text
stringlengths
1
1.02k
class_index
int64
0
1.38k
source
stringclasses
431 values
for location in from_where: for bs_item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]: for batch, item in enumerate(bs_item): if item.shape[1] == num_pixels: cross_maps = item.reshape(len(prompts), -1, *resolution, item.shape[-1])[select] out[batch].append(cross_maps) out = torch.stack([torch.cat(x, dim=0) for x in out]) # average over heads out = out.sum(1) / out.shape[1] return out
105
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
def __init__(self, average: bool, batch_size=1, max_resolution=16, max_size: int = None): self.step_store = self.get_empty_store() self.attention_store = [] self.cur_step = 0 self.average = average self.batch_size = batch_size if max_size is None: self.max_size = max_resolution**2 elif max_size is not None and max_resolution is None: self.max_size = max_size else: raise ValueError("Only allowed to set one of max_resolution or max_size")
105
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
class LeditsGaussianSmoothing: def __init__(self, device): kernel_size = [3, 3] sigma = [0.5, 0.5] # The gaussian kernel is the product of the gaussian function of each dimension. kernel = 1 meshgrids = torch.meshgrid([torch.arange(size, dtype=torch.float32) for size in kernel_size], indexing="ij") for size, std, mgrid in zip(kernel_size, sigma, meshgrids): mean = (size - 1) / 2 kernel *= 1 / (std * math.sqrt(2 * math.pi)) * torch.exp(-(((mgrid - mean) / (2 * std)) ** 2)) # Make sure sum of values in gaussian kernel equals 1. kernel = kernel / torch.sum(kernel) # Reshape to depthwise convolutional weight kernel = kernel.view(1, 1, *kernel.size()) kernel = kernel.repeat(1, *[1] * (kernel.dim() - 1)) self.weight = kernel.to(device)
106
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
def __call__(self, input): """ Arguments: Apply gaussian filter to input. input (torch.Tensor): Input to apply gaussian filter on. Returns: filtered (torch.Tensor): Filtered output. """ return F.conv2d(input, weight=self.weight.to(input.dtype))
106
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
class LEDITSCrossAttnProcessor: def __init__(self, attention_store, place_in_unet, pnp, editing_prompts): self.attnstore = attention_store self.place_in_unet = place_in_unet self.editing_prompts = editing_prompts self.pnp = pnp def __call__( self, attn: Attention, hidden_states, encoder_hidden_states, attention_mask=None, temb=None, ): batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
107
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) self.attnstore( attention_probs, is_cross=True, place_in_unet=self.place_in_unet, editing_prompts=self.editing_prompts, PnP=self.pnp, ) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) hidden_states = hidden_states / attn.rescale_output_factor return hidden_states
107
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
class LEditsPPPipelineStableDiffusion( DiffusionPipeline, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin ): """ Pipeline for textual image editing using LEDits++ with Stable Diffusion. This model inherits from [`DiffusionPipeline`] and builds on the [`StableDiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`~transformers.CLIPTextModel`]): Frozen text-encoder. Stable Diffusion uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer ([`~transformers.CLIPTokenizer`]): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`DPMSolverMultistepScheduler`] or [`DDIMScheduler`]): A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
[`DPMSolverMultistepScheduler`] or [`DDIMScheduler`]. If any other scheduler is passed it will automatically be set to [`DPMSolverMultistepScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details. feature_extractor ([`~transformers.CLIPImageProcessor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
model_cpu_offload_seq = "text_encoder->unet->vae" _exclude_from_cpu_offload = ["safety_checker"] _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] _optional_components = ["safety_checker", "feature_extractor", "image_encoder"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: Union[DDIMScheduler, DPMSolverMultistepScheduler], safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool = True, ): super().__init__()
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
if not isinstance(scheduler, DDIMScheduler) and not isinstance(scheduler, DPMSolverMultistepScheduler): scheduler = DPMSolverMultistepScheduler.from_config( scheduler.config, algorithm_type="sde-dpmsolver++", solver_order=2 ) logger.warning( "This pipeline only supports DDIMScheduler and DPMSolverMultistepScheduler. " "The scheduler has been changed to DPMSolverMultistepScheduler." )
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["steps_offset"] = 1 scheduler._internal_dict = FrozenDict(new_config)
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
if scheduler is not None and getattr(scheduler.config, "clip_sample", False) is True: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." " `clip_sample` should be set to False in the configuration file. Please make sure to update the" " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" ) deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["clip_sample"] = False scheduler._internal_dict = FrozenDict(new_config)
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." )
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." )
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
is_unet_version_less_0_9_0 = ( unet is not None and hasattr(unet.config, "_diffusers_version") and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse("0.9.0.dev0") ) is_unet_sample_size_less_64 = ( unet is not None and hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 ) if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: deprecation_message = ( "The configuration file of the unet has set the default `sample_size` to smaller than" " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" " in the config might lead to incorrect results in future versions. If you have downloaded this" " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" " the `unet/config.json` file" ) deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(unet.config) new_config["sample_size"] = 64 unet._internal_dict = FrozenDict(new_config)
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.register_to_config(requires_safety_checker=requires_safety_checker) self.inversion_steps = None
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker def run_safety_checker(self, image, device, dtype): if self.safety_checker is None: has_nsfw_concept = None else: if torch.is_tensor(image): feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") else: feature_extractor_input = self.image_processor.numpy_to_pil(image) safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) return image, has_nsfw_concept
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents def decode_latents(self, latents): deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, eta, generator=None): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
# Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.check_inputs def check_inputs( self, negative_prompt=None, editing_prompt_embeddings=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, ): if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." )
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
if editing_prompt_embeddings is not None and negative_prompt_embeds is not None: if editing_prompt_embeddings.shape != negative_prompt_embeds.shape: raise ValueError( "`editing_prompt_embeddings` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `editing_prompt_embeddings` {editing_prompt_embeddings.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) # Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, latents): # shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) # if latents.shape != shape: # raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents def prepare_unet(self, attention_store, PnP: bool = False): attn_procs = {} for name in self.unet.attn_processors.keys(): if name.startswith("mid_block"): place_in_unet = "mid" elif name.startswith("up_blocks"): place_in_unet = "up" elif name.startswith("down_blocks"): place_in_unet = "down" else: continue
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
if "attn2" in name and place_in_unet != "mid": attn_procs[name] = LEDITSCrossAttnProcessor( attention_store=attention_store, place_in_unet=place_in_unet, pnp=PnP, editing_prompts=self.enabled_editing_prompts, ) else: attn_procs[name] = AttnProcessor() self.unet.set_attn_processor(attn_procs) def encode_prompt( self, device, num_images_per_prompt, enable_edit_guidance, negative_prompt=None, editing_prompt=None, negative_prompt_embeds: Optional[torch.Tensor] = None, editing_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states.
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
Args: device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt enable_edit_guidance (`bool`): whether to perform any editing or reconstruct the input image instead negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). editing_prompt (`str` or `List[str]`, *optional*): Editing prompt(s) to be encoded. If not defined, one has to pass `editing_prompt_embeds` instead. editing_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. """ # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): self._lora_scale = lora_scale
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
# dynamically adjust the LoRA scale if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) batch_size = self.batch_size num_edit_tokens = None
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
if negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but exoected" f"{batch_size} based on the input images. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt # textual inversion: procecss multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype elif self.unet is not None: prompt_embeds_dtype = self.unet.dtype else: prompt_embeds_dtype = negative_prompt_embeds.dtype
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) if enable_edit_guidance: if editing_prompt_embeds is None: # textual inversion: procecss multi-vector tokens if necessary # if isinstance(self, TextualInversionLoaderMixin): # prompt = self.maybe_convert_prompt(prompt, self.tokenizer) if isinstance(editing_prompt, str): editing_prompt = [editing_prompt] max_length = negative_prompt_embeds.shape[1] text_inputs = self.tokenizer( [x for item in editing_prompt for x in repeat(item, batch_size)], padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", return_length=True, )
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
num_edit_tokens = text_inputs.length - 2 # not counting startoftext and endoftext text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer( [x for item in editing_prompt for x in repeat(item, batch_size)], padding="longest", return_tensors="pt", ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" )
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
if ( hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask ): attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
if clip_skip is None: editing_prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) editing_prompt_embeds = editing_prompt_embeds[0] else: editing_prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True ) # Access the `hidden_states` first, that contains a tuple of # all the hidden states from the encoder layers. Then index into # the tuple to access the hidden states from the desired layer. editing_prompt_embeds = editing_prompt_embeds[-1][-(clip_skip + 1)] # We also need to apply the final LayerNorm here to not mess with the # representations. The `last_hidden_states` that we typically use for
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
# obtaining the final prompt representations passes through the LayerNorm # layer. editing_prompt_embeds = self.text_encoder.text_model.final_layer_norm(editing_prompt_embeds)
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
editing_prompt_embeds = editing_prompt_embeds.to(dtype=negative_prompt_embeds.dtype, device=device) bs_embed_edit, seq_len, _ = editing_prompt_embeds.shape editing_prompt_embeds = editing_prompt_embeds.to(dtype=negative_prompt_embeds.dtype, device=device) editing_prompt_embeds = editing_prompt_embeds.repeat(1, num_images_per_prompt, 1) editing_prompt_embeds = editing_prompt_embeds.view(bs_embed_edit * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) return editing_prompt_embeds, negative_prompt_embeds, num_edit_tokens @property def guidance_rescale(self): return self._guidance_rescale @property def clip_skip(self): return self._clip_skip @property def cross_attention_kwargs(self): return self._cross_attention_kwargs
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
def enable_vae_slicing(self): r""" Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. """ self.vae.enable_slicing() def disable_vae_slicing(self): r""" Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to computing decoding in one step. """ self.vae.disable_slicing() def enable_vae_tiling(self): r""" Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images. """ self.vae.enable_tiling()
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
def disable_vae_tiling(self): r""" Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to computing decoding in one step. """ self.vae.disable_tiling()
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
@torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, negative_prompt: Optional[Union[str, List[str]]] = None, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, output_type: Optional[str] = "pil", return_dict: bool = True, editing_prompt: Optional[Union[str, List[str]]] = None, editing_prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, reverse_editing_direction: Optional[Union[bool, List[bool]]] = False, edit_guidance_scale: Optional[Union[float, List[float]]] = 5, edit_warmup_steps: Optional[Union[int, List[int]]] = 0, edit_cooldown_steps: Optional[Union[int, List[int]]] = None, edit_threshold: Optional[Union[float, List[float]]] = 0.9, user_mask: Optional[torch.Tensor] = None, sem_guidance: Optional[List[torch.Tensor]] = None, use_cross_attn_mask: bool = False,
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
use_intersect_mask: bool = True, attn_store_steps: Optional[List[int]] = [], store_averaged_over_steps: bool = True, cross_attention_kwargs: Optional[Dict[str, Any]] = None, guidance_rescale: float = 0.0, clip_skip: Optional[int] = None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], **kwargs, ): r""" The call function to the pipeline for editing. The [`~pipelines.ledits_pp.LEditsPPPipelineStableDiffusion.invert`] method has to be called beforehand. Edits will always be performed for the last inverted image(s).
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
Args: negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). generator (`torch.Generator`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] instead of a plain tuple. editing_prompt (`str` or `List[str]`, *optional*):
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
The prompt or prompts to guide the image generation. The image is reconstructed by setting `editing_prompt = None`. Guidance direction of prompt should be specified via `reverse_editing_direction`. editing_prompt_embeds (`torch.Tensor>`, *optional*): Pre-computed embeddings to use for guiding the image generation. Guidance direction of embedding should be specified via `reverse_editing_direction`. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. reverse_editing_direction (`bool` or `List[bool]`, *optional*, defaults to `False`): Whether the corresponding prompt in `editing_prompt` should be increased or decreased.
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
edit_guidance_scale (`float` or `List[float]`, *optional*, defaults to 5): Guidance scale for guiding the image generation. If provided as list values should correspond to `editing_prompt`. `edit_guidance_scale` is defined as `s_e` of equation 12 of [LEDITS++ Paper](https://arxiv.org/abs/2301.12247). edit_warmup_steps (`float` or `List[float]`, *optional*, defaults to 10): Number of diffusion steps (for each prompt) for which guidance will not be applied. edit_cooldown_steps (`float` or `List[float]`, *optional*, defaults to `None`): Number of diffusion steps (for each prompt) after which guidance will no longer be applied. edit_threshold (`float` or `List[float]`, *optional*, defaults to 0.9): Masking threshold of guidance. Threshold should be proportional to the image region that is modified.
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
'edit_threshold' is defined as 'λ' of equation 12 of [LEDITS++ Paper](https://arxiv.org/abs/2301.12247). user_mask (`torch.Tensor`, *optional*): User-provided mask for even better control over the editing process. This is helpful when LEDITS++'s implicit masks do not meet user preferences. sem_guidance (`List[torch.Tensor]`, *optional*): List of pre-generated guidance vectors to be applied at generation. Length of the list has to correspond to `num_inference_steps`. use_cross_attn_mask (`bool`, defaults to `False`): Whether cross-attention masks are used. Cross-attention masks are always used when use_intersect_mask is set to true. Cross-attention masks are defined as 'M^1' of equation 12 of [LEDITS++ paper](https://arxiv.org/pdf/2311.16711.pdf). use_intersect_mask (`bool`, defaults to `True`):
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
Whether the masking term is calculated as intersection of cross-attention masks and masks derived from the noise estimate. Cross-attention mask are defined as 'M^1' and masks derived from the noise estimate are defined as 'M^2' of equation 12 of [LEDITS++ paper](https://arxiv.org/pdf/2311.16711.pdf). attn_store_steps (`List[int]`, *optional*): Steps for which the attention maps are stored in the AttentionStore. Just for visualization purposes. store_averaged_over_steps (`bool`, defaults to `True`): Whether the attention maps for the 'attn_store_steps' are stored averaged over the diffusion steps. If False, attention maps for each step are stores separately. Just for visualization purposes. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). guidance_rescale (`float`, *optional*, defaults to 0.0): Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when using zero terminal SNR. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class.
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
Examples: Returns: [`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] or `tuple`: [`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ if self.inversion_steps is None: raise ValueError( "You need to invert an input image first before calling the pipeline. The `invert` method has to be called beforehand. Edits will always be performed for the last inverted image(s)." ) eta = self.eta num_images_per_prompt = 1 latents = self.init_latents zs = self.zs self.scheduler.set_timesteps(len(self.scheduler.timesteps))
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
if use_intersect_mask: use_cross_attn_mask = True if use_cross_attn_mask: self.smoothing = LeditsGaussianSmoothing(self.device) if user_mask is not None: user_mask = user_mask.to(self.device) org_prompt = "" # 1. Check inputs. Raise error if not correct self.check_inputs( negative_prompt, editing_prompt_embeds, negative_prompt_embeds, callback_on_step_end_tensor_inputs, ) self._guidance_rescale = guidance_rescale self._clip_skip = clip_skip self._cross_attention_kwargs = cross_attention_kwargs # 2. Define call parameters batch_size = self.batch_size
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
if editing_prompt: enable_edit_guidance = True if isinstance(editing_prompt, str): editing_prompt = [editing_prompt] self.enabled_editing_prompts = len(editing_prompt) elif editing_prompt_embeds is not None: enable_edit_guidance = True self.enabled_editing_prompts = editing_prompt_embeds.shape[0] else: self.enabled_editing_prompts = 0 enable_edit_guidance = False # 3. Encode input prompt lora_scale = ( self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None )
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
edit_concepts, uncond_embeddings, num_edit_tokens = self.encode_prompt( editing_prompt=editing_prompt, device=self.device, num_images_per_prompt=num_images_per_prompt, enable_edit_guidance=enable_edit_guidance, negative_prompt=negative_prompt, editing_prompt_embeds=editing_prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, clip_skip=self.clip_skip, ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes if enable_edit_guidance: text_embeddings = torch.cat([uncond_embeddings, edit_concepts]) self.text_cross_attention_maps = [editing_prompt] if isinstance(editing_prompt, str) else editing_prompt else: text_embeddings = torch.cat([uncond_embeddings])
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
# 4. Prepare timesteps # self.scheduler.set_timesteps(num_inference_steps, device=self.device) timesteps = self.inversion_steps t_to_idx = {int(v): k for k, v in enumerate(timesteps[-zs.shape[0] :])} if use_cross_attn_mask: self.attention_store = LeditsAttentionStore( average=store_averaged_over_steps, batch_size=batch_size, max_size=(latents.shape[-2] / 4.0) * (latents.shape[-1] / 4.0), max_resolution=None, ) self.prepare_unet(self.attention_store, PnP=False) resolution = latents.shape[-2:] att_res = (int(resolution[0] / 4), int(resolution[1] / 4))
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
# 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, None, None, text_embeddings.dtype, self.device, latents, ) # 6. Prepare extra step kwargs. extra_step_kwargs = self.prepare_extra_step_kwargs(eta) self.sem_guidance = None self.activation_mask = None # 7. Denoising loop num_warmup_steps = 0 with self.progress_bar(total=len(timesteps)) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance if enable_edit_guidance: latent_model_input = torch.cat([latents] * (1 + self.enabled_editing_prompts)) else: latent_model_input = latents
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) text_embed_input = text_embeddings # predict the noise residual noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embed_input).sample noise_pred_out = noise_pred.chunk(1 + self.enabled_editing_prompts) # [b,4, 64, 64] noise_pred_uncond = noise_pred_out[0] noise_pred_edit_concepts = noise_pred_out[1:] noise_guidance_edit = torch.zeros( noise_pred_uncond.shape, device=self.device, dtype=noise_pred_uncond.dtype, ) if sem_guidance is not None and len(sem_guidance) > i: noise_guidance_edit += sem_guidance[i].to(self.device)
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
elif enable_edit_guidance: if self.activation_mask is None: self.activation_mask = torch.zeros( (len(timesteps), len(noise_pred_edit_concepts), *noise_pred_edit_concepts[0].shape) ) if self.sem_guidance is None: self.sem_guidance = torch.zeros((len(timesteps), *noise_pred_uncond.shape)) for c, noise_pred_edit_concept in enumerate(noise_pred_edit_concepts): if isinstance(edit_warmup_steps, list): edit_warmup_steps_c = edit_warmup_steps[c] else: edit_warmup_steps_c = edit_warmup_steps if i < edit_warmup_steps_c: continue
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
if isinstance(edit_guidance_scale, list): edit_guidance_scale_c = edit_guidance_scale[c] else: edit_guidance_scale_c = edit_guidance_scale if isinstance(edit_threshold, list): edit_threshold_c = edit_threshold[c] else: edit_threshold_c = edit_threshold if isinstance(reverse_editing_direction, list): reverse_editing_direction_c = reverse_editing_direction[c] else: reverse_editing_direction_c = reverse_editing_direction
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
if isinstance(edit_cooldown_steps, list): edit_cooldown_steps_c = edit_cooldown_steps[c] elif edit_cooldown_steps is None: edit_cooldown_steps_c = i + 1 else: edit_cooldown_steps_c = edit_cooldown_steps if i >= edit_cooldown_steps_c: continue noise_guidance_edit_tmp = noise_pred_edit_concept - noise_pred_uncond if reverse_editing_direction_c: noise_guidance_edit_tmp = noise_guidance_edit_tmp * -1 noise_guidance_edit_tmp = noise_guidance_edit_tmp * edit_guidance_scale_c if user_mask is not None: noise_guidance_edit_tmp = noise_guidance_edit_tmp * user_mask
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
if use_cross_attn_mask: out = self.attention_store.aggregate_attention( attention_maps=self.attention_store.step_store, prompts=self.text_cross_attention_maps, res=att_res, from_where=["up", "down"], is_cross=True, select=self.text_cross_attention_maps.index(editing_prompt[c]), ) attn_map = out[:, :, :, 1 : 1 + num_edit_tokens[c]] # 0 -> startoftext # average over all tokens if attn_map.shape[3] != num_edit_tokens[c]: raise ValueError( f"Incorrect shape of attention_map. Expected size {num_edit_tokens[c]}, but found {attn_map.shape[3]}!" )
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
attn_map = torch.sum(attn_map, dim=3) # gaussian_smoothing attn_map = F.pad(attn_map.unsqueeze(1), (1, 1, 1, 1), mode="reflect") attn_map = self.smoothing(attn_map).squeeze(1) # torch.quantile function expects float32 if attn_map.dtype == torch.float32: tmp = torch.quantile(attn_map.flatten(start_dim=1), edit_threshold_c, dim=1) else: tmp = torch.quantile( attn_map.flatten(start_dim=1).to(torch.float32), edit_threshold_c, dim=1 ).to(attn_map.dtype) attn_mask = torch.where( attn_map >= tmp.unsqueeze(1).unsqueeze(1).repeat(1, *att_res), 1.0, 0.0 )
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
# resolution must match latent space dimension attn_mask = F.interpolate( attn_mask.unsqueeze(1), noise_guidance_edit_tmp.shape[-2:], # 64,64 ).repeat(1, 4, 1, 1) self.activation_mask[i, c] = attn_mask.detach().cpu() if not use_intersect_mask: noise_guidance_edit_tmp = noise_guidance_edit_tmp * attn_mask
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
if use_intersect_mask: if t <= 800: noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp) noise_guidance_edit_tmp_quantile = torch.sum( noise_guidance_edit_tmp_quantile, dim=1, keepdim=True ) noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat( 1, self.unet.config.in_channels, 1, 1 )
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
# torch.quantile function expects float32 if noise_guidance_edit_tmp_quantile.dtype == torch.float32: tmp = torch.quantile( noise_guidance_edit_tmp_quantile.flatten(start_dim=2), edit_threshold_c, dim=2, keepdim=False, ) else: tmp = torch.quantile( noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32), edit_threshold_c, dim=2, keepdim=False, ).to(noise_guidance_edit_tmp_quantile.dtype)
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
intersect_mask = ( torch.where( noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None], torch.ones_like(noise_guidance_edit_tmp), torch.zeros_like(noise_guidance_edit_tmp), ) * attn_mask ) self.activation_mask[i, c] = intersect_mask.detach().cpu() noise_guidance_edit_tmp = noise_guidance_edit_tmp * intersect_mask else: # print(f"only attention mask for step {i}") noise_guidance_edit_tmp = noise_guidance_edit_tmp * attn_mask
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
elif not use_cross_attn_mask: # calculate quantile noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp) noise_guidance_edit_tmp_quantile = torch.sum( noise_guidance_edit_tmp_quantile, dim=1, keepdim=True ) noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(1, 4, 1, 1)
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
# torch.quantile function expects float32 if noise_guidance_edit_tmp_quantile.dtype == torch.float32: tmp = torch.quantile( noise_guidance_edit_tmp_quantile.flatten(start_dim=2), edit_threshold_c, dim=2, keepdim=False, ) else: tmp = torch.quantile( noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32), edit_threshold_c, dim=2, keepdim=False, ).to(noise_guidance_edit_tmp_quantile.dtype)
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
self.activation_mask[i, c] = ( torch.where( noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None], torch.ones_like(noise_guidance_edit_tmp), torch.zeros_like(noise_guidance_edit_tmp), ) .detach() .cpu() ) noise_guidance_edit_tmp = torch.where( noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None], noise_guidance_edit_tmp, torch.zeros_like(noise_guidance_edit_tmp), ) noise_guidance_edit += noise_guidance_edit_tmp self.sem_guidance[i] = noise_guidance_edit.detach().cpu()
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
noise_pred = noise_pred_uncond + noise_guidance_edit if enable_edit_guidance and self.guidance_rescale > 0.0: # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf noise_pred = rescale_noise_cfg( noise_pred, noise_pred_edit_concepts.mean(dim=0, keepdim=False), guidance_rescale=self.guidance_rescale, ) idx = t_to_idx[int(t)] latents = self.scheduler.step( noise_pred, t, latents, variance_noise=zs[idx], **extra_step_kwargs ).prev_sample # step callback if use_cross_attn_mask: store_step = i in attn_store_steps self.attention_store.between_steps(store_step)
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) # prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if XLA_AVAILABLE: xm.mark_step()
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
# 8. Post-processing if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[ 0 ] image, has_nsfw_concept = self.run_safety_checker(image, self.device, text_embeddings.dtype) else: image = latents has_nsfw_concept = None if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image, has_nsfw_concept) return LEditsPPDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
@torch.no_grad() def invert( self, image: PipelineImageInput, source_prompt: str = "", source_guidance_scale: float = 3.5, num_inversion_steps: int = 30, skip: float = 0.15, generator: Optional[torch.Generator] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, clip_skip: Optional[int] = None, height: Optional[int] = None, width: Optional[int] = None, resize_mode: Optional[str] = "default", crops_coords: Optional[Tuple[int, int, int, int]] = None, ): r""" The function to the pipeline for image inversion as described by the [LEDITS++ Paper](https://arxiv.org/abs/2301.12247). If the scheduler is set to [`~schedulers.DDIMScheduler`] the inversion proposed by [edit-friendly DPDM](https://arxiv.org/abs/2304.06140) will be performed instead.
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
Args: image (`PipelineImageInput`): Input for the image(s) that are to be edited. Multiple input images have to default to the same aspect ratio. source_prompt (`str`, defaults to `""`): Prompt describing the input image that will be used for guidance during inversion. Guidance is disabled if the `source_prompt` is `""`. source_guidance_scale (`float`, defaults to `3.5`): Strength of guidance during inversion. num_inversion_steps (`int`, defaults to `30`): Number of total performed inversion steps after discarding the initial `skip` steps. skip (`float`, defaults to `0.15`): Portion of initial steps that will be ignored for inversion and subsequent generation. Lower values will lead to stronger changes to the input image. `skip` has to be between `0` and `1`. generator (`torch.Generator`, *optional*):
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make inversion deterministic. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. height (`int`, *optional*, defaults to `None`): The height in preprocessed image. If `None`, will use the `get_default_height_width()` to get default height. width (`int`, *optional*`, defaults to `None`):
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
The width in preprocessed. If `None`, will use get_default_height_width()` to get the default width. resize_mode (`str`, *optional*, defaults to `default`): The resize mode, can be one of `default` or `fill`. If `default`, will resize the image to fit within the specified width and height, and it may not maintaining the original aspect ratio. If `fill`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image. If `crop`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess. Note that resize_mode `fill` and `crop` are only supported for PIL image input.
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
crops_coords (`List[Tuple[int, int, int, int]]`, *optional*, defaults to `None`): The crop coordinates for each image in the batch. If `None`, will not crop the image.
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
Returns: [`~pipelines.ledits_pp.LEditsPPInversionPipelineOutput`]: Output will contain the resized input image(s) and respective VAE reconstruction(s). """ if height is not None and height % 32 != 0 or width is not None and width % 32 != 0: raise ValueError("height and width must be a factor of 32.") # Reset attn processor, we do not want to store attn maps during inversion self.unet.set_attn_processor(AttnProcessor()) self.eta = 1.0 self.scheduler.config.timestep_spacing = "leading" self.scheduler.set_timesteps(int(num_inversion_steps * (1 + skip))) self.inversion_steps = self.scheduler.timesteps[-num_inversion_steps:] timesteps = self.inversion_steps
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
# 1. encode image x0, resized = self.encode_image( image, dtype=self.text_encoder.dtype, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords, ) self.batch_size = x0.shape[0] # autoencoder reconstruction image_rec = self.vae.decode(x0 / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0] image_rec = self.image_processor.postprocess(image_rec, output_type="pil") # 2. get embeddings do_classifier_free_guidance = source_guidance_scale > 1.0 lora_scale = cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
uncond_embedding, text_embeddings, _ = self.encode_prompt( num_images_per_prompt=1, device=self.device, negative_prompt=None, enable_edit_guidance=do_classifier_free_guidance, editing_prompt=source_prompt, lora_scale=lora_scale, clip_skip=clip_skip, ) # 3. find zs and xts variance_noise_shape = (num_inversion_steps, *x0.shape) # intermediate latents t_to_idx = {int(v): k for k, v in enumerate(timesteps)} xts = torch.zeros(size=variance_noise_shape, device=self.device, dtype=uncond_embedding.dtype) for t in reversed(timesteps): idx = num_inversion_steps - t_to_idx[int(t)] - 1 noise = randn_tensor(shape=x0.shape, generator=generator, device=self.device, dtype=x0.dtype) xts[idx] = self.scheduler.add_noise(x0, noise, torch.Tensor([t])) xts = torch.cat([x0.unsqueeze(0), xts], dim=0)
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
self.scheduler.set_timesteps(len(self.scheduler.timesteps)) # noise maps zs = torch.zeros(size=variance_noise_shape, device=self.device, dtype=uncond_embedding.dtype) with self.progress_bar(total=len(timesteps)) as progress_bar: for t in timesteps: idx = num_inversion_steps - t_to_idx[int(t)] - 1 # 1. predict noise residual xt = xts[idx + 1] noise_pred = self.unet(xt, timestep=t, encoder_hidden_states=uncond_embedding).sample if not source_prompt == "": noise_pred_cond = self.unet(xt, timestep=t, encoder_hidden_states=text_embeddings).sample noise_pred = noise_pred + source_guidance_scale * (noise_pred_cond - noise_pred) xtm1 = xts[idx] z, xtm1_corrected = compute_noise(self.scheduler, xtm1, xt, t, noise_pred, self.eta) zs[idx] = z
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
# correction to avoid error accumulation xts[idx] = xtm1_corrected progress_bar.update() if XLA_AVAILABLE: xm.mark_step() self.init_latents = xts[-1].expand(self.batch_size, -1, -1, -1) zs = zs.flip(0) self.zs = zs return LEditsPPInversionPipelineOutput(images=resized, vae_reconstruction_images=image_rec)
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
@torch.no_grad() def encode_image(self, image, dtype=None, height=None, width=None, resize_mode="default", crops_coords=None): image = self.image_processor.preprocess( image=image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords ) height, width = image.shape[-2:] if height % 32 != 0 or width % 32 != 0: raise ValueError( "Image height and width must be a factor of 32. " "Consider down-sampling the input using the `height` and `width` parameters" ) resized = self.image_processor.postprocess(image=image, output_type="pil")
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
if max(image.shape[-2:]) > self.vae.config["sample_size"] * 1.5: logger.warning( "Your input images far exceed the default resolution of the underlying diffusion model. " "The output images may contain severe artifacts! " "Consider down-sampling the input using the `height` and `width` parameters" ) image = image.to(dtype) x0 = self.vae.encode(image.to(self.device)).latent_dist.mode() x0 = x0.to(dtype) x0 = self.vae.config.scaling_factor * x0 return x0, resized
108
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py
class CogVideoXPipelineOutput(BaseOutput): r""" Output class for CogVideo pipelines. Args: frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]): List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape `(batch_size, num_frames, channels, height, width)`. """ frames: torch.Tensor
109
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_output.py
class CogVideoXPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin): r""" Pipeline for text-to-video generation using CogVideoX. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations. text_encoder ([`T5EncoderModel`]): Frozen text-encoder. CogVideoX uses [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant. tokenizer (`T5Tokenizer`): Tokenizer of class [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). transformer ([`CogVideoXTransformer3DModel`]): A text conditioned `CogVideoXTransformer3DModel` to denoise the encoded video latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `transformer` to denoise the encoded video latents. """
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
_optional_components = [] model_cpu_offload_seq = "text_encoder->transformer->vae" _callback_tensor_inputs = [ "latents", "prompt_embeds", "negative_prompt_embeds", ] def __init__( self, tokenizer: T5Tokenizer, text_encoder: T5EncoderModel, vae: AutoencoderKLCogVideoX, transformer: CogVideoXTransformer3DModel, scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler], ): super().__init__()
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
self.register_modules( tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler ) self.vae_scale_factor_spatial = ( 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 ) self.vae_scale_factor_temporal = ( self.vae.config.temporal_compression_ratio if getattr(self, "vae", None) else 4 ) self.vae_scaling_factor_image = self.vae.config.scaling_factor if getattr(self, "vae", None) else 0.7 self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
def _get_t5_prompt_embeds( self, prompt: Union[str, List[str]] = None, num_videos_per_prompt: int = 1, max_sequence_length: int = 226, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): device = device or self._execution_device dtype = dtype or self.text_encoder.dtype prompt = [prompt] if isinstance(prompt, str) else prompt batch_size = len(prompt) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=max_sequence_length, truncation=True, add_special_tokens=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1]) logger.warning( "The following part of your input was truncated because `max_sequence_length` is set to " f" {max_sequence_length} tokens: {removed_text}" ) prompt_embeds = self.text_encoder(text_input_ids.to(device))[0] prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) # duplicate text embeddings for each generation per prompt, using mps friendly method _, seq_len, _ = prompt_embeds.shape prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1) return prompt_embeds
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
def encode_prompt( self, prompt: Union[str, List[str]], negative_prompt: Optional[Union[str, List[str]]] = None, do_classifier_free_guidance: bool = True, num_videos_per_prompt: int = 1, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, max_sequence_length: int = 226, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): r""" Encodes the prompt into text encoder hidden states.
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): Whether to use classifier free guidance or not. num_videos_per_prompt (`int`, *optional*, defaults to 1): Number of videos that should be generated per prompt. torch device to place the resulting embeddings on prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. device: (`torch.device`, *optional*): torch device dtype: (`torch.dtype`, *optional*): torch dtype """ device = device or self._execution_device
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
prompt = [prompt] if isinstance(prompt, str) else prompt if prompt is not None: batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: prompt_embeds = self._get_t5_prompt_embeds( prompt=prompt, num_videos_per_prompt=num_videos_per_prompt, max_sequence_length=max_sequence_length, device=device, dtype=dtype, ) if do_classifier_free_guidance and negative_prompt_embeds is None: negative_prompt = negative_prompt or "" negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
if prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) negative_prompt_embeds = self._get_t5_prompt_embeds( prompt=negative_prompt, num_videos_per_prompt=num_videos_per_prompt, max_sequence_length=max_sequence_length, device=device, dtype=dtype, ) return prompt_embeds, negative_prompt_embeds
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
def prepare_latents( self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None ): if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) shape = ( batch_size, (num_frames - 1) // self.vae_scale_factor_temporal + 1, num_channels_latents, height // self.vae_scale_factor_spatial, width // self.vae_scale_factor_spatial, ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device)
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
# scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents def decode_latents(self, latents: torch.Tensor) -> torch.Tensor: latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width] latents = 1 / self.vae_scaling_factor_image * latents frames = self.vae.decode(latents).sample return frames # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1]
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs # Copied from diffusers.pipelines.latte.pipeline_latte.LattePipeline.check_inputs def check_inputs( self, prompt, height, width, negative_prompt, callback_on_step_end_tensor_inputs, prompt_embeds=None, negative_prompt_embeds=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py
if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
110
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/cogvideo/pipeline_cogvideox.py