text
stringlengths
1
1.02k
class_index
int64
0
1.38k
source
stringclasses
431 values
<Tip warning={true}> This argument exists because `__call__` is not yet end-to-end pmap-able. It will be removed in a future release. </Tip> Examples: Returns: [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ height, width = image.shape[-2:]
95
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_flax_controlnet.py
if isinstance(guidance_scale, float): # Convert to a tensor so each device gets a copy. Follow the prompt_ids for # shape information, as they may be sharded (when `jit` is `True`), or not. guidance_scale = jnp.array([guidance_scale] * prompt_ids.shape[0]) if len(prompt_ids.shape) > 2: # Assume sharded guidance_scale = guidance_scale[:, None] if isinstance(controlnet_conditioning_scale, float): # Convert to a tensor so each device gets a copy. Follow the prompt_ids for # shape information, as they may be sharded (when `jit` is `True`), or not. controlnet_conditioning_scale = jnp.array([controlnet_conditioning_scale] * prompt_ids.shape[0]) if len(prompt_ids.shape) > 2: # Assume sharded controlnet_conditioning_scale = controlnet_conditioning_scale[:, None]
95
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_flax_controlnet.py
if jit: images = _p_generate( self, prompt_ids, image, params, prng_seed, num_inference_steps, guidance_scale, latents, neg_prompt_ids, controlnet_conditioning_scale, ) else: images = self._generate( prompt_ids, image, params, prng_seed, num_inference_steps, guidance_scale, latents, neg_prompt_ids, controlnet_conditioning_scale, ) if self.safety_checker is not None: safety_params = params["safety_checker"] images_uint8_casted = (images * 255).round().astype("uint8") num_devices, batch_size = images.shape[:2]
95
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_flax_controlnet.py
images_uint8_casted = np.asarray(images_uint8_casted).reshape(num_devices * batch_size, height, width, 3) images_uint8_casted, has_nsfw_concept = self._run_safety_checker(images_uint8_casted, safety_params, jit) images = np.array(images) # block images if any(has_nsfw_concept): for i, is_nsfw in enumerate(has_nsfw_concept): if is_nsfw: images[i] = np.asarray(images_uint8_casted[i]) images = images.reshape(num_devices, batch_size, height, width, 3) else: images = np.asarray(images) has_nsfw_concept = False if not return_dict: return (images, has_nsfw_concept) return FlaxStableDiffusionPipelineOutput(images=images, nsfw_content_detected=has_nsfw_concept)
95
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_flax_controlnet.py
class LTXPipelineOutput(BaseOutput): r""" Output class for LTX pipelines. Args: frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]): List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape `(batch_size, num_frames, channels, height, width)`. """ frames: torch.Tensor
96
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_output.py
class LTXPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraLoaderMixin): r""" Pipeline for text-to-video generation. Reference: https://github.com/Lightricks/LTX-Video
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
Args: transformer ([`LTXVideoTransformer3DModel`]): Conditional Transformer architecture to denoise the encoded video latents. scheduler ([`FlowMatchEulerDiscreteScheduler`]): A scheduler to be used in combination with `transformer` to denoise the encoded image latents. vae ([`AutoencoderKLLTXVideo`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`T5EncoderModel`]): [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer). tokenizer (`T5TokenizerFast`): Second Tokenizer of class
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
[T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast). """
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
model_cpu_offload_seq = "text_encoder->transformer->vae" _optional_components = [] _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] def __init__( self, scheduler: FlowMatchEulerDiscreteScheduler, vae: AutoencoderKLLTXVideo, text_encoder: T5EncoderModel, tokenizer: T5TokenizerFast, transformer: LTXVideoTransformer3DModel, ): super().__init__() self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, transformer=transformer, scheduler=scheduler, )
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
self.vae_spatial_compression_ratio = ( self.vae.spatial_compression_ratio if getattr(self, "vae", None) is not None else 32 ) self.vae_temporal_compression_ratio = ( self.vae.temporal_compression_ratio if getattr(self, "vae", None) is not None else 8 ) self.transformer_spatial_patch_size = ( self.transformer.config.patch_size if getattr(self, "transformer", None) is not None else 1 ) self.transformer_temporal_patch_size = ( self.transformer.config.patch_size_t if getattr(self, "transformer") is not None else 1 ) self.video_processor = VideoProcessor(vae_scale_factor=self.vae_spatial_compression_ratio) self.tokenizer_max_length = ( self.tokenizer.model_max_length if getattr(self, "tokenizer", None) is not None else 128 )
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
def _get_t5_prompt_embeds( self, prompt: Union[str, List[str]] = None, num_videos_per_prompt: int = 1, max_sequence_length: int = 128, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): device = device or self._execution_device dtype = dtype or self.text_encoder.dtype prompt = [prompt] if isinstance(prompt, str) else prompt batch_size = len(prompt) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=max_sequence_length, truncation=True, add_special_tokens=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids prompt_attention_mask = text_inputs.attention_mask prompt_attention_mask = prompt_attention_mask.bool().to(device) untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1]) logger.warning( "The following part of your input was truncated because `max_sequence_length` is set to " f" {max_sequence_length} tokens: {removed_text}" ) prompt_embeds = self.text_encoder(text_input_ids.to(device))[0] prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) # duplicate text embeddings for each generation per prompt, using mps friendly method _, seq_len, _ = prompt_embeds.shape prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
prompt_attention_mask = prompt_attention_mask.view(batch_size, -1) prompt_attention_mask = prompt_attention_mask.repeat(num_videos_per_prompt, 1) return prompt_embeds, prompt_attention_mask # Copied from diffusers.pipelines.mochi.pipeline_mochi.MochiPipeline.encode_prompt with 256->128 def encode_prompt( self, prompt: Union[str, List[str]], negative_prompt: Optional[Union[str, List[str]]] = None, do_classifier_free_guidance: bool = True, num_videos_per_prompt: int = 1, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, prompt_attention_mask: Optional[torch.Tensor] = None, negative_prompt_attention_mask: Optional[torch.Tensor] = None, max_sequence_length: int = 128, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): r""" Encodes the prompt into text encoder hidden states.
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): Whether to use classifier free guidance or not. num_videos_per_prompt (`int`, *optional*, defaults to 1): Number of videos that should be generated per prompt. torch device to place the resulting embeddings on prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. device: (`torch.device`, *optional*): torch device dtype: (`torch.dtype`, *optional*): torch dtype """ device = device or self._execution_device
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
prompt = [prompt] if isinstance(prompt, str) else prompt if prompt is not None: batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: prompt_embeds, prompt_attention_mask = self._get_t5_prompt_embeds( prompt=prompt, num_videos_per_prompt=num_videos_per_prompt, max_sequence_length=max_sequence_length, device=device, dtype=dtype, ) if do_classifier_free_guidance and negative_prompt_embeds is None: negative_prompt = negative_prompt or "" negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
if prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) negative_prompt_embeds, negative_prompt_attention_mask = self._get_t5_prompt_embeds( prompt=negative_prompt, num_videos_per_prompt=num_videos_per_prompt, max_sequence_length=max_sequence_length, device=device, dtype=dtype, )
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask def check_inputs( self, prompt, height, width, callback_on_step_end_tensor_inputs=None, prompt_embeds=None, negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None, ): if height % 32 != 0 or width % 32 != 0: raise ValueError(f"`height` and `width` have to be divisible by 32 but are {height} and {width}.") if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" )
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if prompt_embeds is not None and prompt_attention_mask is None: raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if prompt_attention_mask.shape != negative_prompt_attention_mask.shape: raise ValueError( "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but" f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`" f" {negative_prompt_attention_mask.shape}." )
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
@staticmethod def _pack_latents(latents: torch.Tensor, patch_size: int = 1, patch_size_t: int = 1) -> torch.Tensor: # Unpacked latents of shape are [B, C, F, H, W] are patched into tokens of shape [B, C, F // p_t, p_t, H // p, p, W // p, p]. # The patch dimensions are then permuted and collapsed into the channel dimension of shape: # [B, F // p_t * H // p * W // p, C * p_t * p * p] (an ndim=3 tensor). # dim=0 is the batch size, dim=1 is the effective video sequence length, dim=2 is the effective number of input features batch_size, num_channels, num_frames, height, width = latents.shape post_patch_num_frames = num_frames // patch_size_t post_patch_height = height // patch_size post_patch_width = width // patch_size latents = latents.reshape( batch_size, -1, post_patch_num_frames, patch_size_t, post_patch_height, patch_size, post_patch_width,
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
patch_size, ) latents = latents.permute(0, 2, 4, 6, 1, 3, 5, 7).flatten(4, 7).flatten(1, 3) return latents
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
@staticmethod def _unpack_latents( latents: torch.Tensor, num_frames: int, height: int, width: int, patch_size: int = 1, patch_size_t: int = 1 ) -> torch.Tensor: # Packed latents of shape [B, S, D] (S is the effective video sequence length, D is the effective feature dimensions) # are unpacked and reshaped into a video tensor of shape [B, C, F, H, W]. This is the inverse operation of # what happens in the `_pack_latents` method. batch_size = latents.size(0) latents = latents.reshape(batch_size, num_frames, height, width, -1, patch_size_t, patch_size, patch_size) latents = latents.permute(0, 4, 1, 5, 2, 6, 3, 7).flatten(6, 7).flatten(4, 5).flatten(2, 3) return latents
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
@staticmethod def _normalize_latents( latents: torch.Tensor, latents_mean: torch.Tensor, latents_std: torch.Tensor, scaling_factor: float = 1.0 ) -> torch.Tensor: # Normalize latents across the channel dimension [B, C, F, H, W] latents_mean = latents_mean.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype) latents_std = latents_std.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype) latents = (latents - latents_mean) * scaling_factor / latents_std return latents
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
@staticmethod def _denormalize_latents( latents: torch.Tensor, latents_mean: torch.Tensor, latents_std: torch.Tensor, scaling_factor: float = 1.0 ) -> torch.Tensor: # Denormalize latents across the channel dimension [B, C, F, H, W] latents_mean = latents_mean.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype) latents_std = latents_std.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype) latents = latents * latents_std / scaling_factor + latents_mean return latents
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
def prepare_latents( self, batch_size: int = 1, num_channels_latents: int = 128, height: int = 512, width: int = 704, num_frames: int = 161, dtype: Optional[torch.dtype] = None, device: Optional[torch.device] = None, generator: Optional[torch.Generator] = None, latents: Optional[torch.Tensor] = None, ) -> torch.Tensor: if latents is not None: return latents.to(device=device, dtype=dtype) height = height // self.vae_spatial_compression_ratio width = width // self.vae_spatial_compression_ratio num_frames = (num_frames - 1) // self.vae_temporal_compression_ratio + 1 shape = (batch_size, num_channels_latents, num_frames, height, width)
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) latents = self._pack_latents( latents, self.transformer_spatial_patch_size, self.transformer_temporal_patch_size ) return latents @property def guidance_scale(self): return self._guidance_scale @property def do_classifier_free_guidance(self): return self._guidance_scale > 1.0 @property def num_timesteps(self): return self._num_timesteps @property def attention_kwargs(self): return self._attention_kwargs @property def interrupt(self): return self._interrupt
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
@torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, negative_prompt: Optional[Union[str, List[str]]] = None, height: int = 512, width: int = 704, num_frames: int = 161, frame_rate: int = 25, num_inference_steps: int = 50, timesteps: List[int] = None, guidance_scale: float = 3, num_videos_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, prompt_attention_mask: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_attention_mask: Optional[torch.Tensor] = None, decode_timestep: Union[float, List[float]] = 0.0, decode_noise_scale: Optional[Union[float, List[float]]] = None,
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
output_type: Optional[str] = "pil", return_dict: bool = True, attention_kwargs: Optional[Dict[str, Any]] = None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], max_sequence_length: int = 128, ): r""" Function invoked when calling the pipeline for generation.
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. height (`int`, defaults to `512`): The height in pixels of the generated image. This is set to 480 by default for the best results. width (`int`, defaults to `704`): The width in pixels of the generated image. This is set to 848 by default for the best results. num_frames (`int`, defaults to `161`): The number of video frames to generate num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. timesteps (`List[int]`, *optional*):
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. Must be in descending order. guidance_scale (`float`, defaults to `3 `): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_videos_per_prompt (`int`, *optional*, defaults to 1): The number of videos to generate per prompt.
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for text embeddings.
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. negative_prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for negative text embeddings. decode_timestep (`float`, defaults to `0.0`): The timestep at which generated video is decoded. decode_noise_scale (`float`, defaults to `None`): The interpolation factor between random noise and denoised latents at the decode timestep. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ltx.LTXPipelineOutput`] instead of a plain tuple. attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. max_sequence_length (`int` defaults to `128 `): Maximum sequence length to use with the `prompt`.
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
Examples: Returns: [`~pipelines.ltx.LTXPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.ltx.LTXPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images. """ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs # 1. Check inputs. Raise error if not correct self.check_inputs( prompt=prompt, height=height, width=width, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, prompt_attention_mask=prompt_attention_mask, negative_prompt_attention_mask=negative_prompt_attention_mask, )
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
self._guidance_scale = guidance_scale self._attention_kwargs = attention_kwargs self._interrupt = False # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
# 3. Prepare text embeddings ( prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask, ) = self.encode_prompt( prompt=prompt, negative_prompt=negative_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, num_videos_per_prompt=num_videos_per_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, prompt_attention_mask=prompt_attention_mask, negative_prompt_attention_mask=negative_prompt_attention_mask, max_sequence_length=max_sequence_length, device=device, ) if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
# 4. Prepare latent variables num_channels_latents = self.transformer.config.in_channels latents = self.prepare_latents( batch_size * num_videos_per_prompt, num_channels_latents, height, width, num_frames, torch.float32, device, generator, latents, )
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
# 5. Prepare timesteps latent_num_frames = (num_frames - 1) // self.vae_temporal_compression_ratio + 1 latent_height = height // self.vae_spatial_compression_ratio latent_width = width // self.vae_spatial_compression_ratio video_sequence_length = latent_num_frames * latent_height * latent_width sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) mu = calculate_shift( video_sequence_length, self.scheduler.config.get("base_image_seq_len", 256), self.scheduler.config.get("max_image_seq_len", 4096), self.scheduler.config.get("base_shift", 0.5), self.scheduler.config.get("max_shift", 1.16), ) timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device, timesteps, sigmas=sigmas, mu=mu, )
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) self._num_timesteps = len(timesteps)
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
# 6. Prepare micro-conditions latent_frame_rate = frame_rate / self.vae_temporal_compression_ratio rope_interpolation_scale = ( 1 / latent_frame_rate, self.vae_spatial_compression_ratio, self.vae_spatial_compression_ratio, ) # 7. Denoising loop with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if self.interrupt: continue latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents latent_model_input = latent_model_input.to(prompt_embeds.dtype) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timestep = t.expand(latent_model_input.shape[0])
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
noise_pred = self.transformer( hidden_states=latent_model_input, encoder_hidden_states=prompt_embeds, timestep=timestep, encoder_attention_mask=prompt_attention_mask, num_frames=latent_num_frames, height=latent_height, width=latent_width, rope_interpolation_scale=rope_interpolation_scale, attention_kwargs=attention_kwargs, return_dict=False, )[0] noise_pred = noise_pred.float() if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
# compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if XLA_AVAILABLE: xm.mark_step()
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
if output_type == "latent": video = latents else: latents = self._unpack_latents( latents, latent_num_frames, latent_height, latent_width, self.transformer_spatial_patch_size, self.transformer_temporal_patch_size, ) latents = self._denormalize_latents( latents, self.vae.latents_mean, self.vae.latents_std, self.vae.config.scaling_factor ) latents = latents.to(prompt_embeds.dtype)
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
if not self.vae.config.timestep_conditioning: timestep = None else: noise = randn_tensor(latents.shape, generator=generator, device=device, dtype=latents.dtype) if not isinstance(decode_timestep, list): decode_timestep = [decode_timestep] * batch_size if decode_noise_scale is None: decode_noise_scale = decode_timestep elif not isinstance(decode_noise_scale, list): decode_noise_scale = [decode_noise_scale] * batch_size timestep = torch.tensor(decode_timestep, device=device, dtype=latents.dtype) decode_noise_scale = torch.tensor(decode_noise_scale, device=device, dtype=latents.dtype)[ :, None, None, None, None ] latents = (1 - decode_noise_scale) * latents + decode_noise_scale * noise
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
video = self.vae.decode(latents, timestep, return_dict=False)[0] video = self.video_processor.postprocess_video(video, output_type=output_type) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (video,) return LTXPipelineOutput(frames=video)
97
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx.py
class LTXImageToVideoPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraLoaderMixin): r""" Pipeline for image-to-video generation. Reference: https://github.com/Lightricks/LTX-Video
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
Args: transformer ([`LTXVideoTransformer3DModel`]): Conditional Transformer architecture to denoise the encoded video latents. scheduler ([`FlowMatchEulerDiscreteScheduler`]): A scheduler to be used in combination with `transformer` to denoise the encoded image latents. vae ([`AutoencoderKLLTXVideo`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`T5EncoderModel`]): [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer). tokenizer (`T5TokenizerFast`): Second Tokenizer of class
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
[T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast). """
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
model_cpu_offload_seq = "text_encoder->transformer->vae" _optional_components = [] _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] def __init__( self, scheduler: FlowMatchEulerDiscreteScheduler, vae: AutoencoderKLLTXVideo, text_encoder: T5EncoderModel, tokenizer: T5TokenizerFast, transformer: LTXVideoTransformer3DModel, ): super().__init__() self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, transformer=transformer, scheduler=scheduler, )
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
self.vae_spatial_compression_ratio = ( self.vae.spatial_compression_ratio if getattr(self, "vae", None) is not None else 32 ) self.vae_temporal_compression_ratio = ( self.vae.temporal_compression_ratio if getattr(self, "vae", None) is not None else 8 ) self.transformer_spatial_patch_size = ( self.transformer.config.patch_size if getattr(self, "transformer", None) is not None else 1 ) self.transformer_temporal_patch_size = ( self.transformer.config.patch_size_t if getattr(self, "transformer") is not None else 1 ) self.video_processor = VideoProcessor(vae_scale_factor=self.vae_spatial_compression_ratio) self.tokenizer_max_length = ( self.tokenizer.model_max_length if getattr(self, "tokenizer", None) is not None else 128 ) self.default_height = 512 self.default_width = 704 self.default_frames = 121
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
def _get_t5_prompt_embeds( self, prompt: Union[str, List[str]] = None, num_videos_per_prompt: int = 1, max_sequence_length: int = 128, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): device = device or self._execution_device dtype = dtype or self.text_encoder.dtype prompt = [prompt] if isinstance(prompt, str) else prompt batch_size = len(prompt) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=max_sequence_length, truncation=True, add_special_tokens=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids prompt_attention_mask = text_inputs.attention_mask prompt_attention_mask = prompt_attention_mask.bool().to(device) untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1]) logger.warning( "The following part of your input was truncated because `max_sequence_length` is set to " f" {max_sequence_length} tokens: {removed_text}" ) prompt_embeds = self.text_encoder(text_input_ids.to(device))[0] prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) # duplicate text embeddings for each generation per prompt, using mps friendly method _, seq_len, _ = prompt_embeds.shape prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
prompt_attention_mask = prompt_attention_mask.view(batch_size, -1) prompt_attention_mask = prompt_attention_mask.repeat(num_videos_per_prompt, 1) return prompt_embeds, prompt_attention_mask # Copied from diffusers.pipelines.mochi.pipeline_mochi.MochiPipeline.encode_prompt with 256->128 def encode_prompt( self, prompt: Union[str, List[str]], negative_prompt: Optional[Union[str, List[str]]] = None, do_classifier_free_guidance: bool = True, num_videos_per_prompt: int = 1, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, prompt_attention_mask: Optional[torch.Tensor] = None, negative_prompt_attention_mask: Optional[torch.Tensor] = None, max_sequence_length: int = 128, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): r""" Encodes the prompt into text encoder hidden states.
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): Whether to use classifier free guidance or not. num_videos_per_prompt (`int`, *optional*, defaults to 1): Number of videos that should be generated per prompt. torch device to place the resulting embeddings on prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. device: (`torch.device`, *optional*): torch device dtype: (`torch.dtype`, *optional*): torch dtype """ device = device or self._execution_device
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
prompt = [prompt] if isinstance(prompt, str) else prompt if prompt is not None: batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: prompt_embeds, prompt_attention_mask = self._get_t5_prompt_embeds( prompt=prompt, num_videos_per_prompt=num_videos_per_prompt, max_sequence_length=max_sequence_length, device=device, dtype=dtype, ) if do_classifier_free_guidance and negative_prompt_embeds is None: negative_prompt = negative_prompt or "" negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
if prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) negative_prompt_embeds, negative_prompt_attention_mask = self._get_t5_prompt_embeds( prompt=negative_prompt, num_videos_per_prompt=num_videos_per_prompt, max_sequence_length=max_sequence_length, device=device, dtype=dtype, )
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask # Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline.check_inputs def check_inputs( self, prompt, height, width, callback_on_step_end_tensor_inputs=None, prompt_embeds=None, negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None, ): if height % 32 != 0 or width % 32 != 0: raise ValueError(f"`height` and `width` have to be divisible by 32 but are {height} and {width}.")
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" )
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if prompt_embeds is not None and prompt_attention_mask is None: raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if prompt_attention_mask.shape != negative_prompt_attention_mask.shape: raise ValueError( "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but" f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`" f" {negative_prompt_attention_mask.shape}." )
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
@staticmethod # Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._pack_latents def _pack_latents(latents: torch.Tensor, patch_size: int = 1, patch_size_t: int = 1) -> torch.Tensor: # Unpacked latents of shape are [B, C, F, H, W] are patched into tokens of shape [B, C, F // p_t, p_t, H // p, p, W // p, p]. # The patch dimensions are then permuted and collapsed into the channel dimension of shape: # [B, F // p_t * H // p * W // p, C * p_t * p * p] (an ndim=3 tensor). # dim=0 is the batch size, dim=1 is the effective video sequence length, dim=2 is the effective number of input features batch_size, num_channels, num_frames, height, width = latents.shape post_patch_num_frames = num_frames // patch_size_t post_patch_height = height // patch_size post_patch_width = width // patch_size latents = latents.reshape( batch_size, -1, post_patch_num_frames, patch_size_t,
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
post_patch_height, patch_size, post_patch_width, patch_size, ) latents = latents.permute(0, 2, 4, 6, 1, 3, 5, 7).flatten(4, 7).flatten(1, 3) return latents
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
@staticmethod # Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._unpack_latents def _unpack_latents( latents: torch.Tensor, num_frames: int, height: int, width: int, patch_size: int = 1, patch_size_t: int = 1 ) -> torch.Tensor: # Packed latents of shape [B, S, D] (S is the effective video sequence length, D is the effective feature dimensions) # are unpacked and reshaped into a video tensor of shape [B, C, F, H, W]. This is the inverse operation of # what happens in the `_pack_latents` method. batch_size = latents.size(0) latents = latents.reshape(batch_size, num_frames, height, width, -1, patch_size_t, patch_size, patch_size) latents = latents.permute(0, 4, 1, 5, 2, 6, 3, 7).flatten(6, 7).flatten(4, 5).flatten(2, 3) return latents
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
@staticmethod # Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._normalize_latents def _normalize_latents( latents: torch.Tensor, latents_mean: torch.Tensor, latents_std: torch.Tensor, scaling_factor: float = 1.0 ) -> torch.Tensor: # Normalize latents across the channel dimension [B, C, F, H, W] latents_mean = latents_mean.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype) latents_std = latents_std.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype) latents = (latents - latents_mean) * scaling_factor / latents_std return latents
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
@staticmethod # Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._denormalize_latents def _denormalize_latents( latents: torch.Tensor, latents_mean: torch.Tensor, latents_std: torch.Tensor, scaling_factor: float = 1.0 ) -> torch.Tensor: # Denormalize latents across the channel dimension [B, C, F, H, W] latents_mean = latents_mean.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype) latents_std = latents_std.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype) latents = latents * latents_std / scaling_factor + latents_mean return latents
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
def prepare_latents( self, image: Optional[torch.Tensor] = None, batch_size: int = 1, num_channels_latents: int = 128, height: int = 512, width: int = 704, num_frames: int = 161, dtype: Optional[torch.dtype] = None, device: Optional[torch.device] = None, generator: Optional[torch.Generator] = None, latents: Optional[torch.Tensor] = None, ) -> torch.Tensor: height = height // self.vae_spatial_compression_ratio width = width // self.vae_spatial_compression_ratio num_frames = ( (num_frames - 1) // self.vae_temporal_compression_ratio + 1 if latents is None else latents.size(2) ) shape = (batch_size, num_channels_latents, num_frames, height, width) mask_shape = (batch_size, 1, num_frames, height, width)
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
if latents is not None: conditioning_mask = latents.new_zeros(shape) conditioning_mask[:, :, 0] = 1.0 conditioning_mask = self._pack_latents( conditioning_mask, self.transformer_spatial_patch_size, self.transformer_temporal_patch_size ) return latents.to(device=device, dtype=dtype), conditioning_mask if isinstance(generator, list): if len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." )
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
init_latents = [ retrieve_latents(self.vae.encode(image[i].unsqueeze(0).unsqueeze(2)), generator[i]) for i in range(batch_size) ] else: init_latents = [ retrieve_latents(self.vae.encode(img.unsqueeze(0).unsqueeze(2)), generator) for img in image ] init_latents = torch.cat(init_latents, dim=0).to(dtype) init_latents = self._normalize_latents(init_latents, self.vae.latents_mean, self.vae.latents_std) init_latents = init_latents.repeat(1, 1, num_frames, 1, 1) conditioning_mask = torch.zeros(mask_shape, device=device, dtype=dtype) conditioning_mask[:, :, 0] = 1.0 noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) latents = init_latents * conditioning_mask + noise * (1 - conditioning_mask)
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
conditioning_mask = self._pack_latents( conditioning_mask, self.transformer_spatial_patch_size, self.transformer_temporal_patch_size ).squeeze(-1) latents = self._pack_latents( latents, self.transformer_spatial_patch_size, self.transformer_temporal_patch_size ) return latents, conditioning_mask @property def guidance_scale(self): return self._guidance_scale @property def do_classifier_free_guidance(self): return self._guidance_scale > 1.0 @property def num_timesteps(self): return self._num_timesteps @property def attention_kwargs(self): return self._attention_kwargs @property def interrupt(self): return self._interrupt
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
@torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, image: PipelineImageInput = None, prompt: Union[str, List[str]] = None, negative_prompt: Optional[Union[str, List[str]]] = None, height: int = 512, width: int = 704, num_frames: int = 161, frame_rate: int = 25, num_inference_steps: int = 50, timesteps: List[int] = None, guidance_scale: float = 3, num_videos_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, prompt_attention_mask: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_attention_mask: Optional[torch.Tensor] = None, decode_timestep: Union[float, List[float]] = 0.0,
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
decode_noise_scale: Optional[Union[float, List[float]]] = None, output_type: Optional[str] = "pil", return_dict: bool = True, attention_kwargs: Optional[Dict[str, Any]] = None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], max_sequence_length: int = 128, ): r""" Function invoked when calling the pipeline for generation.
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
Args: image (`PipelineImageInput`): The input image to condition the generation on. Must be an image, a list of images or a `torch.Tensor`. prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. height (`int`, defaults to `512`): The height in pixels of the generated image. This is set to 480 by default for the best results. width (`int`, defaults to `704`): The width in pixels of the generated image. This is set to 848 by default for the best results. num_frames (`int`, defaults to `161`): The number of video frames to generate num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
expense of slower inference. timesteps (`List[int]`, *optional*): Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. Must be in descending order. guidance_scale (`float`, defaults to `3 `): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_videos_per_prompt (`int`, *optional*, defaults to 1):
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
The number of videos to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. prompt_attention_mask (`torch.Tensor`, *optional*):
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
Pre-generated attention mask for text embeddings. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. negative_prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for negative text embeddings. decode_timestep (`float`, defaults to `0.0`): The timestep at which generated video is decoded. decode_noise_scale (`float`, defaults to `None`): The interpolation factor between random noise and denoised latents at the decode timestep. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ltx.LTXPipelineOutput`] instead of a plain tuple. attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. max_sequence_length (`int` defaults to `128 `): Maximum sequence length to use with the `prompt`.
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
Examples: Returns: [`~pipelines.ltx.LTXPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.ltx.LTXPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images. """ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs # 1. Check inputs. Raise error if not correct self.check_inputs( prompt=prompt, height=height, width=width, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, prompt_attention_mask=prompt_attention_mask, negative_prompt_attention_mask=negative_prompt_attention_mask, )
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
self._guidance_scale = guidance_scale self._attention_kwargs = attention_kwargs self._interrupt = False # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
# 3. Prepare text embeddings ( prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask, ) = self.encode_prompt( prompt=prompt, negative_prompt=negative_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, num_videos_per_prompt=num_videos_per_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, prompt_attention_mask=prompt_attention_mask, negative_prompt_attention_mask=negative_prompt_attention_mask, max_sequence_length=max_sequence_length, device=device, ) if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
# 4. Prepare latent variables if latents is None: image = self.video_processor.preprocess(image, height=height, width=width) image = image.to(device=device, dtype=prompt_embeds.dtype) num_channels_latents = self.transformer.config.in_channels latents, conditioning_mask = self.prepare_latents( image, batch_size * num_videos_per_prompt, num_channels_latents, height, width, num_frames, torch.float32, device, generator, latents, ) if self.do_classifier_free_guidance: conditioning_mask = torch.cat([conditioning_mask, conditioning_mask])
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
# 5. Prepare timesteps latent_num_frames = (num_frames - 1) // self.vae_temporal_compression_ratio + 1 latent_height = height // self.vae_spatial_compression_ratio latent_width = width // self.vae_spatial_compression_ratio video_sequence_length = latent_num_frames * latent_height * latent_width sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) mu = calculate_shift( video_sequence_length, self.scheduler.config.get("base_image_seq_len", 256), self.scheduler.config.get("max_image_seq_len", 4096), self.scheduler.config.get("base_shift", 0.5), self.scheduler.config.get("max_shift", 1.16), ) timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device, timesteps, sigmas=sigmas, mu=mu, )
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) self._num_timesteps = len(timesteps)
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
# 6. Prepare micro-conditions latent_frame_rate = frame_rate / self.vae_temporal_compression_ratio rope_interpolation_scale = ( 1 / latent_frame_rate, self.vae_spatial_compression_ratio, self.vae_spatial_compression_ratio, ) # 7. Denoising loop with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if self.interrupt: continue latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents latent_model_input = latent_model_input.to(prompt_embeds.dtype) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timestep = t.expand(latent_model_input.shape[0]) timestep = timestep.unsqueeze(-1) * (1 - conditioning_mask)
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
noise_pred = self.transformer( hidden_states=latent_model_input, encoder_hidden_states=prompt_embeds, timestep=timestep, encoder_attention_mask=prompt_attention_mask, num_frames=latent_num_frames, height=latent_height, width=latent_width, rope_interpolation_scale=rope_interpolation_scale, attention_kwargs=attention_kwargs, return_dict=False, )[0] noise_pred = noise_pred.float() if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) timestep, _ = timestep.chunk(2)
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
# compute the previous noisy sample x_t -> x_t-1 noise_pred = self._unpack_latents( noise_pred, latent_num_frames, latent_height, latent_width, self.transformer_spatial_patch_size, self.transformer_temporal_patch_size, ) latents = self._unpack_latents( latents, latent_num_frames, latent_height, latent_width, self.transformer_spatial_patch_size, self.transformer_temporal_patch_size, ) noise_pred = noise_pred[:, :, 1:] noise_latents = latents[:, :, 1:] pred_latents = self.scheduler.step(noise_pred, t, noise_latents, return_dict=False)[0]
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
latents = torch.cat([latents[:, :, :1], pred_latents], dim=2) latents = self._pack_latents( latents, self.transformer_spatial_patch_size, self.transformer_temporal_patch_size ) if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if XLA_AVAILABLE: xm.mark_step()
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
if output_type == "latent": video = latents else: latents = self._unpack_latents( latents, latent_num_frames, latent_height, latent_width, self.transformer_spatial_patch_size, self.transformer_temporal_patch_size, ) latents = self._denormalize_latents( latents, self.vae.latents_mean, self.vae.latents_std, self.vae.config.scaling_factor ) latents = latents.to(prompt_embeds.dtype)
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
if not self.vae.config.timestep_conditioning: timestep = None else: noise = torch.randn(latents.shape, generator=generator, device=device, dtype=latents.dtype) if not isinstance(decode_timestep, list): decode_timestep = [decode_timestep] * batch_size if decode_noise_scale is None: decode_noise_scale = decode_timestep elif not isinstance(decode_noise_scale, list): decode_noise_scale = [decode_noise_scale] * batch_size timestep = torch.tensor(decode_timestep, device=device, dtype=latents.dtype) decode_noise_scale = torch.tensor(decode_noise_scale, device=device, dtype=latents.dtype)[ :, None, None, None, None ] latents = (1 - decode_noise_scale) * latents + decode_noise_scale * noise
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
video = self.vae.decode(latents, timestep, return_dict=False)[0] video = self.video_processor.postprocess_video(video, output_type=output_type) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (video,) return LTXPipelineOutput(frames=video)
98
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ltx/pipeline_ltx_image2video.py
class LeditsAttentionStore: @staticmethod def get_empty_store(): return {"down_cross": [], "mid_cross": [], "up_cross": [], "down_self": [], "mid_self": [], "up_self": []} def __call__(self, attn, is_cross: bool, place_in_unet: str, editing_prompts, PnP=False): # attn.shape = batch_size * head_size, seq_len query, seq_len_key if attn.shape[1] <= self.max_size: bs = 1 + int(PnP) + editing_prompts skip = 2 if PnP else 1 # skip PnP & unconditional attn = torch.stack(attn.split(self.batch_size)).permute(1, 0, 2, 3) source_batch_size = int(attn.shape[1] // bs) self.forward(attn[:, skip * source_batch_size :], is_cross, place_in_unet) def forward(self, attn, is_cross: bool, place_in_unet: str): key = f"{place_in_unet}_{'cross' if is_cross else 'self'}" self.step_store[key].append(attn)
99
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py
def between_steps(self, store_step=True): if store_step: if self.average: if len(self.attention_store) == 0: self.attention_store = self.step_store else: for key in self.attention_store: for i in range(len(self.attention_store[key])): self.attention_store[key][i] += self.step_store[key][i] else: if len(self.attention_store) == 0: self.attention_store = [self.step_store] else: self.attention_store.append(self.step_store) self.cur_step += 1 self.step_store = self.get_empty_store()
99
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py
def get_attention(self, step: int): if self.average: attention = { key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store } else: assert step is not None attention = self.attention_store[step] return attention def aggregate_attention( self, attention_maps, prompts, res: Union[int, Tuple[int]], from_where: List[str], is_cross: bool, select: int ): out = [[] for x in range(self.batch_size)] if isinstance(res, int): num_pixels = res**2 resolution = (res, res) else: num_pixels = res[0] * res[1] resolution = res[:2]
99
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py
for location in from_where: for bs_item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]: for batch, item in enumerate(bs_item): if item.shape[1] == num_pixels: cross_maps = item.reshape(len(prompts), -1, *resolution, item.shape[-1])[select] out[batch].append(cross_maps) out = torch.stack([torch.cat(x, dim=0) for x in out]) # average over heads out = out.sum(1) / out.shape[1] return out
99
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py
def __init__(self, average: bool, batch_size=1, max_resolution=16, max_size: int = None): self.step_store = self.get_empty_store() self.attention_store = [] self.cur_step = 0 self.average = average self.batch_size = batch_size if max_size is None: self.max_size = max_resolution**2 elif max_size is not None and max_resolution is None: self.max_size = max_size else: raise ValueError("Only allowed to set one of max_resolution or max_size")
99
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py