text
stringlengths 1
1.02k
| class_index
int64 0
1.38k
| source
stringclasses 431
values |
---|---|---|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
def prepare_ip_adapter_image_embeds(
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
):
image_embeds = []
if do_classifier_free_guidance:
negative_image_embeds = []
if ip_adapter_image_embeds is None:
if not isinstance(ip_adapter_image, list):
ip_adapter_image = [ip_adapter_image]
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
raise ValueError(
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
for single_ip_adapter_image, image_proj_layer in zip(
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
):
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
single_image_embeds, single_negative_image_embeds = self.encode_image(
single_ip_adapter_image, device, 1, output_hidden_state
)
image_embeds.append(single_image_embeds[None, :])
if do_classifier_free_guidance:
negative_image_embeds.append(single_negative_image_embeds[None, :])
else:
for single_image_embeds in ip_adapter_image_embeds:
if do_classifier_free_guidance:
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
negative_image_embeds.append(single_negative_image_embeds)
image_embeds.append(single_image_embeds) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
ip_adapter_image_embeds = []
for i, single_image_embeds in enumerate(image_embeds):
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
if do_classifier_free_guidance:
single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
single_image_embeds = single_image_embeds.to(device=device)
ip_adapter_image_embeds.append(single_image_embeds)
return ip_adapter_image_embeds | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.check_image
def check_image(self, image, prompt, prompt_embeds):
image_is_pil = isinstance(image, PIL.Image.Image)
image_is_tensor = isinstance(image, torch.Tensor)
image_is_np = isinstance(image, np.ndarray)
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
if (
not image_is_pil
and not image_is_tensor
and not image_is_np
and not image_is_pil_list
and not image_is_tensor_list
and not image_is_np_list
):
raise TypeError(
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
)
if image_is_pil:
image_batch_size = 1
else:
image_batch_size = len(image)
if prompt is not None and isinstance(prompt, str):
prompt_batch_size = 1
elif prompt is not None and isinstance(prompt, list):
prompt_batch_size = len(prompt)
elif prompt_embeds is not None:
prompt_batch_size = prompt_embeds.shape[0] | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
raise ValueError(
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
def check_inputs(
self,
prompt,
prompt_2,
image,
mask_image,
strength,
num_inference_steps,
callback_steps,
output_type,
negative_prompt=None,
negative_prompt_2=None,
prompt_embeds=None,
negative_prompt_embeds=None,
ip_adapter_image=None,
ip_adapter_image_embeds=None,
pooled_prompt_embeds=None,
negative_pooled_prompt_embeds=None,
controlnet_conditioning_scale=1.0,
control_guidance_start=0.0,
control_guidance_end=1.0,
callback_on_step_end_tensor_inputs=None,
padding_mask_crop=None,
):
if strength < 0 or strength > 1:
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
if num_inference_steps is None:
raise ValueError("`num_inference_steps` cannot be None.")
elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0: | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
raise ValueError(
f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type"
f" {type(num_inference_steps)}."
) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt_2 is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
if padding_mask_crop is not None:
if not isinstance(image, PIL.Image.Image):
raise ValueError(
f"The image should be a PIL image when inpainting mask crop, but is of type" f" {type(image)}."
)
if not isinstance(mask_image, PIL.Image.Image):
raise ValueError(
f"The mask image should be a PIL image when inpainting mask crop, but is of type"
f" {type(mask_image)}."
)
if output_type != "pil":
raise ValueError(f"The output type should be PIL when inpainting mask crop, but is" f" {output_type}.")
if prompt_embeds is not None and pooled_prompt_embeds is None:
raise ValueError(
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
raise ValueError(
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
# Check `image`
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
self.controlnet, torch._dynamo.eval_frame.OptimizedModule
)
if (
isinstance(self.controlnet, ControlNetModel)
or is_compiled
and isinstance(self.controlnet._orig_mod, ControlNetModel)
):
self.check_image(image, prompt, prompt_embeds)
elif (
isinstance(self.controlnet, ControlNetUnionModel)
or is_compiled
and isinstance(self.controlnet._orig_mod, ControlNetUnionModel)
):
self.check_image(image, prompt, prompt_embeds)
else:
assert False | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
# Check `controlnet_conditioning_scale`
if (
isinstance(self.controlnet, ControlNetModel)
or is_compiled
and isinstance(self.controlnet._orig_mod, ControlNetModel)
):
if not isinstance(controlnet_conditioning_scale, float):
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
elif (
isinstance(self.controlnet, ControlNetUnionModel)
or is_compiled
and isinstance(self.controlnet._orig_mod, ControlNetUnionModel)
):
if not isinstance(controlnet_conditioning_scale, float):
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
else:
assert False
if not isinstance(control_guidance_start, (tuple, list)):
control_guidance_start = [control_guidance_start] | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
if not isinstance(control_guidance_end, (tuple, list)):
control_guidance_end = [control_guidance_end]
if len(control_guidance_start) != len(control_guidance_end):
raise ValueError(
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
)
for start, end in zip(control_guidance_start, control_guidance_end):
if start >= end:
raise ValueError(
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
)
if start < 0.0:
raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
if end > 1.0:
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
raise ValueError(
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
)
if ip_adapter_image_embeds is not None:
if not isinstance(ip_adapter_image_embeds, list):
raise ValueError(
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
)
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
raise ValueError(
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet_inpaint_sd_xl.StableDiffusionXLControlNetInpaintPipeline.prepare_control_image
def prepare_control_image(
self,
image,
width,
height,
batch_size,
num_images_per_prompt,
device,
dtype,
crops_coords,
resize_mode,
do_classifier_free_guidance=False,
guess_mode=False,
):
image = self.control_image_processor.preprocess(
image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
).to(dtype=torch.float32)
image_batch_size = image.shape[0]
if image_batch_size == 1:
repeat_by = batch_size
else:
# image batch size is the same as prompt batch size
repeat_by = num_images_per_prompt
image = image.repeat_interleave(repeat_by, dim=0)
image = image.to(device=device, dtype=dtype) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
if do_classifier_free_guidance and not guess_mode:
image = torch.cat([image] * 2)
return image | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet_inpaint_sd_xl.StableDiffusionXLControlNetInpaintPipeline.prepare_latents
def prepare_latents(
self,
batch_size,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
image=None,
timestep=None,
is_strength_max=True,
add_noise=True,
return_noise=False,
return_image_latents=False,
):
shape = (
batch_size,
num_channels_latents,
int(height) // self.vae_scale_factor,
int(width) // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
if (image is None or timestep is None) and not is_strength_max:
raise ValueError(
"Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
"However, either the image or the noise timestep has not been provided."
)
if return_image_latents or (latents is None and not is_strength_max):
image = image.to(device=device, dtype=dtype)
if image.shape[1] == 4:
image_latents = image
else:
image_latents = self._encode_vae_image(image=image, generator=generator)
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
if latents is None and add_noise:
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
# if strength is 1. then initialise the latents to noise, else initial to image + noise
latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
# if pure noise then scale the initial latents by the Scheduler's init sigma
latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
elif add_noise:
noise = latents.to(device)
latents = noise * self.scheduler.init_noise_sigma
else:
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
latents = image_latents.to(device)
outputs = (latents,)
if return_noise:
outputs += (noise,)
if return_image_latents:
outputs += (image_latents,)
return outputs | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet_inpaint_sd_xl.StableDiffusionXLControlNetInpaintPipeline._encode_vae_image
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
dtype = image.dtype
if self.vae.config.force_upcast:
image = image.float()
self.vae.to(dtype=torch.float32)
if isinstance(generator, list):
image_latents = [
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
for i in range(image.shape[0])
]
image_latents = torch.cat(image_latents, dim=0)
else:
image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
if self.vae.config.force_upcast:
self.vae.to(dtype)
image_latents = image_latents.to(dtype)
image_latents = self.vae.config.scaling_factor * image_latents
return image_latents | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet_inpaint_sd_xl.StableDiffusionXLControlNetInpaintPipeline.prepare_mask_latents
def prepare_mask_latents(
self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
):
# resize the mask to latents shape as we concatenate the mask to the latents
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
# and half precision
mask = torch.nn.functional.interpolate(
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
)
mask = mask.to(device=device, dtype=dtype) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
if mask.shape[0] < batch_size:
if not batch_size % mask.shape[0] == 0:
raise ValueError(
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
" of masks that you pass is divisible by the total requested batch size."
)
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
masked_image_latents = None
if masked_image is not None:
masked_image = masked_image.to(device=device, dtype=dtype)
masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
if masked_image_latents.shape[0] < batch_size:
if not batch_size % masked_image_latents.shape[0] == 0:
raise ValueError(
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
" Make sure the number of images that you pass is divisible by the total requested batch size."
)
masked_image_latents = masked_image_latents.repeat(
batch_size // masked_image_latents.shape[0], 1, 1, 1
) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
masked_image_latents = (
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
)
# aligning device to prevent device errors when concating it with the latent model input
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
return mask, masked_image_latents
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.get_timesteps
def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None):
# get the original timestep using init_timestep
if denoising_start is None:
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
if hasattr(self.scheduler, "set_begin_index"):
self.scheduler.set_begin_index(t_start * self.scheduler.order)
return timesteps, num_inference_steps - t_start
else:
# Strength is irrelevant if we directly request a timestep to start at;
# that is, strength is determined by the denoising_start instead.
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (denoising_start * self.scheduler.config.num_train_timesteps)
)
) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
num_inference_steps = (self.scheduler.timesteps < discrete_timestep_cutoff).sum().item()
if self.scheduler.order == 2 and num_inference_steps % 2 == 0:
# if the scheduler is a 2nd order scheduler we might have to do +1
# because `num_inference_steps` might be even given that every timestep
# (except the highest one) is duplicated. If `num_inference_steps` is even it would
# mean that we cut the timesteps in the middle of the denoising step
# (between 1st and 2nd derivative) which leads to incorrect results. By adding 1
# we ensure that the denoising process always ends after the 2nd derivate step of the scheduler
num_inference_steps = num_inference_steps + 1 | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
# because t_n+1 >= t_n, we slice the timesteps starting from the end
t_start = len(self.scheduler.timesteps) - num_inference_steps
timesteps = self.scheduler.timesteps[t_start:]
if hasattr(self.scheduler, "set_begin_index"):
self.scheduler.set_begin_index(t_start)
return timesteps, num_inference_steps | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
def _get_add_time_ids(
self,
original_size,
crops_coords_top_left,
target_size,
aesthetic_score,
negative_aesthetic_score,
dtype,
text_encoder_projection_dim=None,
):
if self.config.requires_aesthetics_score:
add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,))
add_neg_time_ids = list(original_size + crops_coords_top_left + (negative_aesthetic_score,))
else:
add_time_ids = list(original_size + crops_coords_top_left + target_size)
add_neg_time_ids = list(original_size + crops_coords_top_left + target_size)
passed_add_embed_dim = (
self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
)
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
if (
expected_add_embed_dim > passed_add_embed_dim
and (expected_add_embed_dim - passed_add_embed_dim) == self.unet.config.addition_time_embed_dim
):
raise ValueError(
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model."
)
elif (
expected_add_embed_dim < passed_add_embed_dim
and (passed_add_embed_dim - expected_add_embed_dim) == self.unet.config.addition_time_embed_dim
):
raise ValueError( | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model."
)
elif expected_add_embed_dim != passed_add_embed_dim:
raise ValueError(
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype)
return add_time_ids, add_neg_time_ids
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
def upcast_vae(self):
dtype = self.vae.dtype
self.vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = isinstance(
self.vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
self.vae.post_quant_conv.to(dtype)
self.vae.decoder.conv_in.to(dtype)
self.vae.decoder.mid_block.to(dtype) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
@property
def guidance_scale(self):
return self._guidance_scale
@property
def clip_skip(self):
return self._clip_skip
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1
@property
def cross_attention_kwargs(self):
return self._cross_attention_kwargs
@property
def num_timesteps(self):
return self._num_timesteps
@property
def interrupt(self):
return self._interrupt | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
image: PipelineImageInput = None,
mask_image: PipelineImageInput = None,
control_image: PipelineImageInput = None,
height: Optional[int] = None,
width: Optional[int] = None,
padding_mask_crop: Optional[int] = None,
strength: float = 0.9999,
num_inference_steps: int = 50,
denoising_start: Optional[float] = None,
denoising_end: Optional[float] = None,
guidance_scale: float = 5.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
negative_prompt_2: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None, | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
ip_adapter_image: Optional[PipelineImageInput] = None,
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
pooled_prompt_embeds: Optional[torch.Tensor] = None,
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
guess_mode: bool = False,
control_guidance_start: Union[float, List[float]] = 0.0,
control_guidance_end: Union[float, List[float]] = 1.0,
control_mode: Optional[Union[int, List[int]]] = None,
guidance_rescale: float = 0.0,
original_size: Tuple[int, int] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
target_size: Tuple[int, int] = None, | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
aesthetic_score: float = 6.0,
negative_aesthetic_score: float = 2.5,
clip_skip: Optional[int] = None,
callback_on_step_end: Optional[
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
**kwargs,
):
r"""
Function invoked when calling the pipeline for generation. | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
used in both text-encoders
image (`PIL.Image.Image`):
`Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
be masked out with `mask_image` and repainted according to `prompt`.
mask_image (`PIL.Image.Image`):
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)
instead of 3, so the expected shape would be `(B, H, W, 1)`.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image.
padding_mask_crop (`int`, *optional*, defaults to `None`):
The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region
with the same aspect ration of the image and contains all masked area, and then expand that area based | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before
resizing to the original image size for inpainting. This is useful when the masked area is small while
the image is large and contain information irrelevant for inpainting, such as background.
strength (`float`, *optional*, defaults to 0.9999):
Conceptually, indicates how much to transform the masked portion of the reference `image`. Must be
between 0 and 1. `image` will be used as a starting point, adding more noise to it the larger the
`strength`. The number of denoising steps depends on the amount of noise initially added. When
`strength` is 1, added noise will be maximum and the denoising process will run for the full number of
iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores the masked | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
portion of the reference `image`. Note that in the case of `denoising_start` being declared as an
integer, the value of `strength` will be ignored.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
denoising_start (`float`, *optional*):
When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
it is assumed that the passed `image` is a partly denoised image. Note that when this is specified,
strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refining the Image
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).
denoising_end (`float`, *optional*):
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
completed before it is intentionally prematurely terminated. As a result, the returned sample will
still retain a substantial amount of noise (ca. final 20% of timesteps still needed) and should be
denoised by a successor pipeline that has `denoising_start` set to 0.8 so that it only denoises the
final 20% of the scheduler. The denoising_end parameter should ideally be utilized when this pipeline
forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`). | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
negative_prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
provided, embeddings are computed from the `ip_adapter_image` input argument.
pooled_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
If not provided, pooled text embeddings will be generated from `prompt` input argument.
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
input argument.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
`original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as
explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
For most cases, `target_size` should be set to the desired height and width of the generated image. If
not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
aesthetic_score (`float`, *optional*, defaults to 6.0):
Used to simulate an aesthetic score of the generated image by influencing the positive text condition.
Part of SDXL's micro-conditioning as explained in section 2.2 of
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
negative_aesthetic_score (`float`, *optional*, defaults to 2.5):
Part of SDXL's micro-conditioning as explained in section 2.2 of | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to
simulate an aesthetic score of the generated image by influencing the negative text condition.
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class. | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
`tuple. `tuple. When returning a tuple, the first element is a list with the generated images.
"""
callback = kwargs.pop("callback", None)
callback_steps = kwargs.pop("callback_steps", None)
if callback is not None:
deprecate(
"callback",
"1.0.0",
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
)
if callback_steps is not None:
deprecate(
"callback_steps",
"1.0.0",
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
# align format for control guidance
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
# # 0.0 Default height and width to unet
# height = height or self.unet.config.sample_size * self.vae_scale_factor
# width = width or self.unet.config.sample_size * self.vae_scale_factor | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
# 0.1 align format for control guidance
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
if not isinstance(control_image, list):
control_image = [control_image]
if not isinstance(control_mode, list):
control_mode = [control_mode]
if len(control_image) != len(control_mode):
raise ValueError("Expected len(control_image) == len(control_type)")
num_control_type = controlnet.config.num_control_type | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
# 1. Check inputs
control_type = [0 for _ in range(num_control_type)]
for _image, control_idx in zip(control_image, control_mode):
control_type[control_idx] = 1
self.check_inputs(
prompt,
prompt_2,
_image,
mask_image,
strength,
num_inference_steps,
callback_steps,
output_type,
negative_prompt,
negative_prompt_2,
prompt_embeds,
negative_prompt_embeds,
ip_adapter_image,
ip_adapter_image_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
controlnet_conditioning_scale,
control_guidance_start,
control_guidance_end,
callback_on_step_end_tensor_inputs,
padding_mask_crop,
) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
control_type = torch.Tensor(control_type)
self._guidance_scale = guidance_scale
self._clip_skip = clip_skip
self._cross_attention_kwargs = cross_attention_kwargs
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# 3. Encode input prompt
text_encoder_lora_scale = (
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
negative_prompt=negative_prompt,
negative_prompt_2=negative_prompt_2,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
lora_scale=text_encoder_lora_scale,
clip_skip=self.clip_skip,
) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
# 3.1 Encode ip_adapter_image
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
image_embeds = self.prepare_ip_adapter_image_embeds(
ip_adapter_image,
ip_adapter_image_embeds,
device,
batch_size * num_images_per_prompt,
self.do_classifier_free_guidance,
)
# 4. set timesteps
def denoising_value_valid(dnv):
return isinstance(dnv, float) and 0 < dnv < 1 | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps, num_inference_steps = self.get_timesteps(
num_inference_steps,
strength,
device,
denoising_start=denoising_start if denoising_value_valid(denoising_start) else None,
)
# check that number of inference steps is not < 1 - as this doesn't make sense
if num_inference_steps < 1:
raise ValueError(
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
)
# at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
is_strength_max = strength == 1.0
self._num_timesteps = len(timesteps) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
# 5. Preprocess mask and image - resizes image and mask w.r.t height and width
# 5.1 Prepare init image
if padding_mask_crop is not None:
height, width = self.image_processor.get_default_height_width(image, height, width)
crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
resize_mode = "fill"
else:
crops_coords = None
resize_mode = "default"
original_image = image
init_image = self.image_processor.preprocess(
image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
)
init_image = init_image.to(dtype=torch.float32) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
# 5.2 Prepare control images
for idx, _ in enumerate(control_image):
control_image[idx] = self.prepare_control_image(
image=control_image[idx],
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=controlnet.dtype,
crops_coords=crops_coords,
resize_mode=resize_mode,
do_classifier_free_guidance=self.do_classifier_free_guidance,
guess_mode=guess_mode,
)
height, width = control_image[idx].shape[-2:]
# 5.3 Prepare mask
mask = self.mask_processor.preprocess(
mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
)
masked_image = init_image * (mask < 0.5)
_, _, height, width = init_image.shape | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
# 6. Prepare latent variables
num_channels_latents = self.vae.config.latent_channels
num_channels_unet = self.unet.config.in_channels
return_image_latents = num_channels_unet == 4
add_noise = True if denoising_start is None else False
latents_outputs = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
image=init_image,
timestep=latent_timestep,
is_strength_max=is_strength_max,
add_noise=add_noise,
return_noise=True,
return_image_latents=return_image_latents,
)
if return_image_latents:
latents, noise, image_latents = latents_outputs
else:
latents, noise = latents_outputs | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
# 7. Prepare mask latent variables
mask, _ = self.prepare_mask_latents(
mask,
masked_image,
batch_size * num_images_per_prompt,
height,
width,
prompt_embeds.dtype,
device,
generator,
self.do_classifier_free_guidance,
)
# 8. Check that sizes of mask, masked image and latents match
if num_channels_unet != 4:
raise ValueError(
f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
)
# 8.1 Prepare extra step kwargs.
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
# 8.2 Create tensor stating which controlnets to keep
controlnet_keep = []
for i in range(len(timesteps)):
controlnet_keep.append(
1.0
- float(i / len(timesteps) < control_guidance_start or (i + 1) / len(timesteps) > control_guidance_end)
)
# 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
height, width = latents.shape[-2:]
height = height * self.vae_scale_factor
width = width * self.vae_scale_factor
original_size = original_size or (height, width)
target_size = target_size or (height, width)
for _image in control_image:
if isinstance(_image, torch.Tensor):
original_size = original_size or _image.shape[-2:] | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
# 10. Prepare added time ids & embeddings
add_text_embeds = pooled_prompt_embeds
if self.text_encoder_2 is None:
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
else:
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
add_time_ids, add_neg_time_ids = self._get_add_time_ids(
original_size,
crops_coords_top_left,
target_size,
aesthetic_score,
negative_aesthetic_score,
dtype=prompt_embeds.dtype,
text_encoder_projection_dim=text_encoder_projection_dim,
)
add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
prompt_embeds = prompt_embeds.to(device)
add_text_embeds = add_text_embeds.to(device)
add_time_ids = add_time_ids.to(device)
# 11. Denoising loop
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
if (
denoising_end is not None
and denoising_start is not None
and denoising_value_valid(denoising_end)
and denoising_value_valid(denoising_start)
and denoising_start >= denoising_end
):
raise ValueError(
f"`denoising_start`: {denoising_start} cannot be larger than or equal to `denoising_end`: "
+ f" {denoising_end} when using type float."
)
elif denoising_end is not None and denoising_value_valid(denoising_end):
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (denoising_end * self.scheduler.config.num_train_timesteps)
)
)
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
timesteps = timesteps[:num_inference_steps] | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
control_type = (
control_type.reshape(1, -1)
.to(device, dtype=prompt_embeds.dtype)
.repeat(batch_size * num_images_per_prompt * 2, 1)
)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
added_cond_kwargs = {
"text_embeds": add_text_embeds,
"time_ids": add_time_ids,
} | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
# controlnet(s) inference
if guess_mode and self.do_classifier_free_guidance:
# Infer ControlNet only for the conditional batch.
control_model_input = latents
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
controlnet_added_cond_kwargs = {
"text_embeds": add_text_embeds.chunk(2)[1],
"time_ids": add_time_ids.chunk(2)[1],
}
else:
control_model_input = latent_model_input
controlnet_prompt_embeds = prompt_embeds
controlnet_added_cond_kwargs = added_cond_kwargs | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
if isinstance(controlnet_keep[i], list):
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
else:
controlnet_cond_scale = controlnet_conditioning_scale
if isinstance(controlnet_cond_scale, list):
controlnet_cond_scale = controlnet_cond_scale[0]
cond_scale = controlnet_cond_scale * controlnet_keep[i]
# # Resize control_image to match the size of the input to the controlnet
# if control_image.shape[-2:] != control_model_input.shape[-2:]:
# control_image = F.interpolate(control_image, size=control_model_input.shape[-2:], mode="bilinear", align_corners=False) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
down_block_res_samples, mid_block_res_sample = self.controlnet(
control_model_input,
t,
encoder_hidden_states=controlnet_prompt_embeds,
controlnet_cond=control_image,
control_type=control_type,
control_type_idx=control_mode,
conditioning_scale=cond_scale,
guess_mode=guess_mode,
added_cond_kwargs=controlnet_added_cond_kwargs,
return_dict=False,
) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
if guess_mode and self.do_classifier_free_guidance:
# Inferred ControlNet only for the conditional batch.
# To apply the output of ControlNet to both the unconditional and conditional batches,
# add 0 to the unconditional batch to keep it unchanged.
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
added_cond_kwargs["image_embeds"] = image_embeds | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=self.cross_attention_kwargs,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
if self.do_classifier_free_guidance and guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
init_latents_proper = image_latents
if self.do_classifier_free_guidance:
init_mask, _ = mask.chunk(2)
else:
init_mask = mask
if i < len(timesteps) - 1:
noise_timestep = timesteps[i + 1]
init_latents_proper = self.scheduler.add_noise(
init_latents_proper, noise, torch.tensor([noise_timestep])
)
latents = (1 - init_mask) * init_latents_proper + init_mask * latents | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
if XLA_AVAILABLE:
xm.mark_step()
# make sure the VAE is in float32 mode, as it overflows in float16
if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
self.upcast_vae()
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
# If we do sequential model offloading, let's offload unet and controlnet
# manually for max memory savings
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.unet.to("cpu")
self.controlnet.to("cpu")
torch.cuda.empty_cache()
if not output_type == "latent":
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
else:
return StableDiffusionXLPipelineOutput(images=latents)
# apply watermark if available
if self.watermark is not None:
image = self.watermark.apply_watermark(image) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
image = self.image_processor.postprocess(image, output_type=output_type)
if padding_mask_crop is not None:
image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image]
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return StableDiffusionXLPipelineOutput(images=image) | 94 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py |
class FlaxStableDiffusionControlNetPipeline(FlaxDiffusionPipeline):
r"""
Flax-based pipeline for text-to-image generation using Stable Diffusion with ControlNet Guidance.
This model inherits from [`FlaxDiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.). | 95 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_flax_controlnet.py |
Args:
vae ([`FlaxAutoencoderKL`]):
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
text_encoder ([`~transformers.FlaxCLIPTextModel`]):
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
tokenizer ([`~transformers.CLIPTokenizer`]):
A `CLIPTokenizer` to tokenize text.
unet ([`FlaxUNet2DConditionModel`]):
A `FlaxUNet2DConditionModel` to denoise the encoded image latents.
controlnet ([`FlaxControlNetModel`]:
Provides additional conditioning to the `unet` during the denoising process.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`FlaxDDIMScheduler`], [`FlaxLMSDiscreteScheduler`], [`FlaxPNDMScheduler`], or
[`FlaxDPMSolverMultistepScheduler`]. | 95 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_flax_controlnet.py |
safety_checker ([`FlaxStableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for
more details about a model's potential harms.
feature_extractor ([`~transformers.CLIPImageProcessor`]):
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
""" | 95 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_flax_controlnet.py |
def __init__(
self,
vae: FlaxAutoencoderKL,
text_encoder: FlaxCLIPTextModel,
tokenizer: CLIPTokenizer,
unet: FlaxUNet2DConditionModel,
controlnet: FlaxControlNetModel,
scheduler: Union[
FlaxDDIMScheduler, FlaxPNDMScheduler, FlaxLMSDiscreteScheduler, FlaxDPMSolverMultistepScheduler
],
safety_checker: FlaxStableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
dtype: jnp.dtype = jnp.float32,
):
super().__init__()
self.dtype = dtype | 95 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_flax_controlnet.py |
if safety_checker is None:
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
) | 95 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_flax_controlnet.py |
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
controlnet=controlnet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
def prepare_text_inputs(self, prompt: Union[str, List[str]]):
if not isinstance(prompt, (str, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
text_input = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="np",
)
return text_input.input_ids | 95 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_flax_controlnet.py |
def prepare_image_inputs(self, image: Union[Image.Image, List[Image.Image]]):
if not isinstance(image, (Image.Image, list)):
raise ValueError(f"image has to be of type `PIL.Image.Image` or list but is {type(image)}")
if isinstance(image, Image.Image):
image = [image]
processed_images = jnp.concatenate([preprocess(img, jnp.float32) for img in image])
return processed_images
def _get_has_nsfw_concepts(self, features, params):
has_nsfw_concepts = self.safety_checker(features, params)
return has_nsfw_concepts
def _run_safety_checker(self, images, safety_model_params, jit=False):
# safety_model_params should already be replicated when jit is True
pil_images = [Image.fromarray(image) for image in images]
features = self.feature_extractor(pil_images, return_tensors="np").pixel_values | 95 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_flax_controlnet.py |
if jit:
features = shard(features)
has_nsfw_concepts = _p_get_has_nsfw_concepts(self, features, safety_model_params)
has_nsfw_concepts = unshard(has_nsfw_concepts)
safety_model_params = unreplicate(safety_model_params)
else:
has_nsfw_concepts = self._get_has_nsfw_concepts(features, safety_model_params)
images_was_copied = False
for idx, has_nsfw_concept in enumerate(has_nsfw_concepts):
if has_nsfw_concept:
if not images_was_copied:
images_was_copied = True
images = images.copy()
images[idx] = np.zeros(images[idx].shape, dtype=np.uint8) # black image
if any(has_nsfw_concepts):
warnings.warn(
"Potential NSFW content was detected in one or more images. A black image will be returned"
" instead. Try again with a different prompt and/or seed."
) | 95 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_flax_controlnet.py |
return images, has_nsfw_concepts
def _generate(
self,
prompt_ids: jnp.ndarray,
image: jnp.ndarray,
params: Union[Dict, FrozenDict],
prng_seed: jax.Array,
num_inference_steps: int,
guidance_scale: float,
latents: Optional[jnp.ndarray] = None,
neg_prompt_ids: Optional[jnp.ndarray] = None,
controlnet_conditioning_scale: float = 1.0,
):
height, width = image.shape[-2:]
if height % 64 != 0 or width % 64 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 64 but are {height} and {width}.")
# get prompt text embeddings
prompt_embeds = self.text_encoder(prompt_ids, params=params["text_encoder"])[0]
# TODO: currently it is assumed `do_classifier_free_guidance = guidance_scale > 1.0`
# implement this conditional `do_classifier_free_guidance = guidance_scale > 1.0`
batch_size = prompt_ids.shape[0] | 95 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_flax_controlnet.py |
max_length = prompt_ids.shape[-1]
if neg_prompt_ids is None:
uncond_input = self.tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="np"
).input_ids
else:
uncond_input = neg_prompt_ids
negative_prompt_embeds = self.text_encoder(uncond_input, params=params["text_encoder"])[0]
context = jnp.concatenate([negative_prompt_embeds, prompt_embeds])
image = jnp.concatenate([image] * 2)
latents_shape = (
batch_size,
self.unet.config.in_channels,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
)
if latents is None:
latents = jax.random.normal(prng_seed, shape=latents_shape, dtype=jnp.float32)
else:
if latents.shape != latents_shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") | 95 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_flax_controlnet.py |
def loop_body(step, args):
latents, scheduler_state = args
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
latents_input = jnp.concatenate([latents] * 2)
t = jnp.array(scheduler_state.timesteps, dtype=jnp.int32)[step]
timestep = jnp.broadcast_to(t, latents_input.shape[0])
latents_input = self.scheduler.scale_model_input(scheduler_state, latents_input, t) | 95 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_flax_controlnet.py |
down_block_res_samples, mid_block_res_sample = self.controlnet.apply(
{"params": params["controlnet"]},
jnp.array(latents_input),
jnp.array(timestep, dtype=jnp.int32),
encoder_hidden_states=context,
controlnet_cond=image,
conditioning_scale=controlnet_conditioning_scale,
return_dict=False,
)
# predict the noise residual
noise_pred = self.unet.apply(
{"params": params["unet"]},
jnp.array(latents_input),
jnp.array(timestep, dtype=jnp.int32),
encoder_hidden_states=context,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
).sample | 95 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_flax_controlnet.py |
# perform guidance
noise_pred_uncond, noise_prediction_text = jnp.split(noise_pred, 2, axis=0)
noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents, scheduler_state = self.scheduler.step(scheduler_state, noise_pred, t, latents).to_tuple()
return latents, scheduler_state
scheduler_state = self.scheduler.set_timesteps(
params["scheduler"], num_inference_steps=num_inference_steps, shape=latents_shape
)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * params["scheduler"].init_noise_sigma | 95 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_flax_controlnet.py |
if DEBUG:
# run with python for loop
for i in range(num_inference_steps):
latents, scheduler_state = loop_body(i, (latents, scheduler_state))
else:
latents, _ = jax.lax.fori_loop(0, num_inference_steps, loop_body, (latents, scheduler_state))
# scale and decode the image latents with vae
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.apply({"params": params["vae"]}, latents, method=self.vae.decode).sample
image = (image / 2 + 0.5).clip(0, 1).transpose(0, 2, 3, 1)
return image | 95 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_flax_controlnet.py |
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt_ids: jnp.ndarray,
image: jnp.ndarray,
params: Union[Dict, FrozenDict],
prng_seed: jax.Array,
num_inference_steps: int = 50,
guidance_scale: Union[float, jnp.ndarray] = 7.5,
latents: jnp.ndarray = None,
neg_prompt_ids: jnp.ndarray = None,
controlnet_conditioning_scale: Union[float, jnp.ndarray] = 1.0,
return_dict: bool = True,
jit: bool = False,
):
r"""
The call function to the pipeline for generation. | 95 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_flax_controlnet.py |
Args:
prompt_ids (`jnp.ndarray`):
The prompt or prompts to guide the image generation.
image (`jnp.ndarray`):
Array representing the ControlNet input condition to provide guidance to the `unet` for generation.
params (`Dict` or `FrozenDict`):
Dictionary containing the model parameters/weights.
prng_seed (`jax.Array`):
Array containing random number generator key.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | 95 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_flax_controlnet.py |
latents (`jnp.ndarray`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
array is generated by sampling using the supplied random `generator`.
controlnet_conditioning_scale (`float` or `jnp.ndarray`, *optional*, defaults to 1.0):
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
to the residual in the original `unet`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] instead of
a plain tuple.
jit (`bool`, defaults to `False`):
Whether to run `pmap` versions of the generation and safety scoring functions. | 95 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet/pipeline_flax_controlnet.py |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.