text
stringlengths
1
1.02k
class_index
int64
0
1.38k
source
stringclasses
431 values
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
if prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." )
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) def fuse_qkv_projections(self) -> None: r"""Enables fused QKV projections.""" self.fusing_transformer = True self.transformer.fuse_qkv_projections() def unfuse_qkv_projections(self) -> None: r"""Disable QKV projection fusion if enabled.""" if not self.fusing_transformer: logger.warning("The Transformer was not initially fused for QKV projections. Doing nothing.") else: self.transformer.unfuse_qkv_projections() self.fusing_transformer = False
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
def _prepare_rotary_positional_embeddings( self, height: int, width: int, num_frames: int, device: torch.device, ) -> Tuple[torch.Tensor, torch.Tensor]: grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) p = self.transformer.config.patch_size p_t = self.transformer.config.patch_size_t base_size_width = self.transformer.config.sample_width // p base_size_height = self.transformer.config.sample_height // p
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
if p_t is None: # CogVideoX 1.0 grid_crops_coords = get_resize_crop_region_for_grid( (grid_height, grid_width), base_size_width, base_size_height ) freqs_cos, freqs_sin = get_3d_rotary_pos_embed( embed_dim=self.transformer.config.attention_head_dim, crops_coords=grid_crops_coords, grid_size=(grid_height, grid_width), temporal_size=num_frames, device=device, ) else: # CogVideoX 1.5 base_num_frames = (num_frames + p_t - 1) // p_t
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
freqs_cos, freqs_sin = get_3d_rotary_pos_embed( embed_dim=self.transformer.config.attention_head_dim, crops_coords=None, grid_size=(grid_height, grid_width), temporal_size=base_num_frames, grid_type="slice", max_size=(base_size_height, base_size_width), device=device, ) return freqs_cos, freqs_sin @property def guidance_scale(self): return self._guidance_scale @property def num_timesteps(self): return self._num_timesteps @property def attention_kwargs(self): return self._attention_kwargs @property def interrupt(self): return self._interrupt
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
@torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Optional[Union[str, List[str]]] = None, negative_prompt: Optional[Union[str, List[str]]] = None, height: Optional[int] = None, width: Optional[int] = None, num_frames: Optional[int] = None, num_inference_steps: int = 50, timesteps: Optional[List[int]] = None, guidance_scale: float = 6, use_dynamic_cfg: bool = False, num_videos_per_prompt: int = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: str = "pil", return_dict: bool = True, attention_kwargs: Optional[Dict[str, Any]] = None, callback_on_step_end: Optional[
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] ] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], max_sequence_length: int = 226, ) -> Union[CogVideoXPipelineOutput, Tuple]: """ Function invoked when calling the pipeline for generation.
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). height (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial): The height in pixels of the generated image. This is set to 480 by default for the best results. width (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial): The width in pixels of the generated image. This is set to 720 by default for the best results.
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
num_frames (`int`, defaults to `48`): Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will contain 1 extra frame because CogVideoX is conditioned with (num_seconds * fps + 1) frames where num_seconds is 6 and fps is 8. However, since videos can be saved at any fps, the only condition that needs to be satisfied is that of divisibility mentioned above. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. timesteps (`List[int]`, *optional*): Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
passed will be used. Must be in descending order. guidance_scale (`float`, *optional*, defaults to 7.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_videos_per_prompt (`int`, *optional*, defaults to 1): The number of videos to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic.
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead of a plain tuple. attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. max_sequence_length (`int`, defaults to `226`): Maximum sequence length in encoded prompt. Must be consistent with `self.transformer.config.max_text_seq_length` otherwise may lead to poor results.
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
Examples: Returns: [`~pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipelineOutput`] or `tuple`: [`~pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. """ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs height = height or self.transformer.config.sample_height * self.vae_scale_factor_spatial width = width or self.transformer.config.sample_width * self.vae_scale_factor_spatial num_frames = num_frames or self.transformer.config.sample_frames num_videos_per_prompt = 1
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
# 1. Check inputs. Raise error if not correct self.check_inputs( prompt, height, width, negative_prompt, callback_on_step_end_tensor_inputs, prompt_embeds, negative_prompt_embeds, ) self._guidance_scale = guidance_scale self._attention_kwargs = attention_kwargs self._interrupt = False # 2. Default call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, negative_prompt, do_classifier_free_guidance, num_videos_per_prompt=num_videos_per_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, max_sequence_length=max_sequence_length, device=device, ) if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
# 4. Prepare timesteps timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) self._num_timesteps = len(timesteps) # 5. Prepare latents latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1 # For CogVideoX 1.5, the latent frames should be padded to make it divisible by patch_size_t patch_size_t = self.transformer.config.patch_size_t additional_frames = 0 if patch_size_t is not None and latent_frames % patch_size_t != 0: additional_frames = patch_size_t - latent_frames % patch_size_t num_frames += additional_frames * self.vae_scale_factor_temporal
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
latent_channels = self.transformer.config.in_channels latents = self.prepare_latents( batch_size * num_videos_per_prompt, latent_channels, num_frames, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Create rotary embeds if required image_rotary_emb = ( self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device) if self.transformer.config.use_rotary_positional_embeddings else None ) # 8. Denoising loop num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
with self.progress_bar(total=num_inference_steps) as progress_bar: # for DPM-solver++ old_pred_original_sample = None for i, t in enumerate(timesteps): if self.interrupt: continue latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timestep = t.expand(latent_model_input.shape[0])
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
# predict noise model_output noise_pred = self.transformer( hidden_states=latent_model_input, encoder_hidden_states=prompt_embeds, timestep=timestep, image_rotary_emb=image_rotary_emb, attention_kwargs=attention_kwargs, return_dict=False, )[0] noise_pred = noise_pred.float() # perform guidance if use_dynamic_cfg: self._guidance_scale = 1 + guidance_scale * ( (1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2 ) if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
# compute the previous noisy sample x_t -> x_t-1 if not isinstance(self.scheduler, CogVideoXDPMScheduler): latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] else: latents, old_pred_original_sample = self.scheduler.step( noise_pred, old_pred_original_sample, t, timesteps[i - 1] if i > 0 else None, latents, **extra_step_kwargs, return_dict=False, ) latents = latents.to(prompt_embeds.dtype)
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
# call the callback, if provided if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if XLA_AVAILABLE: xm.mark_step()
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
if not output_type == "latent": # Discard any padding frames that were added for CogVideoX 1.5 latents = latents[:, additional_frames:] video = self.decode_latents(latents) video = self.video_processor.postprocess_video(video=video, output_type=output_type) else: video = latents # Offload all models self.maybe_free_model_hooks() if not return_dict: return (video,) return CogVideoXPipelineOutput(frames=video)
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
class CogVideoXFunControlPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin): r""" Pipeline for controlled text-to-video generation using CogVideoX Fun. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations. text_encoder ([`T5EncoderModel`]): Frozen text-encoder. CogVideoX uses [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant. tokenizer (`T5Tokenizer`): Tokenizer of class [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). transformer ([`CogVideoXTransformer3DModel`]): A text conditioned `CogVideoXTransformer3DModel` to denoise the encoded video latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `transformer` to denoise the encoded video latents. """
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
_optional_components = [] model_cpu_offload_seq = "text_encoder->vae->transformer->vae" _callback_tensor_inputs = [ "latents", "prompt_embeds", "negative_prompt_embeds", ] def __init__( self, tokenizer: T5Tokenizer, text_encoder: T5EncoderModel, vae: AutoencoderKLCogVideoX, transformer: CogVideoXTransformer3DModel, scheduler: KarrasDiffusionSchedulers, ): super().__init__()
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
self.register_modules( tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler ) self.vae_scale_factor_spatial = ( 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 ) self.vae_scale_factor_temporal = ( self.vae.config.temporal_compression_ratio if getattr(self, "vae", None) else 4 ) self.vae_scaling_factor_image = self.vae.config.scaling_factor if getattr(self, "vae", None) else 0.7 self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
# Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline._get_t5_prompt_embeds def _get_t5_prompt_embeds( self, prompt: Union[str, List[str]] = None, num_videos_per_prompt: int = 1, max_sequence_length: int = 226, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): device = device or self._execution_device dtype = dtype or self.text_encoder.dtype prompt = [prompt] if isinstance(prompt, str) else prompt batch_size = len(prompt) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=max_sequence_length, truncation=True, add_special_tokens=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1]) logger.warning( "The following part of your input was truncated because `max_sequence_length` is set to " f" {max_sequence_length} tokens: {removed_text}" ) prompt_embeds = self.text_encoder(text_input_ids.to(device))[0] prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) # duplicate text embeddings for each generation per prompt, using mps friendly method _, seq_len, _ = prompt_embeds.shape prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1) return prompt_embeds
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
# Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.encode_prompt def encode_prompt( self, prompt: Union[str, List[str]], negative_prompt: Optional[Union[str, List[str]]] = None, do_classifier_free_guidance: bool = True, num_videos_per_prompt: int = 1, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, max_sequence_length: int = 226, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): r""" Encodes the prompt into text encoder hidden states.
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): Whether to use classifier free guidance or not. num_videos_per_prompt (`int`, *optional*, defaults to 1): Number of videos that should be generated per prompt. torch device to place the resulting embeddings on prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. device: (`torch.device`, *optional*): torch device dtype: (`torch.dtype`, *optional*): torch dtype """ device = device or self._execution_device
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
prompt = [prompt] if isinstance(prompt, str) else prompt if prompt is not None: batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: prompt_embeds = self._get_t5_prompt_embeds( prompt=prompt, num_videos_per_prompt=num_videos_per_prompt, max_sequence_length=max_sequence_length, device=device, dtype=dtype, ) if do_classifier_free_guidance and negative_prompt_embeds is None: negative_prompt = negative_prompt or "" negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
if prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) negative_prompt_embeds = self._get_t5_prompt_embeds( prompt=negative_prompt, num_videos_per_prompt=num_videos_per_prompt, max_sequence_length=max_sequence_length, device=device, dtype=dtype, ) return prompt_embeds, negative_prompt_embeds
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
# Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.prepare_latents def prepare_latents( self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None ): if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) shape = ( batch_size, (num_frames - 1) // self.vae_scale_factor_temporal + 1, num_channels_latents, height // self.vae_scale_factor_spatial, width // self.vae_scale_factor_spatial, ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device)
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
# scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents # Adapted from https://github.com/aigc-apps/CogVideoX-Fun/blob/2a93e5c14e02b2b5921d533fd59fc8c0ed69fb24/cogvideox/pipeline/pipeline_cogvideox_control.py#L366 def prepare_control_latents( self, mask: Optional[torch.Tensor] = None, masked_image: Optional[torch.Tensor] = None ) -> Tuple[torch.Tensor, torch.Tensor]: if mask is not None: masks = [] for i in range(mask.size(0)): current_mask = mask[i].unsqueeze(0) current_mask = self.vae.encode(current_mask)[0] current_mask = current_mask.mode() masks.append(current_mask) mask = torch.cat(masks, dim=0) mask = mask * self.vae.config.scaling_factor
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
if masked_image is not None: mask_pixel_values = [] for i in range(masked_image.size(0)): mask_pixel_value = masked_image[i].unsqueeze(0) mask_pixel_value = self.vae.encode(mask_pixel_value)[0] mask_pixel_value = mask_pixel_value.mode() mask_pixel_values.append(mask_pixel_value) masked_image_latents = torch.cat(mask_pixel_values, dim=0) masked_image_latents = masked_image_latents * self.vae.config.scaling_factor else: masked_image_latents = None return mask, masked_image_latents # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.decode_latents def decode_latents(self, latents: torch.Tensor) -> torch.Tensor: latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width] latents = 1 / self.vae_scaling_factor_image * latents
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
frames = self.vae.decode(latents).sample return frames # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
# check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, height, width, negative_prompt, callback_on_step_end_tensor_inputs, prompt_embeds=None, negative_prompt_embeds=None, control_video=None, control_video_latents=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
if prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." )
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if control_video is not None and control_video_latents is not None: raise ValueError( "Cannot pass both `control_video` and `control_video_latents`. Please make sure to pass only one of these parameters." ) def fuse_qkv_projections(self) -> None: r"""Enables fused QKV projections.""" self.fusing_transformer = True self.transformer.fuse_qkv_projections()
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
def unfuse_qkv_projections(self) -> None: r"""Disable QKV projection fusion if enabled.""" if not self.fusing_transformer: logger.warning("The Transformer was not initially fused for QKV projections. Doing nothing.") else: self.transformer.unfuse_qkv_projections() self.fusing_transformer = False # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline._prepare_rotary_positional_embeddings def _prepare_rotary_positional_embeddings( self, height: int, width: int, num_frames: int, device: torch.device, ) -> Tuple[torch.Tensor, torch.Tensor]: grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) p = self.transformer.config.patch_size p_t = self.transformer.config.patch_size_t
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
base_size_width = self.transformer.config.sample_width // p base_size_height = self.transformer.config.sample_height // p if p_t is None: # CogVideoX 1.0 grid_crops_coords = get_resize_crop_region_for_grid( (grid_height, grid_width), base_size_width, base_size_height ) freqs_cos, freqs_sin = get_3d_rotary_pos_embed( embed_dim=self.transformer.config.attention_head_dim, crops_coords=grid_crops_coords, grid_size=(grid_height, grid_width), temporal_size=num_frames, device=device, ) else: # CogVideoX 1.5 base_num_frames = (num_frames + p_t - 1) // p_t
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
freqs_cos, freqs_sin = get_3d_rotary_pos_embed( embed_dim=self.transformer.config.attention_head_dim, crops_coords=None, grid_size=(grid_height, grid_width), temporal_size=base_num_frames, grid_type="slice", max_size=(base_size_height, base_size_width), device=device, ) return freqs_cos, freqs_sin @property def guidance_scale(self): return self._guidance_scale @property def num_timesteps(self): return self._num_timesteps @property def attention_kwargs(self): return self._attention_kwargs @property def interrupt(self): return self._interrupt
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
@torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Optional[Union[str, List[str]]] = None, negative_prompt: Optional[Union[str, List[str]]] = None, control_video: Optional[List[Image.Image]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, timesteps: Optional[List[int]] = None, guidance_scale: float = 6, use_dynamic_cfg: bool = False, num_videos_per_prompt: int = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, control_video_latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, output_type: str = "pil", return_dict: bool = True, attention_kwargs: Optional[Dict[str, Any]] = None,
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
callback_on_step_end: Optional[ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] ] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], max_sequence_length: int = 226, ) -> Union[CogVideoXPipelineOutput, Tuple]: """ Function invoked when calling the pipeline for generation.
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). control_video (`List[PIL.Image.Image]`): The control video to condition the generation on. Must be a list of images/frames of the video. If not provided, `control_video_latents` must be provided. height (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial): The height in pixels of the generated image. This is set to 480 by default for the best results.
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
width (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial): The width in pixels of the generated image. This is set to 720 by default for the best results. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. timesteps (`List[int]`, *optional*): Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. Must be in descending order. guidance_scale (`float`, *optional*, defaults to 6.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
`guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_videos_per_prompt (`int`, *optional*, defaults to 1): The number of videos to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for video
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. control_video_latents (`torch.Tensor`, *optional*): Pre-generated control latents, sampled from a Gaussian distribution, to be used as inputs for controlled video generation. If not provided, `control_video` must be provided. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead of a plain tuple. attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). callback_on_step_end (`Callable`, *optional*):
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. max_sequence_length (`int`, defaults to `226`): Maximum sequence length in encoded prompt. Must be consistent with `self.transformer.config.max_text_seq_length` otherwise may lead to poor results.
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
Examples: Returns: [`~pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipelineOutput`] or `tuple`: [`~pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. """ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs if control_video is not None and isinstance(control_video[0], Image.Image): control_video = [control_video] height = height or self.transformer.config.sample_height * self.vae_scale_factor_spatial width = width or self.transformer.config.sample_width * self.vae_scale_factor_spatial num_frames = len(control_video[0]) if control_video is not None else control_video_latents.size(2) num_videos_per_prompt = 1
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
# 1. Check inputs. Raise error if not correct self.check_inputs( prompt, height, width, negative_prompt, callback_on_step_end_tensor_inputs, prompt_embeds, negative_prompt_embeds, control_video, control_video_latents, ) self._guidance_scale = guidance_scale self._attention_kwargs = attention_kwargs self._interrupt = False # 2. Default call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, negative_prompt, do_classifier_free_guidance, num_videos_per_prompt=num_videos_per_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, max_sequence_length=max_sequence_length, device=device, ) if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
# 4. Prepare timesteps timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) self._num_timesteps = len(timesteps) # 5. Prepare latents latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1 # For CogVideoX 1.5, the latent frames should be padded to make it divisible by patch_size_t patch_size_t = self.transformer.config.patch_size_t if patch_size_t is not None and latent_frames % patch_size_t != 0: raise ValueError( f"The number of latent frames must be divisible by `{patch_size_t=}` but the given video " f"contains {latent_frames=}, which is not divisible." )
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
latent_channels = self.transformer.config.in_channels // 2 latents = self.prepare_latents( batch_size * num_videos_per_prompt, latent_channels, num_frames, height, width, prompt_embeds.dtype, device, generator, latents, ) if control_video_latents is None: control_video = self.video_processor.preprocess_video(control_video, height=height, width=width) control_video = control_video.to(device=device, dtype=prompt_embeds.dtype) _, control_video_latents = self.prepare_control_latents(None, control_video) control_video_latents = control_video_latents.permute(0, 2, 1, 3, 4) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
# 7. Create rotary embeds if required image_rotary_emb = ( self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device) if self.transformer.config.use_rotary_positional_embeddings else None ) # 8. Denoising loop num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) with self.progress_bar(total=num_inference_steps) as progress_bar: # for DPM-solver++ old_pred_original_sample = None for i, t in enumerate(timesteps): if self.interrupt: continue latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
latent_control_input = ( torch.cat([control_video_latents] * 2) if do_classifier_free_guidance else control_video_latents ) latent_model_input = torch.cat([latent_model_input, latent_control_input], dim=2) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timestep = t.expand(latent_model_input.shape[0]) # predict noise model_output noise_pred = self.transformer( hidden_states=latent_model_input, encoder_hidden_states=prompt_embeds, timestep=timestep, image_rotary_emb=image_rotary_emb, attention_kwargs=attention_kwargs, return_dict=False, )[0] noise_pred = noise_pred.float()
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
# perform guidance if use_dynamic_cfg: self._guidance_scale = 1 + guidance_scale * ( (1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2 ) if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] latents = latents.to(prompt_embeds.dtype)
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
# call the callback, if provided if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if XLA_AVAILABLE: xm.mark_step()
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
if not output_type == "latent": video = self.decode_latents(latents) video = self.video_processor.postprocess_video(video=video, output_type=output_type) else: video = latents # Offload all models self.maybe_free_model_hooks() if not return_dict: return (video,) return CogVideoXPipelineOutput(frames=video)
111
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py
class CogVideoXImageToVideoPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin): r""" Pipeline for image-to-video generation using CogVideoX. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations. text_encoder ([`T5EncoderModel`]): Frozen text-encoder. CogVideoX uses [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant. tokenizer (`T5Tokenizer`): Tokenizer of class [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). transformer ([`CogVideoXTransformer3DModel`]): A text conditioned `CogVideoXTransformer3DModel` to denoise the encoded video latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `transformer` to denoise the encoded video latents. """
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
_optional_components = [] model_cpu_offload_seq = "text_encoder->transformer->vae" _callback_tensor_inputs = [ "latents", "prompt_embeds", "negative_prompt_embeds", ] def __init__( self, tokenizer: T5Tokenizer, text_encoder: T5EncoderModel, vae: AutoencoderKLCogVideoX, transformer: CogVideoXTransformer3DModel, scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler], ): super().__init__()
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
self.register_modules( tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler, ) self.vae_scale_factor_spatial = ( 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 ) self.vae_scale_factor_temporal = ( self.vae.config.temporal_compression_ratio if getattr(self, "vae", None) else 4 ) self.vae_scaling_factor_image = self.vae.config.scaling_factor if getattr(self, "vae", None) else 0.7 self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
# Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline._get_t5_prompt_embeds def _get_t5_prompt_embeds( self, prompt: Union[str, List[str]] = None, num_videos_per_prompt: int = 1, max_sequence_length: int = 226, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): device = device or self._execution_device dtype = dtype or self.text_encoder.dtype prompt = [prompt] if isinstance(prompt, str) else prompt batch_size = len(prompt) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=max_sequence_length, truncation=True, add_special_tokens=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1]) logger.warning( "The following part of your input was truncated because `max_sequence_length` is set to " f" {max_sequence_length} tokens: {removed_text}" ) prompt_embeds = self.text_encoder(text_input_ids.to(device))[0] prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) # duplicate text embeddings for each generation per prompt, using mps friendly method _, seq_len, _ = prompt_embeds.shape prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1) return prompt_embeds
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
# Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.encode_prompt def encode_prompt( self, prompt: Union[str, List[str]], negative_prompt: Optional[Union[str, List[str]]] = None, do_classifier_free_guidance: bool = True, num_videos_per_prompt: int = 1, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, max_sequence_length: int = 226, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): r""" Encodes the prompt into text encoder hidden states.
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): Whether to use classifier free guidance or not. num_videos_per_prompt (`int`, *optional*, defaults to 1): Number of videos that should be generated per prompt. torch device to place the resulting embeddings on prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. device: (`torch.device`, *optional*): torch device dtype: (`torch.dtype`, *optional*): torch dtype """ device = device or self._execution_device
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
prompt = [prompt] if isinstance(prompt, str) else prompt if prompt is not None: batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: prompt_embeds = self._get_t5_prompt_embeds( prompt=prompt, num_videos_per_prompt=num_videos_per_prompt, max_sequence_length=max_sequence_length, device=device, dtype=dtype, ) if do_classifier_free_guidance and negative_prompt_embeds is None: negative_prompt = negative_prompt or "" negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
if prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) negative_prompt_embeds = self._get_t5_prompt_embeds( prompt=negative_prompt, num_videos_per_prompt=num_videos_per_prompt, max_sequence_length=max_sequence_length, device=device, dtype=dtype, ) return prompt_embeds, negative_prompt_embeds
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
def prepare_latents( self, image: torch.Tensor, batch_size: int = 1, num_channels_latents: int = 16, num_frames: int = 13, height: int = 60, width: int = 90, dtype: Optional[torch.dtype] = None, device: Optional[torch.device] = None, generator: Optional[torch.Generator] = None, latents: Optional[torch.Tensor] = None, ): if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." )
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
num_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1 shape = ( batch_size, num_frames, num_channels_latents, height // self.vae_scale_factor_spatial, width // self.vae_scale_factor_spatial, ) # For CogVideoX1.5, the latent should add 1 for padding (Not use) if self.transformer.config.patch_size_t is not None: shape = shape[:1] + (shape[1] + shape[1] % self.transformer.config.patch_size_t,) + shape[2:] image = image.unsqueeze(2) # [B, C, F, H, W] if isinstance(generator, list): image_latents = [ retrieve_latents(self.vae.encode(image[i].unsqueeze(0)), generator[i]) for i in range(batch_size) ] else: image_latents = [retrieve_latents(self.vae.encode(img.unsqueeze(0)), generator) for img in image] image_latents = torch.cat(image_latents, dim=0).to(dtype).permute(0, 2, 1, 3, 4) # [B, F, C, H, W]
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
if not self.vae.config.invert_scale_latents: image_latents = self.vae_scaling_factor_image * image_latents else: # This is awkward but required because the CogVideoX team forgot to multiply the # scaling factor during training :) image_latents = 1 / self.vae_scaling_factor_image * image_latents padding_shape = ( batch_size, num_frames - 1, num_channels_latents, height // self.vae_scale_factor_spatial, width // self.vae_scale_factor_spatial, ) latent_padding = torch.zeros(padding_shape, device=device, dtype=dtype) image_latents = torch.cat([image_latents, latent_padding], dim=1)
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
# Select the first frame along the second dimension if self.transformer.config.patch_size_t is not None: first_frame = image_latents[:, : image_latents.size(1) % self.transformer.config.patch_size_t, ...] image_latents = torch.cat([first_frame, image_latents], dim=1) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents, image_latents # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.decode_latents def decode_latents(self, latents: torch.Tensor) -> torch.Tensor: latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width] latents = 1 / self.vae_scaling_factor_image * latents
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
frames = self.vae.decode(latents).sample return frames # Copied from diffusers.pipelines.animatediff.pipeline_animatediff_video2video.AnimateDiffVideoToVideoPipeline.get_timesteps def get_timesteps(self, num_inference_steps, timesteps, strength, device): # get the original timestep using init_timestep init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) timesteps = timesteps[t_start * self.scheduler.order :] return timesteps, num_inference_steps - t_start
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
def check_inputs( self, image, prompt, height, width, negative_prompt, callback_on_step_end_tensor_inputs, latents=None, prompt_embeds=None, negative_prompt_embeds=None, ): if ( not isinstance(image, torch.Tensor) and not isinstance(image, PIL.Image.Image) and not isinstance(image, list) ): raise ValueError( "`image` has to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is" f" {type(image)}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
if prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." )
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.fuse_qkv_projections def fuse_qkv_projections(self) -> None: r"""Enables fused QKV projections.""" self.fusing_transformer = True self.transformer.fuse_qkv_projections()
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
# Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.unfuse_qkv_projections def unfuse_qkv_projections(self) -> None: r"""Disable QKV projection fusion if enabled.""" if not self.fusing_transformer: logger.warning("The Transformer was not initially fused for QKV projections. Doing nothing.") else: self.transformer.unfuse_qkv_projections() self.fusing_transformer = False # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline._prepare_rotary_positional_embeddings def _prepare_rotary_positional_embeddings( self, height: int, width: int, num_frames: int, device: torch.device, ) -> Tuple[torch.Tensor, torch.Tensor]: grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
p = self.transformer.config.patch_size p_t = self.transformer.config.patch_size_t base_size_width = self.transformer.config.sample_width // p base_size_height = self.transformer.config.sample_height // p if p_t is None: # CogVideoX 1.0 grid_crops_coords = get_resize_crop_region_for_grid( (grid_height, grid_width), base_size_width, base_size_height ) freqs_cos, freqs_sin = get_3d_rotary_pos_embed( embed_dim=self.transformer.config.attention_head_dim, crops_coords=grid_crops_coords, grid_size=(grid_height, grid_width), temporal_size=num_frames, device=device, ) else: # CogVideoX 1.5 base_num_frames = (num_frames + p_t - 1) // p_t
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
freqs_cos, freqs_sin = get_3d_rotary_pos_embed( embed_dim=self.transformer.config.attention_head_dim, crops_coords=None, grid_size=(grid_height, grid_width), temporal_size=base_num_frames, grid_type="slice", max_size=(base_size_height, base_size_width), device=device, ) return freqs_cos, freqs_sin @property def guidance_scale(self): return self._guidance_scale @property def num_timesteps(self): return self._num_timesteps @property def attention_kwargs(self): return self._attention_kwargs @property def interrupt(self): return self._interrupt
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
@torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, image: PipelineImageInput, prompt: Optional[Union[str, List[str]]] = None, negative_prompt: Optional[Union[str, List[str]]] = None, height: Optional[int] = None, width: Optional[int] = None, num_frames: int = 49, num_inference_steps: int = 50, timesteps: Optional[List[int]] = None, guidance_scale: float = 6, use_dynamic_cfg: bool = False, num_videos_per_prompt: int = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: str = "pil", return_dict: bool = True, attention_kwargs: Optional[Dict[str, Any]] = None, callback_on_step_end: Optional[
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] ] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], max_sequence_length: int = 226, ) -> Union[CogVideoXPipelineOutput, Tuple]: """ Function invoked when calling the pipeline for generation.
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
Args: image (`PipelineImageInput`): The input image to condition the generation on. Must be an image, a list of images or a `torch.Tensor`. prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). height (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial): The height in pixels of the generated image. This is set to 480 by default for the best results.
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
width (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial): The width in pixels of the generated image. This is set to 720 by default for the best results. num_frames (`int`, defaults to `48`): Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will contain 1 extra frame because CogVideoX is conditioned with (num_seconds * fps + 1) frames where num_seconds is 6 and fps is 8. However, since videos can be saved at any fps, the only condition that needs to be satisfied is that of divisibility mentioned above. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. timesteps (`List[int]`, *optional*):
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. Must be in descending order. guidance_scale (`float`, *optional*, defaults to 7.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_videos_per_prompt (`int`, *optional*, defaults to 1): The number of videos to generate per prompt.
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*):
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead of a plain tuple. attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class.
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
max_sequence_length (`int`, defaults to `226`): Maximum sequence length in encoded prompt. Must be consistent with `self.transformer.config.max_text_seq_length` otherwise may lead to poor results.
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
Examples: Returns: [`~pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput`] or `tuple`: [`~pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. """ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs height = height or self.transformer.config.sample_height * self.vae_scale_factor_spatial width = width or self.transformer.config.sample_width * self.vae_scale_factor_spatial num_frames = num_frames or self.transformer.config.sample_frames num_videos_per_prompt = 1
112
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py