text
stringlengths 1
1.02k
| class_index
int64 0
10.8k
| source
stringlengths 85
188
|
---|---|---|
class ParameterFormat(Enum):
Float = c_float
@property
def size(self) -> int:
"""
Number of byte required for this data type
Returns:
Integer > 0
"""
return sizeof(self.value)
| 333 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/onnx/utils.py
|
class ImageLoss(nn.Module):
"""
This class computes the losses for DetrForObjectDetection/DetrForSegmentation. The process happens in two steps: 1)
we compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair
of matched ground-truth / prediction (supervise class and box).
A note on the `num_classes` argument (copied from original repo in detr.py): "the naming of the `num_classes`
parameter of the criterion is somewhat misleading. It indeed corresponds to `max_obj_id` + 1, where `max_obj_id` is
the maximum id for a class in your dataset. For example, COCO has a `max_obj_id` of 90, so we pass `num_classes` to
be 91. As another example, for a dataset that has a single class with `id` 1, you should pass `num_classes` to be 2
(`max_obj_id` + 1). For more details on this, check the following discussion
https://github.com/facebookresearch/detr/issues/108#issuecomment-650269223"
| 334 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_for_object_detection.py
|
Args:
matcher (`DetrHungarianMatcher`):
Module able to compute a matching between targets and proposals.
num_classes (`int`):
Number of object categories, omitting the special no-object category.
eos_coef (`float`):
Relative classification weight applied to the no-object category.
losses (`List[str]`):
List of all the losses to be applied. See `get_loss` for a list of all available losses.
"""
def __init__(self, matcher, num_classes, eos_coef, losses):
super().__init__()
self.matcher = matcher
self.num_classes = num_classes
self.eos_coef = eos_coef
self.losses = losses
empty_weight = torch.ones(self.num_classes + 1)
empty_weight[-1] = self.eos_coef
self.register_buffer("empty_weight", empty_weight)
| 334 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_for_object_detection.py
|
# removed logging parameter, which was part of the original implementation
def loss_labels(self, outputs, targets, indices, num_boxes):
"""
Classification loss (NLL) targets dicts must contain the key "class_labels" containing a tensor of dim
[nb_target_boxes]
"""
if "logits" not in outputs:
raise KeyError("No logits were found in the outputs")
source_logits = outputs["logits"]
idx = self._get_source_permutation_idx(indices)
target_classes_o = torch.cat([t["class_labels"][J] for t, (_, J) in zip(targets, indices)])
target_classes = torch.full(
source_logits.shape[:2], self.num_classes, dtype=torch.int64, device=source_logits.device
)
target_classes[idx] = target_classes_o
loss_ce = nn.functional.cross_entropy(source_logits.transpose(1, 2), target_classes, self.empty_weight)
losses = {"loss_ce": loss_ce}
return losses
| 334 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_for_object_detection.py
|
@torch.no_grad()
def loss_cardinality(self, outputs, targets, indices, num_boxes):
"""
Compute the cardinality error, i.e. the absolute error in the number of predicted non-empty boxes.
This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients.
"""
logits = outputs["logits"]
device = logits.device
target_lengths = torch.as_tensor([len(v["class_labels"]) for v in targets], device=device)
# Count the number of predictions that are NOT "no-object" (which is the last class)
card_pred = (logits.argmax(-1) != logits.shape[-1] - 1).sum(1)
card_err = nn.functional.l1_loss(card_pred.float(), target_lengths.float())
losses = {"cardinality_error": card_err}
return losses
def loss_boxes(self, outputs, targets, indices, num_boxes):
"""
Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss.
| 334 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_for_object_detection.py
|
Targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]. The target boxes
are expected in format (center_x, center_y, w, h), normalized by the image size.
"""
if "pred_boxes" not in outputs:
raise KeyError("No predicted boxes found in outputs")
idx = self._get_source_permutation_idx(indices)
source_boxes = outputs["pred_boxes"][idx]
target_boxes = torch.cat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0)
loss_bbox = nn.functional.l1_loss(source_boxes, target_boxes, reduction="none")
losses = {}
losses["loss_bbox"] = loss_bbox.sum() / num_boxes
loss_giou = 1 - torch.diag(
generalized_box_iou(center_to_corners_format(source_boxes), center_to_corners_format(target_boxes))
)
losses["loss_giou"] = loss_giou.sum() / num_boxes
return losses
| 334 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_for_object_detection.py
|
def loss_masks(self, outputs, targets, indices, num_boxes):
"""
Compute the losses related to the masks: the focal loss and the dice loss.
Targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w].
"""
if "pred_masks" not in outputs:
raise KeyError("No predicted masks found in outputs")
source_idx = self._get_source_permutation_idx(indices)
target_idx = self._get_target_permutation_idx(indices)
source_masks = outputs["pred_masks"]
source_masks = source_masks[source_idx]
masks = [t["masks"] for t in targets]
# TODO use valid to mask invalid areas due to padding in loss
target_masks, valid = nested_tensor_from_tensor_list(masks).decompose()
target_masks = target_masks.to(source_masks)
target_masks = target_masks[target_idx]
| 334 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_for_object_detection.py
|
# upsample predictions to the target size
source_masks = nn.functional.interpolate(
source_masks[:, None], size=target_masks.shape[-2:], mode="bilinear", align_corners=False
)
source_masks = source_masks[:, 0].flatten(1)
target_masks = target_masks.flatten(1)
target_masks = target_masks.view(source_masks.shape)
losses = {
"loss_mask": sigmoid_focal_loss(source_masks, target_masks, num_boxes),
"loss_dice": dice_loss(source_masks, target_masks, num_boxes),
}
return losses
def _get_source_permutation_idx(self, indices):
# permute predictions following indices
batch_idx = torch.cat([torch.full_like(source, i) for i, (source, _) in enumerate(indices)])
source_idx = torch.cat([source for (source, _) in indices])
return batch_idx, source_idx
| 334 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_for_object_detection.py
|
def _get_target_permutation_idx(self, indices):
# permute targets following indices
batch_idx = torch.cat([torch.full_like(target, i) for i, (_, target) in enumerate(indices)])
target_idx = torch.cat([target for (_, target) in indices])
return batch_idx, target_idx
def get_loss(self, loss, outputs, targets, indices, num_boxes):
loss_map = {
"labels": self.loss_labels,
"cardinality": self.loss_cardinality,
"boxes": self.loss_boxes,
"masks": self.loss_masks,
}
if loss not in loss_map:
raise ValueError(f"Loss {loss} not supported")
return loss_map[loss](outputs, targets, indices, num_boxes)
def forward(self, outputs, targets):
"""
This performs the loss computation.
| 334 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_for_object_detection.py
|
Args:
outputs (`dict`, *optional*):
Dictionary of tensors, see the output specification of the model for the format.
targets (`List[dict]`, *optional*):
List of dicts, such that `len(targets) == batch_size`. The expected keys in each dict depends on the
losses applied, see each loss' doc.
"""
outputs_without_aux = {k: v for k, v in outputs.items() if k != "auxiliary_outputs"}
# Retrieve the matching between the outputs of the last layer and the targets
indices = self.matcher(outputs_without_aux, targets)
| 334 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_for_object_detection.py
|
# Compute the average number of target boxes across all nodes, for normalization purposes
num_boxes = sum(len(t["class_labels"]) for t in targets)
num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device)
world_size = 1
if is_accelerate_available():
if PartialState._shared_state != {}:
num_boxes = reduce(num_boxes)
world_size = PartialState().num_processes
num_boxes = torch.clamp(num_boxes / world_size, min=1).item()
# Compute all the requested losses
losses = {}
for loss in self.losses:
losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes))
| 334 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_for_object_detection.py
|
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
if "auxiliary_outputs" in outputs:
for i, auxiliary_outputs in enumerate(outputs["auxiliary_outputs"]):
indices = self.matcher(auxiliary_outputs, targets)
for loss in self.losses:
if loss == "masks":
# Intermediate masks losses are too costly to compute, we ignore them.
continue
l_dict = self.get_loss(loss, auxiliary_outputs, targets, indices, num_boxes)
l_dict = {k + f"_{i}": v for k, v in l_dict.items()}
losses.update(l_dict)
return losses
| 334 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_for_object_detection.py
|
class HungarianMatcher(nn.Module):
"""
This class computes an assignment between the targets and the predictions of the network.
For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are more
predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are
un-matched (and thus treated as non-objects).
Args:
class_cost:
The relative weight of the classification error in the matching cost.
bbox_cost:
The relative weight of the L1 error of the bounding box coordinates in the matching cost.
giou_cost:
The relative weight of the giou loss of the bounding box in the matching cost.
"""
def __init__(self, class_cost: float = 1, bbox_cost: float = 1, giou_cost: float = 1):
super().__init__()
requires_backends(self, ["scipy"])
| 335 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_for_object_detection.py
|
self.class_cost = class_cost
self.bbox_cost = bbox_cost
self.giou_cost = giou_cost
if class_cost == 0 and bbox_cost == 0 and giou_cost == 0:
raise ValueError("All costs of the Matcher can't be 0")
| 335 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_for_object_detection.py
|
@torch.no_grad()
def forward(self, outputs, targets):
"""
Args:
outputs (`dict`):
A dictionary that contains at least these entries:
* "logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits
* "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates.
targets (`List[dict]`):
A list of targets (len(targets) = batch_size), where each target is a dict containing:
* "class_labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of
ground-truth
objects in the target) containing the class labels
* "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates.
| 335 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_for_object_detection.py
|
Returns:
`List[Tuple]`: A list of size `batch_size`, containing tuples of (index_i, index_j) where:
- index_i is the indices of the selected predictions (in order)
- index_j is the indices of the corresponding selected targets (in order)
For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
"""
batch_size, num_queries = outputs["logits"].shape[:2]
# We flatten to compute the cost matrices in a batch
out_prob = outputs["logits"].flatten(0, 1).softmax(-1) # [batch_size * num_queries, num_classes]
out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4]
# Also concat the target labels and boxes
target_ids = torch.cat([v["class_labels"] for v in targets])
target_bbox = torch.cat([v["boxes"] for v in targets])
| 335 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_for_object_detection.py
|
# Compute the classification cost. Contrary to the loss, we don't use the NLL,
# but approximate it in 1 - proba[target class].
# The 1 is a constant that doesn't change the matching, it can be ommitted.
class_cost = -out_prob[:, target_ids]
# Compute the L1 cost between boxes
bbox_cost = torch.cdist(out_bbox, target_bbox, p=1)
# Compute the giou cost between boxes
giou_cost = -generalized_box_iou(center_to_corners_format(out_bbox), center_to_corners_format(target_bbox))
# Final cost matrix
cost_matrix = self.bbox_cost * bbox_cost + self.class_cost * class_cost + self.giou_cost * giou_cost
cost_matrix = cost_matrix.view(batch_size, num_queries, -1).cpu()
sizes = [len(v["boxes"]) for v in targets]
indices = [linear_sum_assignment(c[i]) for i, c in enumerate(cost_matrix.split(sizes, -1))]
return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]
| 335 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_for_object_detection.py
|
class NestedTensor:
def __init__(self, tensors, mask: Optional[Tensor]):
self.tensors = tensors
self.mask = mask
def to(self, device):
cast_tensor = self.tensors.to(device)
mask = self.mask
if mask is not None:
cast_mask = mask.to(device)
else:
cast_mask = None
return NestedTensor(cast_tensor, cast_mask)
def decompose(self):
return self.tensors, self.mask
def __repr__(self):
return str(self.tensors)
| 336 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_for_object_detection.py
|
class DeformableDetrHungarianMatcher(HungarianMatcher):
@torch.no_grad()
def forward(self, outputs, targets):
"""
Differences:
- out_prob = outputs["logits"].flatten(0, 1).sigmoid() instead of softmax
- class_cost uses alpha and gamma
"""
batch_size, num_queries = outputs["logits"].shape[:2]
# We flatten to compute the cost matrices in a batch
out_prob = outputs["logits"].flatten(0, 1).sigmoid() # [batch_size * num_queries, num_classes]
out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4]
# Also concat the target labels and boxes
target_ids = torch.cat([v["class_labels"] for v in targets])
target_bbox = torch.cat([v["boxes"] for v in targets])
| 337 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_deformable_detr.py
|
# Compute the classification cost.
alpha = 0.25
gamma = 2.0
neg_cost_class = (1 - alpha) * (out_prob**gamma) * (-(1 - out_prob + 1e-8).log())
pos_cost_class = alpha * ((1 - out_prob) ** gamma) * (-(out_prob + 1e-8).log())
class_cost = pos_cost_class[:, target_ids] - neg_cost_class[:, target_ids]
# Compute the L1 cost between boxes
bbox_cost = torch.cdist(out_bbox, target_bbox, p=1)
# Compute the giou cost between boxes
giou_cost = -generalized_box_iou(center_to_corners_format(out_bbox), center_to_corners_format(target_bbox))
# Final cost matrix
cost_matrix = self.bbox_cost * bbox_cost + self.class_cost * class_cost + self.giou_cost * giou_cost
cost_matrix = cost_matrix.view(batch_size, num_queries, -1).cpu()
| 337 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_deformable_detr.py
|
sizes = [len(v["boxes"]) for v in targets]
indices = [linear_sum_assignment(c[i]) for i, c in enumerate(cost_matrix.split(sizes, -1))]
return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]
| 337 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_deformable_detr.py
|
class DeformableDetrImageLoss(ImageLoss):
def __init__(self, matcher, num_classes, focal_alpha, losses):
nn.Module.__init__(self)
self.matcher = matcher
self.num_classes = num_classes
self.focal_alpha = focal_alpha
self.losses = losses
# removed logging parameter, which was part of the original implementation
def loss_labels(self, outputs, targets, indices, num_boxes):
"""
Classification loss (Binary focal loss) targets dicts must contain the key "class_labels" containing a tensor
of dim [nb_target_boxes]
"""
if "logits" not in outputs:
raise KeyError("No logits were found in the outputs")
source_logits = outputs["logits"]
| 338 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_deformable_detr.py
|
idx = self._get_source_permutation_idx(indices)
target_classes_o = torch.cat([t["class_labels"][J] for t, (_, J) in zip(targets, indices)])
target_classes = torch.full(
source_logits.shape[:2], self.num_classes, dtype=torch.int64, device=source_logits.device
)
target_classes[idx] = target_classes_o
target_classes_onehot = torch.zeros(
[source_logits.shape[0], source_logits.shape[1], source_logits.shape[2] + 1],
dtype=source_logits.dtype,
layout=source_logits.layout,
device=source_logits.device,
)
target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1)
target_classes_onehot = target_classes_onehot[:, :, :-1]
loss_ce = (
sigmoid_focal_loss(source_logits, target_classes_onehot, num_boxes, alpha=self.focal_alpha, gamma=2)
* source_logits.shape[1]
)
losses = {"loss_ce": loss_ce}
return losses
| 338 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_deformable_detr.py
|
class RTDetrHungarianMatcher(nn.Module):
"""This class computes an assignment between the targets and the predictions of the network
For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are more
predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are
un-matched (and thus treated as non-objects).
Args:
config: RTDetrConfig
"""
def __init__(self, config):
super().__init__()
requires_backends(self, ["scipy"])
self.class_cost = config.matcher_class_cost
self.bbox_cost = config.matcher_bbox_cost
self.giou_cost = config.matcher_giou_cost
self.use_focal_loss = config.use_focal_loss
self.alpha = config.matcher_alpha
self.gamma = config.matcher_gamma
if self.class_cost == self.bbox_cost == self.giou_cost == 0:
raise ValueError("All costs of the Matcher can't be 0")
| 339 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_rt_detr.py
|
@torch.no_grad()
def forward(self, outputs, targets):
"""Performs the matching
Params:
outputs: This is a dict that contains at least these entries:
"logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits
"pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates
targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing:
"class_labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth
objects in the target) containing the class labels
"boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates
| 339 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_rt_detr.py
|
Returns:
A list of size batch_size, containing tuples of (index_i, index_j) where:
- index_i is the indices of the selected predictions (in order)
- index_j is the indices of the corresponding selected targets (in order)
For each batch element, it holds:
len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
"""
batch_size, num_queries = outputs["logits"].shape[:2]
| 339 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_rt_detr.py
|
# We flatten to compute the cost matrices in a batch
out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4]
# Also concat the target labels and boxes
target_ids = torch.cat([v["class_labels"] for v in targets])
target_bbox = torch.cat([v["boxes"] for v in targets])
# Compute the classification cost. Contrary to the loss, we don't use the NLL,
# but approximate it in 1 - proba[target class].
# The 1 is a constant that doesn't change the matching, it can be ommitted.
if self.use_focal_loss:
out_prob = F.sigmoid(outputs["logits"].flatten(0, 1))
out_prob = out_prob[:, target_ids]
neg_cost_class = (1 - self.alpha) * (out_prob**self.gamma) * (-(1 - out_prob + 1e-8).log())
pos_cost_class = self.alpha * ((1 - out_prob) ** self.gamma) * (-(out_prob + 1e-8).log())
class_cost = pos_cost_class - neg_cost_class
else:
| 339 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_rt_detr.py
|
out_prob = outputs["logits"].flatten(0, 1).softmax(-1) # [batch_size * num_queries, num_classes]
class_cost = -out_prob[:, target_ids]
| 339 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_rt_detr.py
|
# Compute the L1 cost between boxes
bbox_cost = torch.cdist(out_bbox, target_bbox, p=1)
# Compute the giou cost betwen boxes
giou_cost = -generalized_box_iou(center_to_corners_format(out_bbox), center_to_corners_format(target_bbox))
# Compute the final cost matrix
cost_matrix = self.bbox_cost * bbox_cost + self.class_cost * class_cost + self.giou_cost * giou_cost
cost_matrix = cost_matrix.view(batch_size, num_queries, -1).cpu()
sizes = [len(v["boxes"]) for v in targets]
indices = [linear_sum_assignment(c[i]) for i, c in enumerate(cost_matrix.split(sizes, -1))]
return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices]
| 339 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_rt_detr.py
|
class RTDetrLoss(nn.Module):
"""
This class computes the losses for RTDetr. The process happens in two steps: 1) we compute hungarian assignment
between ground truth boxes and the outputs of the model 2) we supervise each pair of matched ground-truth /
prediction (supervise class and box).
| 340 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_rt_detr.py
|
Args:
matcher (`DetrHungarianMatcher`):
Module able to compute a matching between targets and proposals.
weight_dict (`Dict`):
Dictionary relating each loss with its weights. These losses are configured in RTDetrConf as
`weight_loss_vfl`, `weight_loss_bbox`, `weight_loss_giou`
losses (`List[str]`):
List of all the losses to be applied. See `get_loss` for a list of all available losses.
alpha (`float`):
Parameter alpha used to compute the focal loss.
gamma (`float`):
Parameter gamma used to compute the focal loss.
eos_coef (`float`):
Relative classification weight applied to the no-object category.
num_classes (`int`):
Number of object categories, omitting the special no-object category.
"""
def __init__(self, config):
super().__init__()
| 340 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_rt_detr.py
|
self.matcher = RTDetrHungarianMatcher(config)
self.num_classes = config.num_labels
self.weight_dict = {
"loss_vfl": config.weight_loss_vfl,
"loss_bbox": config.weight_loss_bbox,
"loss_giou": config.weight_loss_giou,
}
self.losses = ["vfl", "boxes"]
self.eos_coef = config.eos_coefficient
empty_weight = torch.ones(config.num_labels + 1)
empty_weight[-1] = self.eos_coef
self.register_buffer("empty_weight", empty_weight)
self.alpha = config.focal_loss_alpha
self.gamma = config.focal_loss_gamma
def loss_labels_vfl(self, outputs, targets, indices, num_boxes, log=True):
if "pred_boxes" not in outputs:
raise KeyError("No predicted boxes found in outputs")
if "logits" not in outputs:
raise KeyError("No predicted logits found in outputs")
idx = self._get_source_permutation_idx(indices)
| 340 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_rt_detr.py
|
src_boxes = outputs["pred_boxes"][idx]
target_boxes = torch.cat([_target["boxes"][i] for _target, (_, i) in zip(targets, indices)], dim=0)
ious, _ = box_iou(center_to_corners_format(src_boxes), center_to_corners_format(target_boxes))
ious = torch.diag(ious).detach()
src_logits = outputs["logits"]
target_classes_original = torch.cat([_target["class_labels"][i] for _target, (_, i) in zip(targets, indices)])
target_classes = torch.full(
src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device
)
target_classes[idx] = target_classes_original
target = F.one_hot(target_classes, num_classes=self.num_classes + 1)[..., :-1]
target_score_original = torch.zeros_like(target_classes, dtype=src_logits.dtype)
target_score_original[idx] = ious.to(target_score_original.dtype)
target_score = target_score_original.unsqueeze(-1) * target
| 340 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_rt_detr.py
|
pred_score = F.sigmoid(src_logits).detach()
weight = self.alpha * pred_score.pow(self.gamma) * (1 - target) + target_score
loss = F.binary_cross_entropy_with_logits(src_logits, target_score, weight=weight, reduction="none")
loss = loss.mean(1).sum() * src_logits.shape[1] / num_boxes
return {"loss_vfl": loss}
def loss_labels(self, outputs, targets, indices, num_boxes, log=True):
"""Classification loss (NLL)
targets dicts must contain the key "class_labels" containing a tensor of dim [nb_target_boxes]
"""
if "logits" not in outputs:
raise KeyError("No logits were found in the outputs")
src_logits = outputs["logits"]
| 340 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_rt_detr.py
|
idx = self._get_source_permutation_idx(indices)
target_classes_original = torch.cat([_target["class_labels"][i] for _target, (_, i) in zip(targets, indices)])
target_classes = torch.full(
src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device
)
target_classes[idx] = target_classes_original
loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.class_weight)
losses = {"loss_ce": loss_ce}
return losses
| 340 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_rt_detr.py
|
@torch.no_grad()
def loss_cardinality(self, outputs, targets, indices, num_boxes):
"""
Compute the cardinality error, i.e. the absolute error in the number of predicted non-empty boxes. This is not
really a loss, it is intended for logging purposes only. It doesn't propagate gradients.
"""
logits = outputs["logits"]
device = logits.device
target_lengths = torch.as_tensor([len(v["class_labels"]) for v in targets], device=device)
# Count the number of predictions that are NOT "no-object" (which is the last class)
card_pred = (logits.argmax(-1) != logits.shape[-1] - 1).sum(1)
card_err = nn.functional.l1_loss(card_pred.float(), target_lengths.float())
losses = {"cardinality_error": card_err}
return losses
| 340 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_rt_detr.py
|
def loss_boxes(self, outputs, targets, indices, num_boxes):
"""
Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss. Targets dicts must
contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]. The target boxes are expected in
format (center_x, center_y, w, h), normalized by the image size.
"""
if "pred_boxes" not in outputs:
raise KeyError("No predicted boxes found in outputs")
idx = self._get_source_permutation_idx(indices)
src_boxes = outputs["pred_boxes"][idx]
target_boxes = torch.cat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0)
losses = {}
loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction="none")
losses["loss_bbox"] = loss_bbox.sum() / num_boxes
| 340 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_rt_detr.py
|
loss_giou = 1 - torch.diag(
generalized_box_iou(center_to_corners_format(src_boxes), center_to_corners_format(target_boxes))
)
losses["loss_giou"] = loss_giou.sum() / num_boxes
return losses
def loss_masks(self, outputs, targets, indices, num_boxes):
"""
Compute the losses related to the masks: the focal loss and the dice loss. Targets dicts must contain the key
"masks" containing a tensor of dim [nb_target_boxes, h, w].
"""
if "pred_masks" not in outputs:
raise KeyError("No predicted masks found in outputs")
| 340 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_rt_detr.py
|
source_idx = self._get_source_permutation_idx(indices)
target_idx = self._get_target_permutation_idx(indices)
source_masks = outputs["pred_masks"]
source_masks = source_masks[source_idx]
masks = [t["masks"] for t in targets]
target_masks, valid = nested_tensor_from_tensor_list(masks).decompose()
target_masks = target_masks.to(source_masks)
target_masks = target_masks[target_idx]
# upsample predictions to the target size
source_masks = nn.functional.interpolate(
source_masks[:, None], size=target_masks.shape[-2:], mode="bilinear", align_corners=False
)
source_masks = source_masks[:, 0].flatten(1)
| 340 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_rt_detr.py
|
target_masks = target_masks.flatten(1)
target_masks = target_masks.view(source_masks.shape)
losses = {
"loss_mask": sigmoid_focal_loss(source_masks, target_masks, num_boxes),
"loss_dice": dice_loss(source_masks, target_masks, num_boxes),
}
return losses
def loss_labels_bce(self, outputs, targets, indices, num_boxes, log=True):
src_logits = outputs["logits"]
idx = self._get_source_permutation_idx(indices)
target_classes_original = torch.cat([_target["class_labels"][i] for _target, (_, i) in zip(targets, indices)])
target_classes = torch.full(
src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device
)
target_classes[idx] = target_classes_original
| 340 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_rt_detr.py
|
target = F.one_hot(target_classes, num_classes=self.num_classes + 1)[..., :-1]
loss = F.binary_cross_entropy_with_logits(src_logits, target * 1.0, reduction="none")
loss = loss.mean(1).sum() * src_logits.shape[1] / num_boxes
return {"loss_bce": loss}
def _get_source_permutation_idx(self, indices):
# permute predictions following indices
batch_idx = torch.cat([torch.full_like(source, i) for i, (source, _) in enumerate(indices)])
source_idx = torch.cat([source for (source, _) in indices])
return batch_idx, source_idx
def _get_target_permutation_idx(self, indices):
# permute targets following indices
batch_idx = torch.cat([torch.full_like(target, i) for i, (_, target) in enumerate(indices)])
target_idx = torch.cat([target for (_, target) in indices])
return batch_idx, target_idx
| 340 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_rt_detr.py
|
def loss_labels_focal(self, outputs, targets, indices, num_boxes, log=True):
if "logits" not in outputs:
raise KeyError("No logits found in outputs")
src_logits = outputs["logits"]
idx = self._get_source_permutation_idx(indices)
target_classes_original = torch.cat([_target["class_labels"][i] for _target, (_, i) in zip(targets, indices)])
target_classes = torch.full(
src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device
)
target_classes[idx] = target_classes_original
target = F.one_hot(target_classes, num_classes=self.num_classes + 1)[..., :-1]
loss = sigmoid_focal_loss(src_logits, target, self.alpha, self.gamma)
loss = loss.mean(1).sum() * src_logits.shape[1] / num_boxes
return {"loss_focal": loss}
| 340 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_rt_detr.py
|
def get_loss(self, loss, outputs, targets, indices, num_boxes):
loss_map = {
"labels": self.loss_labels,
"cardinality": self.loss_cardinality,
"boxes": self.loss_boxes,
"masks": self.loss_masks,
"bce": self.loss_labels_bce,
"focal": self.loss_labels_focal,
"vfl": self.loss_labels_vfl,
}
if loss not in loss_map:
raise ValueError(f"Loss {loss} not supported")
return loss_map[loss](outputs, targets, indices, num_boxes)
@staticmethod
def get_cdn_matched_indices(dn_meta, targets):
dn_positive_idx, dn_num_group = dn_meta["dn_positive_idx"], dn_meta["dn_num_group"]
num_gts = [len(t["class_labels"]) for t in targets]
device = targets[0]["class_labels"].device
| 340 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_rt_detr.py
|
dn_match_indices = []
for i, num_gt in enumerate(num_gts):
if num_gt > 0:
gt_idx = torch.arange(num_gt, dtype=torch.int64, device=device)
gt_idx = gt_idx.tile(dn_num_group)
assert len(dn_positive_idx[i]) == len(gt_idx)
dn_match_indices.append((dn_positive_idx[i], gt_idx))
else:
dn_match_indices.append(
(
torch.zeros(0, dtype=torch.int64, device=device),
torch.zeros(0, dtype=torch.int64, device=device),
)
)
return dn_match_indices
def forward(self, outputs, targets):
"""
This performs the loss computation.
| 340 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_rt_detr.py
|
Args:
outputs (`dict`, *optional*):
Dictionary of tensors, see the output specification of the model for the format.
targets (`List[dict]`, *optional*):
List of dicts, such that `len(targets) == batch_size`. The expected keys in each dict depends on the
losses applied, see each loss' doc.
"""
outputs_without_aux = {k: v for k, v in outputs.items() if "auxiliary_outputs" not in k}
# Retrieve the matching between the outputs of the last layer and the targets
indices = self.matcher(outputs_without_aux, targets)
# Compute the average number of target boxes across all nodes, for normalization purposes
num_boxes = sum(len(t["class_labels"]) for t in targets)
num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device)
num_boxes = torch.clamp(num_boxes, min=1).item()
| 340 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_rt_detr.py
|
# Compute all the requested losses
losses = {}
for loss in self.losses:
l_dict = self.get_loss(loss, outputs, targets, indices, num_boxes)
l_dict = {k: l_dict[k] * self.weight_dict[k] for k in l_dict if k in self.weight_dict}
losses.update(l_dict)
| 340 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_rt_detr.py
|
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
if "auxiliary_outputs" in outputs:
for i, auxiliary_outputs in enumerate(outputs["auxiliary_outputs"]):
indices = self.matcher(auxiliary_outputs, targets)
for loss in self.losses:
if loss == "masks":
# Intermediate masks losses are too costly to compute, we ignore them.
continue
l_dict = self.get_loss(loss, auxiliary_outputs, targets, indices, num_boxes)
l_dict = {k: l_dict[k] * self.weight_dict[k] for k in l_dict if k in self.weight_dict}
l_dict = {k + f"_aux_{i}": v for k, v in l_dict.items()}
losses.update(l_dict)
| 340 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_rt_detr.py
|
# In case of cdn auxiliary losses. For rtdetr
if "dn_auxiliary_outputs" in outputs:
if "denoising_meta_values" not in outputs:
raise ValueError(
"The output must have the 'denoising_meta_values` key. Please, ensure that 'outputs' includes a 'denoising_meta_values' entry."
)
indices = self.get_cdn_matched_indices(outputs["denoising_meta_values"], targets)
num_boxes = num_boxes * outputs["denoising_meta_values"]["dn_num_group"]
| 340 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_rt_detr.py
|
for i, auxiliary_outputs in enumerate(outputs["dn_auxiliary_outputs"]):
# indices = self.matcher(auxiliary_outputs, targets)
for loss in self.losses:
if loss == "masks":
# Intermediate masks losses are too costly to compute, we ignore them.
continue
kwargs = {}
l_dict = self.get_loss(loss, auxiliary_outputs, targets, indices, num_boxes, **kwargs)
l_dict = {k: l_dict[k] * self.weight_dict[k] for k in l_dict if k in self.weight_dict}
l_dict = {k + f"_dn_{i}": v for k, v in l_dict.items()}
losses.update(l_dict)
return losses
| 340 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/loss/loss_rt_detr.py
|
class CompressedTensorsHfQuantizer(HfQuantizer):
"""
Quantizer for the compressed_tensors package. Loads and restores models to
quantized state with compressed_tensors
"""
requires_calibration = True
required_packages = ["compressed_tensors"]
def __init__(self, quantization_config: CompressedTensorsConfig, **kwargs):
super().__init__(quantization_config, **kwargs)
if not is_compressed_tensors_available():
raise ImportError(
"Using `compressed_tensors` quantized models requires the compressed-tensors library: "
"`pip install compressed-tensors`"
)
from compressed_tensors.compressors import ModelCompressor
self.compressor = ModelCompressor.from_compression_config(quantization_config)
self.run_compressed = quantization_config.run_compressed
self.quantization_config = quantization_config
| 341 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_compressed_tensors.py
|
def validate_environment(self, *args, **kwargs):
if not is_compressed_tensors_available():
raise ImportError(
"Using `compressed_tensors` quantized models requires the compressed-tensors library: "
"`pip install compressed-tensors`"
)
if not is_torch_available():
# torch already should be installed as part of compressed tensors
raise ImportError("torch is required for using compressed-tensors quantization")
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
if torch_dtype is None:
logger.info("Loading model using torch.float16 for compressed-tensors quantization")
torch_dtype = torch.float16
elif torch_dtype != torch.float16:
logger.info(
"We suggest you to set `torch_dtype=torch.float16` for better efficiency with compressed_tensors."
)
return torch_dtype
| 341 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_compressed_tensors.py
|
def _process_model_before_weight_loading(self, model, **kwargs):
from compressed_tensors.quantization import apply_quantization_config
ct_quantization_config = self.compressor.quantization_config
if self.run_compressed and self.is_quantization_compressed:
apply_quantization_config(model, ct_quantization_config, run_compressed=True)
elif not self.is_quantization_compressed:
apply_quantization_config(model, ct_quantization_config)
def _process_model_after_weight_loading(self, model, **kwargs):
"""Decompress loaded model if necessary - need for qat"""
if (self.is_quantization_compressed and not self.run_compressed) or self.is_sparsification_compressed:
config = kwargs.get("config", None)
cache_path = config._name_or_path
if not os.path.exists(cache_path):
from transformers.utils import cached_file
| 341 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_compressed_tensors.py
|
config_file_path = cached_file(cache_path, "config.json")
cache_path = os.path.sep.join(config_file_path.split(os.path.sep)[:-1])
if self.is_quantization_compressed and not self.run_compressed:
from compressed_tensors.quantization import QuantizationStatus
self.compressor.quantization_config.quantization_status = QuantizationStatus.FROZEN
self.compressor.decompress(model_path=cache_path, model=model)
@property
def is_quantization_compressed(self):
from compressed_tensors.quantization import QuantizationStatus
return (
self.quantization_config.quantization_config is not None
and self.quantization_config.quantization_config.quantization_status == QuantizationStatus.COMPRESSED
)
@property
def is_sparsification_compressed(self):
from compressed_tensors.config.base import CompressionFormat
| 341 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_compressed_tensors.py
|
return (
self.quantization_config.sparsity_config is not None
and self.quantization_config.sparsity_config.format != CompressionFormat.dense.value
)
@property
def is_trainable(self):
return True
def is_qat_trainable(self) -> bool:
"""Loaded Models can carry out quantization aware training"""
# models need to be decompressed carry out qat
return not self.run_compressed or not self.is_quantization_compressed
def is_serializable(self, safe_serialization=None) -> bool:
"""Models quantized using compressed tensors can be saved to disk"""
return True
| 341 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_compressed_tensors.py
|
class FbgemmFp8HfQuantizer(HfQuantizer):
"""
FP8 quantization using fbgemm kernels
"""
requires_parameters_quantization = True
requires_calibration = False
required_packages = ["fbgemm-gpu", "accelerate"]
def __init__(self, quantization_config, **kwargs):
super().__init__(quantization_config, **kwargs)
self.quantization_config = quantization_config
| 342 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_fbgemm_fp8.py
|
def validate_environment(self, *args, **kwargs):
if not is_torch_available() or version.parse(importlib.metadata.version("torch")) < version.parse("2.1.0"):
raise ImportError(
"Using fbgemm fp8 quantization requires torch > 2.1.0"
"Please install the latest version of torch ( pip install --upgrade torch )"
)
if not is_fbgemm_gpu_available():
raise ImportError(
"Using fbgemm fp8 quantization requires fbgemm-gpu library"
"Please install the latest version of fbgemm-gpu library by following : https://pytorch.org/FBGEMM/fbgemm_gpu-development/InstallationInstructions.html#fbgemm-gpu-install-libraries"
)
if not is_accelerate_available("0.32.2"):
raise ImportError(
"Loading an FP8 quantized model requires accelerate > 0.32.1 (`pip install --upgrade accelerate`)"
)
| 342 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_fbgemm_fp8.py
|
if not torch.cuda.is_available():
raise RuntimeError("Using FP8 quantized models with fbgemm kernels requires a GPU")
compute_capability = torch.cuda.get_device_capability()
major, minor = compute_capability
if major < 9:
raise ValueError(
"FP8 quantized models is only supported on GPUs with compute capability >= 9.0 (e.g H100)"
)
| 342 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_fbgemm_fp8.py
|
device_map = kwargs.get("device_map", None)
if device_map is None:
logger.warning_once(
"You have loaded an FP8 model on CPU and have a CUDA device available, make sure to set "
"your model on a GPU device in order to run your model. To remove this warning, pass device_map = 'cuda'. "
)
elif device_map is not None:
if (
not self.pre_quantized
and isinstance(device_map, dict)
and ("cpu" in device_map.values() or "disk" in device_map.values())
):
raise ValueError(
"You are attempting to load an FP8 model with a device_map that contains a CPU or disk device."
"This is not supported when the model is quantized on the fly. "
"Please use a quantized checkpoint or remove the CPU or disk device from the device_map."
)
| 342 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_fbgemm_fp8.py
|
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
if torch_dtype is None:
torch_dtype = torch.bfloat16
logger.info(
"Overriding torch_dtype=%s with `torch_dtype=torch.bloat16` due to "
"requirements of `fbgemm-gpu` to enable model loading in fp8. "
"Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass"
" torch_dtype=torch.bfloat16 to remove this warning.",
torch_dtype,
)
elif torch_dtype == torch.float16:
raise ValueError(
"You cannot use FP8 with torch_dtype=torch.float16."
"We recommend you passing torch_dtype=torch.bfloat16"
)
return torch_dtype
| 342 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_fbgemm_fp8.py
|
def check_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
state_dict: Dict[str, Any],
**kwargs,
):
from ..integrations import FbgemmFp8Linear
module, tensor_name = get_module_from_name(model, param_name)
if isinstance(module, FbgemmFp8Linear):
if self.pre_quantized or tensor_name == "bias":
if tensor_name == "weight" and param_value.dtype != torch.float8_e4m3fn:
raise ValueError("Expect quantized weights but got an unquantized weight")
return False
else:
if tensor_name == "weight_scale":
raise ValueError("Expect unquantized weights but got a quantized weight_scale")
return True
return False
| 342 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_fbgemm_fp8.py
|
def create_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
target_device: "torch.device",
state_dict: Dict[str, Any],
unexpected_keys: Optional[List[str]] = None,
):
"""
Quantizes weights into weight and weight_scale
"""
new_value, weight_scale = torch.ops.fbgemm.quantize_fp8_per_row(param_value)
module, tensor_name = get_module_from_name(model, param_name)
module._buffers[tensor_name] = new_value.to(target_device)
# to have the right output shape -> (out_features, 1)
module._buffers["weight_scale"] = weight_scale.view(weight_scale.shape[0], 1).to(target_device)
if unexpected_keys is not None and param_name in unexpected_keys:
unexpected_keys.remove(param_name)
del param_name
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
return model
| 342 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_fbgemm_fp8.py
|
def _process_model_before_weight_loading(
self,
model: "PreTrainedModel",
device_map,
keep_in_fp32_modules: List[str] = [],
**kwargs,
):
from ..integrations import get_keys_to_not_convert, replace_with_fbgemm_fp8_linear
self.modules_to_not_convert = get_keys_to_not_convert(model)
if self.quantization_config.modules_to_not_convert is not None:
self.modules_to_not_convert.extend(self.quantization_config.modules_to_not_convert)
model = replace_with_fbgemm_fp8_linear(
model,
modules_to_not_convert=self.modules_to_not_convert,
quantization_config=self.quantization_config,
pre_quantized=self.pre_quantized,
)
model.config.quantization_config = self.quantization_config
def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]:
from ..integrations import FbgemmFp8Linear
| 342 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_fbgemm_fp8.py
|
not_missing_keys = []
for name, module in model.named_modules():
if isinstance(module, FbgemmFp8Linear):
for missing in missing_keys:
if (
(name in missing or name in f"{prefix}.{missing}")
and not missing.endswith(".weight")
and not missing.endswith(".bias")
):
not_missing_keys.append(missing)
return [k for k in missing_keys if k not in not_missing_keys]
def is_serializable(self, safe_serialization=None):
return True
@property
def is_trainable(self) -> bool:
return False
| 342 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_fbgemm_fp8.py
|
class AwqQuantizer(HfQuantizer):
"""
4-bit quantization for Activation-aware Weight Quantization(AWQ) (https://arxiv.org/abs/2306.00978)
"""
# AWQ requires data callibration - we support only inference
requires_calibration = True
required_packages = ["awq", "accelerate"]
def __init__(self, quantization_config, **kwargs):
super().__init__(quantization_config, **kwargs)
def validate_environment(self, device_map, **kwargs):
if not is_auto_awq_available():
raise ImportError("Loading an AWQ quantized model requires auto-awq library (`pip install autoawq`)")
if not is_accelerate_available():
raise ImportError("Loading an AWQ quantized model requires accelerate (`pip install accelerate`)")
| 343 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_awq.py
|
if self.quantization_config.version == AWQLinearVersion.GEMM and not torch.cuda.is_available():
logger.warning_once("No CUDA found, replace GEMM with IPEX version to support non-cuda AWQ model.")
self.quantization_config.version = AWQLinearVersion.IPEX
| 343 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_awq.py
|
if self.quantization_config.version == AWQLinearVersion.IPEX:
if version.parse(importlib.metadata.version("autoawq")) < version.parse("0.2.6"):
raise RuntimeError(
"To use IPEX backend, you need autoawq>0.6.2. Please install the latest version or from source."
)
if device_map is None:
logger.warning_once(
"You have loaded an AWQ model without setting device_map, please set 'cpu' or 'xpu' or 'auto'"
)
elif isinstance(device_map, dict) and "disk" in device_map.values():
raise ValueError(
"You are attempting to load an IPEX version AWQ model with a device_map that contains disk device."
" This is not supported. Please make sure only cpu and xpu in the device_map."
)
else:
if not torch.cuda.is_available():
raise RuntimeError(
| 343 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_awq.py
|
"GPU is required to run AWQ quantized model. You can use IPEX version AWQ if you have an Intel CPU"
)
| 343 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_awq.py
|
if device_map is None:
logger.warning_once(
"You have loaded an AWQ model on CPU and have a CUDA device available, make sure to set "
"your model on a GPU device in order to run your model."
)
elif device_map is not None:
if isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()):
raise ValueError(
"You are attempting to load an AWQ model with a device_map that contains a CPU or disk device."
" This is not supported. Please remove the CPU or disk device from the device_map."
)
| 343 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_awq.py
|
def update_torch_dtype(self, torch_dtype):
if torch_dtype is None:
torch_dtype = torch.float16
logger.info("Loading the model in `torch.float16`. To overwrite it, set `torch_dtype` manually.")
elif torch_dtype != torch.float16:
logger.warning("We suggest you to set `torch_dtype=torch.float16` for better efficiency with AWQ.")
return torch_dtype
def _process_model_before_weight_loading(self, model: "PreTrainedModel", **kwargs):
from ..integrations import get_keys_to_not_convert, replace_quantization_scales, replace_with_awq_linear
self.modules_to_not_convert = get_keys_to_not_convert(model)
if self.quantization_config.modules_to_not_convert is not None:
self.modules_to_not_convert.extend(self.quantization_config.modules_to_not_convert)
| 343 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_awq.py
|
model, has_been_replaced = replace_with_awq_linear(
model, quantization_config=self.quantization_config, modules_to_not_convert=self.modules_to_not_convert
)
model = replace_quantization_scales(model, model.config.model_type)
if not has_been_replaced:
logger.warning(
"You are loading an AWQ model but no linear modules were found in your model."
" Please double check your model architecture, or submit an issue on github if you think this is a bug."
)
def _process_model_after_weight_loading(self, model, **kwargs):
if self.quantization_config.do_fuse:
from ..integrations import fuse_awq_modules
model = fuse_awq_modules(model, self.quantization_config)
model._awq_is_fused = True # TODO: consider storing this flag in model.config instead
| 343 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_awq.py
|
if self.quantization_config.version == AWQLinearVersion.EXLLAMA:
from ..integrations import post_init_awq_exllama_modules
model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config)
if self.quantization_config.version == AWQLinearVersion.IPEX:
from ..integrations import post_init_awq_ipex_modules
model = post_init_awq_ipex_modules(model)
def is_serializable(self, safe_serialization=None):
# AWQ through auto-awq has been always serializable, except if the model is fused.
if self.quantization_config.do_fuse:
logger.warning("You cannot save an AWQ model that uses fused modules!")
return False
if self.quantization_config.version == AWQLinearVersion.EXLLAMA:
logger.warning("You cannot save an AWQ model that uses Exllama backend!")
return False
return True
| 343 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_awq.py
|
@property
def is_trainable(self):
# AWQ supports PEFT fine-tuning from version 0.2.0
MIN_AWQ_VERSION_FOR_PEFT = "0.2.0"
return version.parse(importlib.metadata.version("autoawq")) >= version.parse(MIN_AWQ_VERSION_FOR_PEFT)
| 343 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_awq.py
|
class Bnb4BitHfQuantizer(HfQuantizer):
"""
4-bit quantization from bitsandbytes.py quantization method:
before loading: converts transformer layers into Linear4bit during loading: load 16bit weight and pass to the
layer object after: quantizes individual weights in Linear4bit into 4bit at the first .cuda() call
saving:
from state dict, as usual; saves weights and `quant_state` components
loading:
need to locate `quant_state` components and pass to Param4bit constructor
"""
use_keep_in_fp32_modules = True
requires_parameters_quantization = True
requires_calibration = False
required_packages = ["bitsandbytes", "accelerate"]
def __init__(self, quantization_config, **kwargs):
super().__init__(quantization_config, **kwargs)
if self.quantization_config.llm_int8_skip_modules is not None:
self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules
| 344 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_4bit.py
|
def validate_environment(self, *args, **kwargs):
if not is_accelerate_available():
raise ImportError(
f"Using `bitsandbytes` 4-bit quantization requires Accelerate: `pip install 'accelerate>={ACCELERATE_MIN_VERSION}'`"
)
if not is_bitsandbytes_available():
raise ImportError(
"Using `bitsandbytes` 4-bit quantization requires the latest version of bitsandbytes: `pip install -U bitsandbytes`"
)
from ..integrations import validate_bnb_backend_availability
from ..utils import is_bitsandbytes_multi_backend_available
bnb_multibackend_is_enabled = is_bitsandbytes_multi_backend_available()
validate_bnb_backend_availability(raise_exception=True)
| 344 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_4bit.py
|
if kwargs.get("from_tf", False) or kwargs.get("from_flax", False):
raise ValueError(
"Converting into 4-bit or 8-bit weights from tf/flax weights is currently not supported, please make"
" sure the weights are in PyTorch format."
)
| 344 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_4bit.py
|
device_map = kwargs.get("device_map", None)
if (
device_map is not None
and isinstance(device_map, dict)
and not self.quantization_config.llm_int8_enable_fp32_cpu_offload
):
device_map_without_lm_head = {
key: device_map[key] for key in device_map.keys() if key not in self.modules_to_not_convert
}
if set(device_map.values()) == {"cpu"} and bnb_multibackend_is_enabled:
pass
elif "cpu" in device_map_without_lm_head.values() or "disk" in device_map_without_lm_head.values():
raise ValueError(
"Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the "
"quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules "
"in 32-bit, you need to set `llm_int8_enable_fp32_cpu_offload=True` and pass a custom `device_map` to "
| 344 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_4bit.py
|
"`from_pretrained`. Check "
"https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu "
"for more details. "
)
| 344 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_4bit.py
|
if version.parse(importlib.metadata.version("bitsandbytes")) < version.parse("0.39.0"):
raise ValueError(
"You have a version of `bitsandbytes` that is not compatible with 4bit inference and training"
" make sure you have the latest version of `bitsandbytes` installed"
)
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype":
if version.parse(importlib.metadata.version("accelerate")) > version.parse("0.19.0"):
from accelerate.utils import CustomDtype
| 344 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_4bit.py
|
if target_dtype != torch.int8:
logger.info("target_dtype {target_dtype} is replaced by `CustomDtype.INT4` for 4-bit BnB quantization")
return CustomDtype.INT4
else:
raise ValueError(
"You are using `device_map='auto'` on a 4bit loaded version of the model. To automatically compute"
" the appropriate device map, you should upgrade your `accelerate` library,"
"`pip install --upgrade accelerate` or install it from source to support fp4 auto device map"
"calculation. You may encounter unexpected behavior, or pass your own device map"
)
def check_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
state_dict: Dict[str, Any],
**kwargs,
) -> bool:
import bitsandbytes as bnb
| 344 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_4bit.py
|
module, tensor_name = get_module_from_name(model, param_name)
if isinstance(module._parameters.get(tensor_name, None), bnb.nn.Params4bit):
# Add here check for loaded components' dtypes once serialization is implemented
return True
elif isinstance(module, bnb.nn.Linear4bit) and tensor_name == "bias":
# bias could be loaded by regular set_module_tensor_to_device() from accelerate,
# but it would wrongly use uninitialized weight there.
return True
else:
return False
| 344 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_4bit.py
|
def create_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
target_device: "torch.device",
state_dict: Dict[str, Any],
unexpected_keys: Optional[List[str]] = None,
):
"""
combines logic from _load_state_dict_into_meta_model and .integrations.bitsandbytes.py::set_module_quantized_tensor_to_device()
"""
import bitsandbytes as bnb
module, tensor_name = get_module_from_name(model, param_name)
if tensor_name not in module._parameters:
raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.")
old_value = getattr(module, tensor_name)
| 344 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_4bit.py
|
# `torch.Tensor.to(<int num>)` is not supported by `torch_npu` (see this [issue](https://github.com/Ascend/pytorch/issues/16)).
if isinstance(target_device, int) and is_torch_npu_available():
target_device = f"npu:{target_device}"
if tensor_name == "bias":
if param_value is None:
new_value = old_value.to(target_device)
else:
new_value = param_value.to(target_device)
new_value = torch.nn.Parameter(new_value, requires_grad=old_value.requires_grad)
module._parameters[tensor_name] = new_value
return
| 344 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_4bit.py
|
if not isinstance(module._parameters[tensor_name], bnb.nn.Params4bit):
raise ValueError("this function only loads `Linear4bit components`")
if (
old_value.device == torch.device("meta")
and target_device not in ["meta", torch.device("meta")]
and param_value is None
):
raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {target_device}.")
# construct `new_value` for the module._parameters[tensor_name]:
if self.pre_quantized:
# 4bit loading. Collecting components for restoring quantized weight
# This can be expanded to make a universal call for any quantized weight loading
| 344 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_4bit.py
|
if not self.is_serializable:
raise ValueError(
"Detected int4 weights but the version of bitsandbytes is not compatible with int4 serialization. "
"Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`."
)
if (param_name + ".quant_state.bitsandbytes__fp4" not in state_dict) and (
param_name + ".quant_state.bitsandbytes__nf4" not in state_dict
):
raise ValueError(
f"Supplied state dict for {param_name} does not contain `bitsandbytes__*` and possibly other `quantized_stats` components."
)
quantized_stats = {}
for k, v in state_dict.items():
if param_name + "." in k:
quantized_stats[k] = v
if unexpected_keys is not None and k in unexpected_keys:
unexpected_keys.remove(k)
| 344 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_4bit.py
|
param_kwargs = {}
if self.is_bnb_supports_quant_storage_module:
param_kwargs["module"] = module
new_value = bnb.nn.Params4bit.from_prequantized(
data=param_value,
quantized_stats=quantized_stats,
requires_grad=False,
device=target_device,
**param_kwargs,
)
else:
new_value = param_value.to("cpu")
# Support models using `Conv1D` in place of `nn.Linear` (e.g. openai-community/gpt2) by transposing the weight matrix prior to quantization.
# Since weights are saved in the correct "orientation", we skip transposing when loading.
if issubclass(module.source_cls, Conv1D):
new_value = new_value.T
kwargs = old_value.__dict__
new_value = bnb.nn.Params4bit(new_value, requires_grad=False, **kwargs).to(target_device)
module._parameters[tensor_name] = new_value
| 344 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_4bit.py
|
# Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer.adjust_max_memory
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]:
# need more space for buffers that are created during quantization
max_memory = {key: val * 0.90 for key, val in max_memory.items()}
return max_memory
| 344 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_4bit.py
|
# Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer.update_torch_dtype
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
if torch_dtype is None:
# We force the `dtype` to be float16, this is a requirement from `bitsandbytes`
logger.info(
"Overriding torch_dtype=%s with `torch_dtype=torch.float16` due to "
"requirements of `bitsandbytes` to enable model loading in 8-bit or 4-bit. "
"Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass"
" torch_dtype=torch.float16 to remove this warning.",
torch_dtype,
)
torch_dtype = torch.float16
return torch_dtype
| 344 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_4bit.py
|
def update_device_map(self, device_map):
if device_map is None:
if torch.cuda.is_available():
device_map = {"": torch.cuda.current_device()}
elif is_torch_npu_available():
device_map = {"": f"npu:{torch.npu.current_device()}"}
elif is_torch_xpu_available():
device_map = {"": f"xpu:{torch.xpu.current_device()}"}
else:
device_map = {"": "cpu"}
logger.info(
"The device_map was not initialized. "
f"Setting device_map to {device_map}. "
"If you want to use the model for inference, please set device_map ='auto' "
)
return device_map
| 344 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_4bit.py
|
# Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer._process_model_before_weight_loading
def _process_model_before_weight_loading(
self,
model: "PreTrainedModel",
device_map,
keep_in_fp32_modules: List[str] = [],
**kwargs,
):
from ..integrations import get_keys_to_not_convert, replace_with_bnb_linear
llm_int8_enable_fp32_cpu_offload = self.quantization_config.llm_int8_enable_fp32_cpu_offload
# We keep some modules such as the lm_head in their original dtype for numerical stability reasons
if self.quantization_config.llm_int8_skip_modules is None:
self.modules_to_not_convert = get_keys_to_not_convert(model)
else:
self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules
if not isinstance(self.modules_to_not_convert, list):
self.modules_to_not_convert = [self.modules_to_not_convert]
| 344 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_4bit.py
|
self.modules_to_not_convert.extend(keep_in_fp32_modules)
# Extend `self.modules_to_not_convert` to keys that are supposed to be offloaded to `cpu` or `disk`
if isinstance(device_map, dict) and len(device_map.keys()) > 1:
keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]]
if len(keys_on_cpu) > 0 and not llm_int8_enable_fp32_cpu_offload:
raise ValueError(
"If you want to offload some keys to `cpu` or `disk`, you need to set "
"`llm_int8_enable_fp32_cpu_offload=True`. Note that these modules will not be "
" converted to 8-bit but kept in 32-bit."
)
self.modules_to_not_convert.extend(keys_on_cpu)
| 344 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_4bit.py
|
model = replace_with_bnb_linear(
model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config
)
# TODO: consider bringing replace_with_bnb_linear() code from ..integrations/bitsandbyter.py to here
model.config.quantization_config = self.quantization_config
# Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer._process_model_after_weight_loading with 8bit->4bit
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
model.is_loaded_in_4bit = True
model.is_4bit_serializable = self.is_serializable()
return model
def is_serializable(self, safe_serialization=None):
_is_4bit_serializable = version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse("0.41.3")
| 344 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_4bit.py
|
if not _is_4bit_serializable:
logger.warning(
"You are calling `save_pretrained` to a 4-bit converted model, but your `bitsandbytes` version doesn't support it. "
"If you want to save 4-bit models, make sure to have `bitsandbytes>=0.41.3` installed."
)
return False
return True
@cached_property
def is_bnb_supports_quant_storage_module(self) -> bool:
"""
determines if the current version of bitsandbytes supports
the `module` parameter in `Params4bit.from_prequantized`
:return:
"""
return version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse("0.43.3")
@property
def is_trainable(self) -> bool:
return True
def _dequantize(self, model):
from ..integrations import dequantize_and_replace
| 344 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_4bit.py
|
model = dequantize_and_replace(
model, self.modules_to_not_convert, quantization_config=self.quantization_config
)
return model
| 344 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_bnb_4bit.py
|
class TorchAoHfQuantizer(HfQuantizer):
"""
Quantizer for torchao: https://github.com/pytorch/ao/
"""
requires_parameters_quantization = True
requires_calibration = False
required_packages = ["torchao"]
def __init__(self, quantization_config, **kwargs):
super().__init__(quantization_config, **kwargs)
def validate_environment(self, *args, **kwargs):
if not is_torchao_available():
raise ImportError("Loading an torchao quantized model requires torchao library (`pip install torchao`)")
| 345 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_torchao.py
|
self.offload = False
device_map = kwargs.get("device_map", None)
if isinstance(device_map, dict):
if "cpu" in device_map.values() or "disk" in device_map.values():
if self.pre_quantized:
raise ValueError(
"You are attempting to perform cpu/disk offload with a pre-quantized torchao model "
"This is not supported yet . Please remove the CPU or disk device from the device_map."
)
else:
self.offload = True
if self.pre_quantized:
weights_only = kwargs.get("weights_only", None)
if weights_only:
torch_version = version.parse(importlib.metadata.version("torch"))
if torch_version < version.parse("2.5.0"):
raise RuntimeError(
| 345 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_torchao.py
|
f"In order to use torchao pre-quantized model, you need to have torch>=2.5.0. However, the current version is {torch_version}."
f" You can also set with `weights_only=False` in `from_pretrained` if you don't want to update torch"
)
| 345 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_torchao.py
|
def update_torch_dtype(self, torch_dtype):
if self.quantization_config.quant_type == "int4_weight_only":
if torch_dtype is not None and torch_dtype != torch.bfloat16:
logger.warning_once(
f"Setting torch_dtype to {torch_dtype} for int4_weight_only quantization, but only bfloat16 is supported right now. Please set the torch_dtype to bfloat16."
)
if torch_dtype is None:
logger.warning_once(
"Setting torch_dtype to torch.bfloat16 for int4_weight_only quantization since only bfloat16 is supported right now. Please set torch_dtype=torch.bfloat16 to remove this warning."
)
torch_dtype = torch.bfloat16
if self.quantization_config.quant_type == "int8_dynamic_activation_int8_weight":
if torch_dtype is None:
logger.info(
| 345 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_torchao.py
|
"Setting torch_dtype to torch.float32 for int8_dynamic_activation_int8_weight quantization as no torch_dtype was specified in from_pretrained"
)
# we need to set the torch_dtype, otherwise we have dtype mismatch when performing the quantized linear op
torch_dtype = torch.float32
return torch_dtype
| 345 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_torchao.py
|
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype":
if version.parse(importlib.metadata.version("accelerate")) > version.parse("0.19.0"):
from accelerate.utils import CustomDtype
map_to_target_dtype = {
"int4_weight_only": CustomDtype.INT4,
"int8_weight_only": torch.int8,
"int8_dynamic_activation_int8_weight": torch.int8,
}
return map_to_target_dtype[self.quantization_config.quant_type]
else:
raise ValueError(
"You are using `device_map='auto'` on a torchao quantized model. To automatically compute"
" the appropriate device map, you should upgrade your `accelerate` library with "
"`pip install --upgrade accelerate`"
)
| 345 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_torchao.py
|
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]:
# need more space for the quantization parameters (e.g. scale). Tested with int4 wo and group size = 128
max_memory = {key: val * 0.9 for key, val in max_memory.items()}
return max_memory
def _process_model_before_weight_loading(self, model: "PreTrainedModel", **kwargs):
from ..integrations import get_keys_to_not_convert
self.modules_to_not_convert = get_keys_to_not_convert(model)
if self.quantization_config.modules_to_not_convert is not None:
self.modules_to_not_convert.extend(self.quantization_config.modules_to_not_convert)
return
| 345 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/quantizers/quantizer_torchao.py
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.