in the model configuration, override the num_layers" " property of the model OnnxConfig to solve this" ) return self._config.num_layers
330
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
@property def num_attention_heads(self) -> int: """ The number of attention heads attribute retrieved from the model config. Override this for model configs where the number of attention heads attribute is not called `num_attention_heads`. """ if not hasattr(self._config, "num_attention_heads"): raise AttributeError( "could not find the number of attention heads attribute in the model configuration, override the" " num_attention_heads property of the model OnnxConfig to solve this" ) return self._config.num_attention_heads
330
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
def generate_dummy_inputs( self, tokenizer: "PreTrainedTokenizerBase", batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: # TODO: should we set seq_length = 1 when self.use_past = True? common_inputs = super().generate_dummy_inputs( tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch
330
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
batch, seqlen = common_inputs["input_ids"].shape # Not using the same length for past_key_values past_key_values_length = seqlen + 2 shape = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) if "attention_mask" in common_inputs: mask_dtype = common_inputs["attention_mask"].dtype common_inputs["attention_mask"] = torch.cat( [common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1, ) common_inputs["past_key_values"] = [] for _ in range(self.num_layers): common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape))) return common_inputs
330
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
def fill_with_past_key_values_( self, inputs_or_outputs: Mapping[str, Mapping[int, str]], direction: str, inverted_values_shape: bool = False ): """ Fill the input_or_outputs mapping with past_key_values dynamic axes considering. Args: inputs_or_outputs: The mapping to fill. direction: either "inputs" or "outputs", it specifies whether input_or_outputs is the input mapping or the output mapping, this is important for axes naming. inverted_values_shape: If `True`, store values on dynamic axis 1, else on axis 2. """ if direction not in ["inputs", "outputs"]: raise ValueError(f'direction must either be "inputs" or "outputs", but {direction} was given')
330
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
name = "past_key_values" if direction == "inputs" else "present" for i in range(self.num_layers): inputs_or_outputs[f"{name}.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"} if inverted_values_shape: inputs_or_outputs[f"{name}.{i}.value"] = {0: "batch", 1: "past_sequence + sequence"} else: inputs_or_outputs[f"{name}.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"} def _flatten_past_key_values_(self, flattened_output, name, idx, t): flattened_output[f"{name}.{idx}.key"] = t[0] flattened_output[f"{name}.{idx}.value"] = t[1]
330
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
def flatten_output_collection_property(self, name: str, field: Iterable[Any]) -> Dict[str, Any]: flattened_output = {} if name in ["present", "past_key_values"]: for idx, t in enumerate(field): self._flatten_past_key_values_(flattened_output, name, idx, t) else: flattened_output = super().flatten_output_collection_property(name, field) return flattened_output
330
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
class OnnxSeq2SeqConfigWithPast(OnnxConfigWithPast): @property def outputs(self) -> Mapping[str, Mapping[int, str]]: common_outputs = super(OnnxConfigWithPast, self).outputs # Renaming the outputs axes properly. for name, axes_names in common_outputs.items(): sequence_name = "encoder_sequence" if "encoder" in name else "decoder_sequence" for axis_idx, name in axes_names.items(): if "sequence" in name: axes_names[axis_idx] = sequence_name # We reset the value as the order in common_outputs (OrderedDict) is lost otherwise else: axes_names[axis_idx] = name if self.use_past: self.fill_with_past_key_values_(common_outputs, direction="outputs") return common_outputs
331
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
@property def num_layers(self) -> Tuple[int]: try: num_layers = super().num_layers num_layers = (num_layers, num_layers) except AttributeError: if hasattr(self._config, "encoder_layers") and hasattr(self._config, "decoder_layers"): num_layers = (self._config.encoder_layers, self._config.decoder_layers) else: raise AttributeError( "could not find the number of encoder and decoder layers attributes in the model configuration," " override the num_layers property of the model OnnxConfig to solve this" ) return num_layers
331
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
@property def num_attention_heads(self) -> Tuple[int]: try: num_attention_heads = super().num_attention_heads num_attention_heads = (num_attention_heads, num_attention_heads) except AttributeError: if hasattr(self._config, "encoder_attention_heads") and hasattr(self._config, "decoder_attention_heads"): num_attention_heads = (self._config.encoder_attention_heads, self._config.decoder_attention_heads) else: raise AttributeError( "could not find the number of attention heads for the encoder and the decoder attributes in the" " model configuration, override the num_attention_heads property of the model OnnxConfig to solve" " this" ) return num_attention_heads
331
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
def generate_dummy_inputs( self, tokenizer: "PreTrainedTokenizerBase", batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: encoder_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs( tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework ) # Generate decoder inputs decoder_seq_length = seq_length if not self.use_past else 1 decoder_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs( tokenizer, batch_size=batch_size, seq_length=decoder_seq_length, is_pair=is_pair, framework=framework ) decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} common_inputs = dict(**encoder_inputs, **decoder_inputs)
331
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch batch = common_inputs["input_ids"].shape[0] encoder_seq_length = common_inputs["input_ids"].shape[1] decoder_seq_length = common_inputs["decoder_input_ids"].shape[1] num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads encoder_shape = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) decoder_shape = ( batch, num_decoder_attention_heads, # Not using the same length for past_key_values decoder_seq_length + 3, self._config.hidden_size // num_decoder_attention_heads,
331
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
)
331
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
common_inputs["past_key_values"] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered num_encoder_layers, num_decoder_layers = self.num_layers min_num_layers = min(num_encoder_layers, num_decoder_layers) max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
331
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
for _ in range(min_num_layers): # For encoder-decoder models, past_key_values contains pre-computed values for both the encoder and the # decoder layers, hence a tuple of 4 tensors instead of 2 common_inputs["past_key_values"].append( ( torch.zeros(decoder_shape), torch.zeros(decoder_shape), torch.zeros(encoder_shape), torch.zeros(encoder_shape), ) ) # TODO: test this. shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(min_num_layers, max_num_layers): common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape))) return common_inputs
331
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
def fill_with_past_key_values_(self, inputs_or_outputs: Mapping[str, Mapping[int, str]], direction: str): if direction not in ["inputs", "outputs"]: raise ValueError(f'direction must either be "inputs" or "outputs", but {direction} was given') name = "past_key_values" if direction == "inputs" else "present" # If the number of encoder and decoder layers are present in the model configuration, both are considered num_encoder_layers, num_decoder_layers = self.num_layers min_num_layers = min(num_encoder_layers, num_decoder_layers) max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" encoder_sequence = "past_encoder_sequence" decoder_sequence = "past_decoder_sequence" if direction == "inputs" else "past_decoder_sequence + sequence"
331
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
for i in range(min_num_layers): inputs_or_outputs[f"{name}.{i}.decoder.key"] = {0: "batch", 2: decoder_sequence} inputs_or_outputs[f"{name}.{i}.decoder.value"] = {0: "batch", 2: decoder_sequence} inputs_or_outputs[f"{name}.{i}.encoder.key"] = {0: "batch", 2: encoder_sequence} inputs_or_outputs[f"{name}.{i}.encoder.value"] = {0: "batch", 2: encoder_sequence} for i in range(min_num_layers, max_num_layers): if remaining_side_name == "encoder": axes_info = {0: "batch", 2: encoder_sequence} else: axes_info = {0: "batch", 2: decoder_sequence} inputs_or_outputs[f"{name}.{i}.{remaining_side_name}.key"] = axes_info
331
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
def _flatten_past_key_values_(self, flattened_output, name, idx, t): flattened_output[f"{name}.{idx}.decoder.key"] = t[0] flattened_output[f"{name}.{idx}.decoder.value"] = t[1] flattened_output[f"{name}.{idx}.encoder.key"] = t[2] flattened_output[f"{name}.{idx}.encoder.value"] = t[3]
331
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/config.py
class FeaturesManager: _TASKS_TO_AUTOMODELS = {} _TASKS_TO_TF_AUTOMODELS = {} if is_torch_available(): _TASKS_TO_AUTOMODELS = { "default": AutoModel, "masked-lm": AutoModelForMaskedLM, "causal-lm": AutoModelForCausalLM, "seq2seq-lm": AutoModelForSeq2SeqLM, "sequence-classification": AutoModelForSequenceClassification, "token-classification": AutoModelForTokenClassification, "multiple-choice": AutoModelForMultipleChoice, "object-detection": AutoModelForObjectDetection, "question-answering": AutoModelForQuestionAnswering, "image-classification": AutoModelForImageClassification, "image-segmentation": AutoModelForImageSegmentation, "masked-im": AutoModelForMaskedImageModeling, "semantic-segmentation": AutoModelForSemanticSegmentation, "vision2seq-lm": AutoModelForVision2Seq,
332
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/features.py
"speech2seq-lm": AutoModelForSpeechSeq2Seq, } if is_tf_available(): _TASKS_TO_TF_AUTOMODELS = { "default": TFAutoModel, "masked-lm": TFAutoModelForMaskedLM, "causal-lm": TFAutoModelForCausalLM, "seq2seq-lm": TFAutoModelForSeq2SeqLM, "sequence-classification": TFAutoModelForSequenceClassification, "token-classification": TFAutoModelForTokenClassification, "multiple-choice": TFAutoModelForMultipleChoice, "question-answering": TFAutoModelForQuestionAnswering, "semantic-segmentation": TFAutoModelForSemanticSegmentation, }
332
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/features.py
# Set of model topologies we support associated to the features supported by each topology and the factory _SUPPORTED_MODEL_TYPE = { "albert": supported_features_mapping( "default", "masked-lm", "sequence-classification", "multiple-choice", "token-classification", "question-answering", onnx_config_cls="models.albert.AlbertOnnxConfig", ), "bart": supported_features_mapping( "default", "default-with-past", "causal-lm", "causal-lm-with-past", "seq2seq-lm", "seq2seq-lm-with-past", "sequence-classification", "question-answering", onnx_config_cls="models.bart.BartOnnxConfig", ), # BEiT cannot be used with the masked image modeling autoclass, so this feature is excluded here "beit": supported_features_mapping(
332
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/features.py
"default", "image-classification", onnx_config_cls="models.beit.BeitOnnxConfig" ), "bert": supported_features_mapping( "default", "masked-lm", "causal-lm", "sequence-classification", "multiple-choice", "token-classification", "question-answering", onnx_config_cls="models.bert.BertOnnxConfig", ), "big-bird": supported_features_mapping( "default", "masked-lm", "causal-lm", "sequence-classification", "multiple-choice", "token-classification", "question-answering", onnx_config_cls="models.big_bird.BigBirdOnnxConfig", ), "bigbird-pegasus": supported_features_mapping( "default", "default-with-past", "causal-lm", "causal-lm-with-past", "seq2seq-lm", "seq2seq-lm-with-past",
332
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/features.py
"sequence-classification", "question-answering", onnx_config_cls="models.bigbird_pegasus.BigBirdPegasusOnnxConfig", ), "blenderbot": supported_features_mapping( "default", "default-with-past", "causal-lm", "causal-lm-with-past", "seq2seq-lm", "seq2seq-lm-with-past", onnx_config_cls="models.blenderbot.BlenderbotOnnxConfig", ), "blenderbot-small": supported_features_mapping( "default", "default-with-past", "causal-lm", "causal-lm-with-past", "seq2seq-lm", "seq2seq-lm-with-past", onnx_config_cls="models.blenderbot_small.BlenderbotSmallOnnxConfig", ), "bloom": supported_features_mapping( "default", "default-with-past", "causal-lm", "causal-lm-with-past", "sequence-classification",
332
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/features.py
"token-classification", onnx_config_cls="models.bloom.BloomOnnxConfig", ), "camembert": supported_features_mapping( "default", "masked-lm", "causal-lm", "sequence-classification", "multiple-choice", "token-classification", "question-answering", onnx_config_cls="models.camembert.CamembertOnnxConfig", ), "clip": supported_features_mapping( "default", onnx_config_cls="models.clip.CLIPOnnxConfig", ), "codegen": supported_features_mapping( "default", "causal-lm", onnx_config_cls="models.codegen.CodeGenOnnxConfig", ), "convbert": supported_features_mapping( "default", "masked-lm", "sequence-classification", "multiple-choice", "token-classification", "question-answering",
332
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/features.py
onnx_config_cls="models.convbert.ConvBertOnnxConfig", ), "convnext": supported_features_mapping( "default", "image-classification", onnx_config_cls="models.convnext.ConvNextOnnxConfig", ), "data2vec-text": supported_features_mapping( "default", "masked-lm", "sequence-classification", "multiple-choice", "token-classification", "question-answering", onnx_config_cls="models.data2vec.Data2VecTextOnnxConfig", ), "data2vec-vision": supported_features_mapping( "default", "image-classification", # ONNX doesn't support `adaptive_avg_pool2d` yet # "semantic-segmentation", onnx_config_cls="models.data2vec.Data2VecVisionOnnxConfig", ), "deberta": supported_features_mapping( "default", "masked-lm", "sequence-classification",
332
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/features.py
"token-classification", "question-answering", onnx_config_cls="models.deberta.DebertaOnnxConfig", ), "deberta-v2": supported_features_mapping( "default", "masked-lm", "sequence-classification", "multiple-choice", "token-classification", "question-answering", onnx_config_cls="models.deberta_v2.DebertaV2OnnxConfig", ), "deit": supported_features_mapping( "default", "image-classification", onnx_config_cls="models.deit.DeiTOnnxConfig" ), "detr": supported_features_mapping( "default", "object-detection", "image-segmentation", onnx_config_cls="models.detr.DetrOnnxConfig", ), "distilbert": supported_features_mapping( "default", "masked-lm", "sequence-classification", "multiple-choice", "token-classification",
332
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/features.py
"question-answering", onnx_config_cls="models.distilbert.DistilBertOnnxConfig", ), "electra": supported_features_mapping( "default", "masked-lm", "causal-lm", "sequence-classification", "multiple-choice", "token-classification", "question-answering", onnx_config_cls="models.electra.ElectraOnnxConfig", ), "flaubert": supported_features_mapping( "default", "masked-lm", "causal-lm", "sequence-classification", "multiple-choice", "token-classification", "question-answering", onnx_config_cls="models.flaubert.FlaubertOnnxConfig", ), "gpt2": supported_features_mapping( "default", "default-with-past", "causal-lm", "causal-lm-with-past", "sequence-classification", "token-classification",
332
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/features.py
onnx_config_cls="models.gpt2.GPT2OnnxConfig", ), "gptj": supported_features_mapping( "default", "default-with-past", "causal-lm", "causal-lm-with-past", "question-answering", "sequence-classification", onnx_config_cls="models.gptj.GPTJOnnxConfig", ), "gpt-neo": supported_features_mapping( "default", "default-with-past", "causal-lm", "causal-lm-with-past", "sequence-classification", onnx_config_cls="models.gpt_neo.GPTNeoOnnxConfig", ), "groupvit": supported_features_mapping( "default", onnx_config_cls="models.groupvit.GroupViTOnnxConfig", ), "ibert": supported_features_mapping( "default", "masked-lm", "sequence-classification", "multiple-choice", "token-classification",
332
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/features.py
"question-answering", onnx_config_cls="models.ibert.IBertOnnxConfig", ), "imagegpt": supported_features_mapping( "default", "image-classification", onnx_config_cls="models.imagegpt.ImageGPTOnnxConfig" ), "layoutlm": supported_features_mapping( "default", "masked-lm", "sequence-classification", "token-classification", onnx_config_cls="models.layoutlm.LayoutLMOnnxConfig", ), "layoutlmv3": supported_features_mapping( "default", "question-answering", "sequence-classification", "token-classification", onnx_config_cls="models.layoutlmv3.LayoutLMv3OnnxConfig", ), "levit": supported_features_mapping( "default", "image-classification", onnx_config_cls="models.levit.LevitOnnxConfig" ), "longt5": supported_features_mapping( "default",
332
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/features.py
"default-with-past", "seq2seq-lm", "seq2seq-lm-with-past", onnx_config_cls="models.longt5.LongT5OnnxConfig", ), "longformer": supported_features_mapping( "default", "masked-lm", "multiple-choice", "question-answering", "sequence-classification", "token-classification", onnx_config_cls="models.longformer.LongformerOnnxConfig", ), "marian": supported_features_mapping( "default", "default-with-past", "seq2seq-lm", "seq2seq-lm-with-past", "causal-lm", "causal-lm-with-past", onnx_config_cls="models.marian.MarianOnnxConfig", ), "mbart": supported_features_mapping( "default", "default-with-past", "causal-lm", "causal-lm-with-past", "seq2seq-lm", "seq2seq-lm-with-past",
332
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/features.py
"sequence-classification", "question-answering", onnx_config_cls="models.mbart.MBartOnnxConfig", ), "mobilebert": supported_features_mapping( "default", "masked-lm", "sequence-classification", "multiple-choice", "token-classification", "question-answering", onnx_config_cls="models.mobilebert.MobileBertOnnxConfig", ), "mobilenet-v1": supported_features_mapping( "default", "image-classification", onnx_config_cls="models.mobilenet_v1.MobileNetV1OnnxConfig", ), "mobilenet-v2": supported_features_mapping( "default", "image-classification", onnx_config_cls="models.mobilenet_v2.MobileNetV2OnnxConfig", ), "mobilevit": supported_features_mapping( "default", "image-classification",
332
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/features.py
onnx_config_cls="models.mobilevit.MobileViTOnnxConfig", ), "mt5": supported_features_mapping( "default", "default-with-past", "seq2seq-lm", "seq2seq-lm-with-past", onnx_config_cls="models.mt5.MT5OnnxConfig", ), "m2m-100": supported_features_mapping( "default", "default-with-past", "seq2seq-lm", "seq2seq-lm-with-past", onnx_config_cls="models.m2m_100.M2M100OnnxConfig", ), "owlvit": supported_features_mapping( "default", onnx_config_cls="models.owlvit.OwlViTOnnxConfig", ), "perceiver": supported_features_mapping( "image-classification", "masked-lm", "sequence-classification", onnx_config_cls="models.perceiver.PerceiverOnnxConfig", ), "poolformer": supported_features_mapping(
332
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/features.py
"default", "image-classification", onnx_config_cls="models.poolformer.PoolFormerOnnxConfig" ), "rembert": supported_features_mapping( "default", "masked-lm", "causal-lm", "sequence-classification", "multiple-choice", "token-classification", "question-answering", onnx_config_cls="models.rembert.RemBertOnnxConfig", ), "resnet": supported_features_mapping( "default", "image-classification", onnx_config_cls="models.resnet.ResNetOnnxConfig", ), "roberta": supported_features_mapping( "default", "masked-lm", "causal-lm", "sequence-classification", "multiple-choice", "token-classification", "question-answering", onnx_config_cls="models.roberta.RobertaOnnxConfig", ), "roformer": supported_features_mapping(
332
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/features.py
"default", "masked-lm", "causal-lm", "sequence-classification", "token-classification", "multiple-choice", "question-answering", "token-classification", onnx_config_cls="models.roformer.RoFormerOnnxConfig", ), "segformer": supported_features_mapping( "default", "image-classification", "semantic-segmentation", onnx_config_cls="models.segformer.SegformerOnnxConfig", ), "squeezebert": supported_features_mapping( "default", "masked-lm", "sequence-classification", "multiple-choice", "token-classification", "question-answering", onnx_config_cls="models.squeezebert.SqueezeBertOnnxConfig", ), "swin": supported_features_mapping( "default", "image-classification", onnx_config_cls="models.swin.SwinOnnxConfig" ),
332
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/features.py
"t5": supported_features_mapping( "default", "default-with-past", "seq2seq-lm", "seq2seq-lm-with-past", onnx_config_cls="models.t5.T5OnnxConfig", ), "vision-encoder-decoder": supported_features_mapping( "vision2seq-lm", onnx_config_cls="models.vision_encoder_decoder.VisionEncoderDecoderOnnxConfig" ), "vit": supported_features_mapping( "default", "image-classification", onnx_config_cls="models.vit.ViTOnnxConfig" ), "whisper": supported_features_mapping( "default", "default-with-past", "speech2seq-lm", "speech2seq-lm-with-past", onnx_config_cls="models.whisper.WhisperOnnxConfig", ), "xlm": supported_features_mapping( "default", "masked-lm", "causal-lm", "sequence-classification", "multiple-choice", "token-classification",
332
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/features.py
"question-answering", onnx_config_cls="models.xlm.XLMOnnxConfig", ), "xlm-roberta": supported_features_mapping( "default", "masked-lm", "causal-lm", "sequence-classification", "multiple-choice", "token-classification", "question-answering", onnx_config_cls="models.xlm_roberta.XLMRobertaOnnxConfig", ), "yolos": supported_features_mapping( "default", "object-detection", onnx_config_cls="models.yolos.YolosOnnxConfig", ), }
332
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/features.py
AVAILABLE_FEATURES = sorted(reduce(lambda s1, s2: s1 | s2, (v.keys() for v in _SUPPORTED_MODEL_TYPE.values()))) @staticmethod def get_supported_features_for_model_type( model_type: str, model_name: Optional[str] = None ) -> Dict[str, Callable[[PretrainedConfig], OnnxConfig]]: """ Tries to retrieve the feature -> OnnxConfig constructor map from the model type. Args: model_type (`str`): The model type to retrieve the supported features for. model_name (`str`, *optional*): The name attribute of the model object, only used for the exception message.
332
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/features.py
Returns: The dictionary mapping each feature to a corresponding OnnxConfig constructor. """ model_type = model_type.lower() if model_type not in FeaturesManager._SUPPORTED_MODEL_TYPE: model_type_and_model_name = f"{model_type} ({model_name})" if model_name else model_type raise KeyError( f"{model_type_and_model_name} is not supported yet. " f"Only {list(FeaturesManager._SUPPORTED_MODEL_TYPE.keys())} are supported. " f"If you want to support {model_type} please propose a PR or open up an issue." ) return FeaturesManager._SUPPORTED_MODEL_TYPE[model_type] @staticmethod def feature_to_task(feature: str) -> str: return feature.replace("-with-past", "")
332
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/features.py
@staticmethod def _validate_framework_choice(framework: str): """ Validates if the framework requested for the export is both correct and available, otherwise throws an exception. """ if framework not in ["pt", "tf"]: raise ValueError( f"Only two frameworks are supported for ONNX export: pt or tf, but {framework} was provided." ) elif framework == "pt" and not is_torch_available(): raise RuntimeError("Cannot export model to ONNX using PyTorch because no PyTorch package was found.") elif framework == "tf" and not is_tf_available(): raise RuntimeError("Cannot export model to ONNX using TensorFlow because no TensorFlow package was found.") @staticmethod def get_model_class_for_feature(feature: str, framework: str = "pt") -> Type: """ Attempts to retrieve an AutoModel class from a feature name.
332
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/features.py
Args: feature (`str`): The feature required. framework (`str`, *optional*, defaults to `"pt"`): The framework to use for the export. Returns: The AutoModel class corresponding to the feature. """ task = FeaturesManager.feature_to_task(feature) FeaturesManager._validate_framework_choice(framework) if framework == "pt": task_to_automodel = FeaturesManager._TASKS_TO_AUTOMODELS else: task_to_automodel = FeaturesManager._TASKS_TO_TF_AUTOMODELS if task not in task_to_automodel: raise KeyError( f"Unknown task: {feature}. Possible values are {list(FeaturesManager._TASKS_TO_AUTOMODELS.values())}" ) return task_to_automodel[task] @staticmethod def determine_framework(model: str, framework: str = None) -> str: """ Determines the framework to use for the export.
332
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/features.py
The priority is in the following order: 1. User input via `framework`. 2. If local checkpoint is provided, use the same framework as the checkpoint. 3. Available framework in environment, with priority given to PyTorch Args: model (`str`): The name of the model to export. framework (`str`, *optional*, defaults to `None`): The framework to use for the export. See above for priority if none provided. Returns: The framework to use for the export. """ if framework is not None: return framework framework_map = {"pt": "PyTorch", "tf": "TensorFlow"} exporter_map = {"pt": "torch", "tf": "tf2onnx"}
332
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/features.py
if os.path.isdir(model): if os.path.isfile(os.path.join(model, WEIGHTS_NAME)): framework = "pt" elif os.path.isfile(os.path.join(model, TF2_WEIGHTS_NAME)): framework = "tf" else: raise FileNotFoundError( "Cannot determine framework from given checkpoint location." f" There should be a {WEIGHTS_NAME} for PyTorch" f" or {TF2_WEIGHTS_NAME} for TensorFlow." ) logger.info(f"Local {framework_map[framework]} model found.") else: if is_torch_available(): framework = "pt" elif is_tf_available(): framework = "tf" else: raise EnvironmentError("Neither PyTorch nor TensorFlow found in environment. Cannot export to ONNX.") logger.info(f"Framework not requested. Using {exporter_map[framework]} to export to ONNX.") return framework
332
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/features.py
@staticmethod def get_model_from_feature( feature: str, model: str, framework: str = None, cache_dir: str = None ) -> Union["PreTrainedModel", "TFPreTrainedModel"]: """ Attempts to retrieve a model from a model's name and the feature to be enabled. Args: feature (`str`): The feature required. model (`str`): The name of the model to export. framework (`str`, *optional*, defaults to `None`): The framework to use for the export. See `FeaturesManager.determine_framework` for the priority should none be provided. Returns: The instance of the model.
332
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/features.py
""" framework = FeaturesManager.determine_framework(model, framework) model_class = FeaturesManager.get_model_class_for_feature(feature, framework) try: model = model_class.from_pretrained(model, cache_dir=cache_dir) except OSError: if framework == "pt": logger.info("Loading TensorFlow model in PyTorch before exporting to ONNX.") model = model_class.from_pretrained(model, from_tf=True, cache_dir=cache_dir) else: logger.info("Loading PyTorch model in TensorFlow before exporting to ONNX.") model = model_class.from_pretrained(model, from_pt=True, cache_dir=cache_dir) return model @staticmethod def check_supported_model_or_raise( model: Union["PreTrainedModel", "TFPreTrainedModel"], feature: str = "default" ) -> Tuple[str, Callable]: """ Check whether or not the model has the requested features.
332
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/features.py
Args: model: The model to export. feature: The name of the feature to check if it is available. Returns: (str) The type of the model (OnnxConfig) The OnnxConfig instance holding the model export properties. """ model_type = model.config.model_type.replace("_", "-") model_name = getattr(model, "name", "") model_features = FeaturesManager.get_supported_features_for_model_type(model_type, model_name=model_name) if feature not in model_features: raise ValueError( f"{model.config.model_type} doesn't support feature {feature}. Supported values are: {model_features}" ) return model.config.model_type, FeaturesManager._SUPPORTED_MODEL_TYPE[model_type][feature] def get_config(model_type: str, feature: str) -> OnnxConfig: """ Gets the OnnxConfig for a model_type and feature combination.
332
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/features.py
Args: model_type (`str`): The model type to retrieve the config for. feature (`str`): The feature to retrieve the config for. Returns: `OnnxConfig`: config for the combination """ return FeaturesManager._SUPPORTED_MODEL_TYPE[model_type][feature]
332
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/features.py