text
stringlengths 1
1.02k
| class_index
int64 0
1.38k
| source
stringclasses 431
values |
---|---|---|
Args:
model_output (`torch.Tensor`):
The direct output from learned diffusion model.
timestep (`int`):
The current discrete timestep in the diffusion chain.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
generator (`torch.Generator`, *optional*):
A random number generator.
variance_noise (`torch.Tensor`):
Alternative to generating noise with `generator` by directly providing the noise for the variance
itself. Useful for methods such as [`CycleDiffusion`].
return_dict (`bool`):
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`. | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
Returns:
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
tuple is returned where the first element is the sample tensor.
"""
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
if self.step_index is None:
self._init_step_index(timestep)
# Improve numerical stability for small number of steps
lower_order_final = (self.step_index == len(self.timesteps) - 1) and (
self.config.euler_at_final or (self.config.lower_order_final and len(self.timesteps) < 15)
)
lower_order_second = (
(self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15
) | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
model_output = self.convert_model_output(model_output, sample=sample)
for i in range(self.config.solver_order - 1):
self.model_outputs[i] = self.model_outputs[i + 1]
self.model_outputs[-1] = model_output
if self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"] and variance_noise is None:
noise = randn_tensor(
model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
)
elif self.config.algorithm_type in ["sde-dpmsolver", "sde-dpmsolver++"]:
noise = variance_noise
else:
noise = None | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
prev_sample = self.dpm_solver_first_order_update(model_output, sample=sample, noise=noise)
elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise)
else:
prev_sample = self.multistep_dpm_solver_third_order_update(self.model_outputs, sample=sample)
if self.lower_order_nums < self.config.solver_order:
self.lower_order_nums += 1
# upon completion increase step index by one
self._step_index += 1
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=prev_sample) | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.scale_model_input
def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
sample (`torch.Tensor`):
The input sample.
Returns:
`torch.Tensor`:
A scaled input sample.
"""
return sample | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
def add_noise(
self,
original_samples: torch.Tensor,
noise: torch.Tensor,
timesteps: torch.IntTensor,
) -> torch.Tensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
# mps does not support float64
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
else:
schedule_timesteps = self.timesteps.to(original_samples.device)
timesteps = timesteps.to(original_samples.device) | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
step_indices = []
for timestep in timesteps:
index_candidates = (schedule_timesteps == timestep).nonzero()
if len(index_candidates) == 0:
step_index = len(schedule_timesteps) - 1
elif len(index_candidates) > 1:
step_index = index_candidates[1].item()
else:
step_index = index_candidates[0].item()
step_indices.append(step_index)
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < len(original_samples.shape):
sigma = sigma.unsqueeze(-1)
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
noisy_samples = alpha_t * original_samples + sigma_t * noise
return noisy_samples
def __len__(self):
return self.config.num_train_timesteps | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
class KDPM2AncestralDiscreteSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's `step` function output.
Args:
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
"""
prev_sample: torch.Tensor
pred_original_sample: Optional[torch.Tensor] = None | 1,317 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py |
class KDPM2AncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
"""
KDPM2DiscreteScheduler with ancestral sampling is inspired by the DPMSolver2 and Algorithm 2 from the [Elucidating
the Design Space of Diffusion-Based Generative Models](https://huggingface.co/papers/2206.00364) paper.
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving. | 1,318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py |
Args:
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
beta_start (`float`, defaults to 0.00085):
The starting `beta` value of inference.
beta_end (`float`, defaults to 0.012):
The final `beta` value.
beta_schedule (`str`, defaults to `"linear"`):
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear` or `scaled_linear`.
trained_betas (`np.ndarray`, *optional*):
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
the sigmas are determined according to a sequence of noise levels {σi}. | 1,318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py |
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
use_beta_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
timestep_spacing (`str`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and | 1,318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py |
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
steps_offset (`int`, defaults to 0):
An offset added to the inference steps, as required by some model families.
""" | 1,318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py |
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
order = 2 | 1,318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py |
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.00085, # sensible defaults
beta_end: float = 0.012,
beta_schedule: str = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
use_karras_sigmas: Optional[bool] = False,
use_exponential_sigmas: Optional[bool] = False,
use_beta_sigmas: Optional[bool] = False,
prediction_type: str = "epsilon",
timestep_spacing: str = "linspace",
steps_offset: int = 0,
):
if self.config.use_beta_sigmas and not is_scipy_available():
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
raise ValueError(
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used." | 1,318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py |
)
if trained_betas is not None:
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
elif beta_schedule == "linear":
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
else:
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}") | 1,318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py |
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
# set all values
self.set_timesteps(num_train_timesteps, None, num_train_timesteps)
self._step_index = None
self._begin_index = None
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
@property
def init_noise_sigma(self):
# standard deviation of the initial noise distribution
if self.config.timestep_spacing in ["linspace", "trailing"]:
return self.sigmas.max()
return (self.sigmas.max() ** 2 + 1) ** 0.5
@property
def step_index(self):
"""
The index counter for current timestep. It will increase 1 after each scheduler step.
"""
return self._step_index
@property
def begin_index(self):
"""
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
"""
return self._begin_index | 1,318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py |
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
def set_begin_index(self, begin_index: int = 0):
"""
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
Args:
begin_index (`int`):
The begin index for the scheduler.
"""
self._begin_index = begin_index
def scale_model_input(
self,
sample: torch.Tensor,
timestep: Union[float, torch.Tensor],
) -> torch.Tensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
sample (`torch.Tensor`):
The input sample.
timestep (`int`, *optional*):
The current timestep in the diffusion chain. | 1,318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py |
Returns:
`torch.Tensor`:
A scaled input sample.
"""
if self.step_index is None:
self._init_step_index(timestep)
if self.state_in_first_order:
sigma = self.sigmas[self.step_index]
else:
sigma = self.sigmas_interpol[self.step_index - 1]
sample = sample / ((sigma**2 + 1) ** 0.5)
return sample
def set_timesteps(
self,
num_inference_steps: int,
device: Union[str, torch.device] = None,
num_train_timesteps: Optional[int] = None,
):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference). | 1,318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py |
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
"""
self.num_inference_steps = num_inference_steps
num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps | 1,318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py |
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
timesteps = np.linspace(0, num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[::-1].copy()
elif self.config.timestep_spacing == "leading":
step_ratio = num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32)
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
step_ratio = num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3 | 1,318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py |
timesteps = (np.arange(num_train_timesteps, 0, -step_ratio)).round().copy().astype(np.float32)
timesteps -= 1
else:
raise ValueError(
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
) | 1,318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py |
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
log_sigmas = np.log(sigmas)
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
if self.config.use_karras_sigmas:
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
elif self.config.use_exponential_sigmas:
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
elif self.config.use_beta_sigmas:
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]) | 1,318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py |
self.log_sigmas = torch.from_numpy(log_sigmas).to(device)
sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
sigmas = torch.from_numpy(sigmas).to(device=device)
# compute up and down sigmas
sigmas_next = sigmas.roll(-1)
sigmas_next[-1] = 0.0
sigmas_up = (sigmas_next**2 * (sigmas**2 - sigmas_next**2) / sigmas**2) ** 0.5
sigmas_down = (sigmas_next**2 - sigmas_up**2) ** 0.5
sigmas_down[-1] = 0.0
# compute interpolated sigmas
sigmas_interpol = sigmas.log().lerp(sigmas_down.log(), 0.5).exp()
sigmas_interpol[-2:] = 0.0 | 1,318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py |
# set sigmas
self.sigmas = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2), sigmas[-1:]])
self.sigmas_interpol = torch.cat(
[sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2), sigmas_interpol[-1:]]
)
self.sigmas_up = torch.cat([sigmas_up[:1], sigmas_up[1:].repeat_interleave(2), sigmas_up[-1:]])
self.sigmas_down = torch.cat([sigmas_down[:1], sigmas_down[1:].repeat_interleave(2), sigmas_down[-1:]])
if str(device).startswith("mps"):
timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32)
else:
timesteps = torch.from_numpy(timesteps).to(device)
sigmas_interpol = sigmas_interpol.cpu()
log_sigmas = self.log_sigmas.cpu()
timesteps_interpol = np.array(
[self._sigma_to_t(sigma_interpol, log_sigmas) for sigma_interpol in sigmas_interpol]
) | 1,318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py |
timesteps_interpol = torch.from_numpy(timesteps_interpol).to(device, dtype=timesteps.dtype)
interleaved_timesteps = torch.stack((timesteps_interpol[:-2, None], timesteps[1:, None]), dim=-1).flatten()
self.timesteps = torch.cat([timesteps[:1], interleaved_timesteps])
self.sample = None
self._step_index = None
self._begin_index = None
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
def _sigma_to_t(self, sigma, log_sigmas):
# get log sigma
log_sigma = np.log(np.maximum(sigma, 1e-10))
# get distribution
dists = log_sigma - log_sigmas[:, np.newaxis]
# get sigmas range
low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
high_idx = low_idx + 1
low = log_sigmas[low_idx]
high = log_sigmas[high_idx] | 1,318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py |
# interpolate sigmas
w = (low - log_sigma) / (low - high)
w = np.clip(w, 0, 1)
# transform interpolation to time range
t = (1 - w) * low_idx + w * high_idx
t = t.reshape(sigma.shape)
return t
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
"""Constructs the noise schedule of Karras et al. (2022)."""
# Hack to make sure that other schedulers which copy this function don't break
# TODO: Add this logic to the other schedulers
if hasattr(self.config, "sigma_min"):
sigma_min = self.config.sigma_min
else:
sigma_min = None
if hasattr(self.config, "sigma_max"):
sigma_max = self.config.sigma_max
else:
sigma_max = None | 1,318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py |
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
rho = 7.0 # 7.0 is the value used in the paper
ramp = np.linspace(0, 1, num_inference_steps)
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
"""Constructs an exponential noise schedule."""
# Hack to make sure that other schedulers which copy this function don't break
# TODO: Add this logic to the other schedulers
if hasattr(self.config, "sigma_min"):
sigma_min = self.config.sigma_min
else:
sigma_min = None | 1,318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py |
if hasattr(self.config, "sigma_max"):
sigma_max = self.config.sigma_max
else:
sigma_max = None
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
return sigmas
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
def _convert_to_beta(
self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
) -> torch.Tensor:
"""From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)""" | 1,318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py |
# Hack to make sure that other schedulers which copy this function don't break
# TODO: Add this logic to the other schedulers
if hasattr(self.config, "sigma_min"):
sigma_min = self.config.sigma_min
else:
sigma_min = None
if hasattr(self.config, "sigma_max"):
sigma_max = self.config.sigma_max
else:
sigma_max = None
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
sigmas = np.array(
[
sigma_min + (ppf * (sigma_max - sigma_min))
for ppf in [
scipy.stats.beta.ppf(timestep, alpha, beta)
for timestep in 1 - np.linspace(0, 1, num_inference_steps)
]
]
)
return sigmas
@property
def state_in_first_order(self):
return self.sample is None | 1,318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py |
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
def index_for_timestep(self, timestep, schedule_timesteps=None):
if schedule_timesteps is None:
schedule_timesteps = self.timesteps
indices = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
pos = 1 if len(indices) > 1 else 0
return indices[pos].item() | 1,318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py |
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
def _init_step_index(self, timestep):
if self.begin_index is None:
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
self._step_index = self.index_for_timestep(timestep)
else:
self._step_index = self._begin_index
def step(
self,
model_output: Union[torch.Tensor, np.ndarray],
timestep: Union[float, torch.Tensor],
sample: Union[torch.Tensor, np.ndarray],
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
) -> Union[KDPM2AncestralDiscreteSchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise). | 1,318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py |
Args:
model_output (`torch.Tensor`):
The direct output from learned diffusion model.
timestep (`float`):
The current discrete timestep in the diffusion chain.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
generator (`torch.Generator`, *optional*):
A random number generator.
return_dict (`bool`):
Whether or not to return a
[`~schedulers.scheduling_k_dpm_2_ancestral_discrete.KDPM2AncestralDiscreteSchedulerOutput`] or tuple. | 1,318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py |
Returns:
[`~schedulers.scheduling_k_dpm_2_ancestral_discrete.KDPM2AncestralDiscreteSchedulerOutput`] or `tuple`:
If return_dict is `True`,
[`~schedulers.scheduling_k_dpm_2_ancestral_discrete.KDPM2AncestralDiscreteSchedulerOutput`] is
returned, otherwise a tuple is returned where the first element is the sample tensor.
"""
if self.step_index is None:
self._init_step_index(timestep) | 1,318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py |
if self.state_in_first_order:
sigma = self.sigmas[self.step_index]
sigma_interpol = self.sigmas_interpol[self.step_index]
sigma_up = self.sigmas_up[self.step_index]
sigma_down = self.sigmas_down[self.step_index - 1]
else:
# 2nd order / KPDM2's method
sigma = self.sigmas[self.step_index - 1]
sigma_interpol = self.sigmas_interpol[self.step_index - 1]
sigma_up = self.sigmas_up[self.step_index - 1]
sigma_down = self.sigmas_down[self.step_index - 1]
# currently only gamma=0 is supported. This usually works best anyways.
# We can support gamma in the future but then need to scale the timestep before
# passing it to the model which requires a change in API
gamma = 0
sigma_hat = sigma * (gamma + 1) # Note: sigma_hat == sigma for now | 1,318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py |
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
sigma_input = sigma_hat if self.state_in_first_order else sigma_interpol
pred_original_sample = sample - sigma_input * model_output
elif self.config.prediction_type == "v_prediction":
sigma_input = sigma_hat if self.state_in_first_order else sigma_interpol
pred_original_sample = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
sample / (sigma_input**2 + 1)
)
elif self.config.prediction_type == "sample":
raise NotImplementedError("prediction_type not implemented yet: sample")
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
) | 1,318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py |
if self.state_in_first_order:
# 2. Convert to an ODE derivative for 1st order
derivative = (sample - pred_original_sample) / sigma_hat
# 3. delta timestep
dt = sigma_interpol - sigma_hat
# store for 2nd order step
self.sample = sample
self.dt = dt
prev_sample = sample + derivative * dt
else:
# DPM-Solver-2
# 2. Convert to an ODE derivative for 2nd order
derivative = (sample - pred_original_sample) / sigma_interpol
# 3. delta timestep
dt = sigma_down - sigma_hat
sample = self.sample
self.sample = None
prev_sample = sample + derivative * dt
noise = randn_tensor(
model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator
)
prev_sample = prev_sample + noise * sigma_up | 1,318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py |
# upon completion increase step index by one
self._step_index += 1
if not return_dict:
return (
prev_sample,
pred_original_sample,
)
return KDPM2AncestralDiscreteSchedulerOutput(
prev_sample=prev_sample, pred_original_sample=pred_original_sample
) | 1,318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py |
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
def add_noise(
self,
original_samples: torch.Tensor,
noise: torch.Tensor,
timesteps: torch.Tensor,
) -> torch.Tensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
# mps does not support float64
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
else:
schedule_timesteps = self.timesteps.to(original_samples.device)
timesteps = timesteps.to(original_samples.device) | 1,318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py |
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
if self.begin_index is None:
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
elif self.step_index is not None:
# add_noise is called after first denoising step (for inpainting)
step_indices = [self.step_index] * timesteps.shape[0]
else:
# add noise is called before first denoising step to create initial latent(img2img)
step_indices = [self.begin_index] * timesteps.shape[0]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < len(original_samples.shape):
sigma = sigma.unsqueeze(-1)
noisy_samples = original_samples + noise * sigma
return noisy_samples
def __len__(self):
return self.config.num_train_timesteps | 1,318 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py |
class LMSDiscreteSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's `step` function output.
Args:
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
"""
prev_sample: torch.Tensor
pred_original_sample: Optional[torch.Tensor] = None | 1,319 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete.py |
class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
"""
A linear multistep scheduler for discrete beta schedules.
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving. | 1,320 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete.py |
Args:
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
beta_start (`float`, defaults to 0.0001):
The starting `beta` value of inference.
beta_end (`float`, defaults to 0.02):
The final `beta` value.
beta_schedule (`str`, defaults to `"linear"`):
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear` or `scaled_linear`.
trained_betas (`np.ndarray`, *optional*):
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
the sigmas are determined according to a sequence of noise levels {σi}.
use_exponential_sigmas (`bool`, *optional*, defaults to `False`): | 1,320 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete.py |
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
use_beta_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
timestep_spacing (`str`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and | 1,320 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete.py |
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
steps_offset (`int`, defaults to 0):
An offset added to the inference steps, as required by some model families.
""" | 1,320 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete.py |
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
order = 1 | 1,320 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete.py |
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
use_karras_sigmas: Optional[bool] = False,
use_exponential_sigmas: Optional[bool] = False,
use_beta_sigmas: Optional[bool] = False,
prediction_type: str = "epsilon",
timestep_spacing: str = "linspace",
steps_offset: int = 0,
):
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
raise ValueError(
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
)
if trained_betas is not None:
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
elif beta_schedule == "linear": | 1,320 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete.py |
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
else:
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}") | 1,320 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete.py |
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
self.sigmas = torch.from_numpy(sigmas)
# setable values
self.num_inference_steps = None
self.use_karras_sigmas = use_karras_sigmas
self.set_timesteps(num_train_timesteps, None)
self.derivatives = []
self.is_scale_input_called = False
self._step_index = None
self._begin_index = None
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
@property
def init_noise_sigma(self):
# standard deviation of the initial noise distribution
if self.config.timestep_spacing in ["linspace", "trailing"]:
return self.sigmas.max()
return (self.sigmas.max() ** 2 + 1) ** 0.5 | 1,320 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete.py |
@property
def step_index(self):
"""
The index counter for current timestep. It will increase 1 after each scheduler step.
"""
return self._step_index
@property
def begin_index(self):
"""
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
"""
return self._begin_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
def set_begin_index(self, begin_index: int = 0):
"""
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
Args:
begin_index (`int`):
The begin index for the scheduler.
"""
self._begin_index = begin_index | 1,320 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete.py |
def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
sample (`torch.Tensor`):
The input sample.
timestep (`float` or `torch.Tensor`):
The current timestep in the diffusion chain.
Returns:
`torch.Tensor`:
A scaled input sample.
"""
if self.step_index is None:
self._init_step_index(timestep)
sigma = self.sigmas[self.step_index]
sample = sample / ((sigma**2 + 1) ** 0.5)
self.is_scale_input_called = True
return sample
def get_lms_coefficient(self, order, t, current_order):
"""
Compute the linear multistep coefficient.
Args:
order ():
t ():
current_order ():
""" | 1,320 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete.py |
def lms_derivative(tau):
prod = 1.0
for k in range(order):
if current_order == k:
continue
prod *= (tau - self.sigmas[t - k]) / (self.sigmas[t - current_order] - self.sigmas[t - k])
return prod
integrated_coeff = integrate.quad(lms_derivative, self.sigmas[t], self.sigmas[t + 1], epsrel=1e-4)[0]
return integrated_coeff
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference). | 1,320 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete.py |
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
"""
self.num_inference_steps = num_inference_steps | 1,320 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete.py |
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[
::-1
].copy()
elif self.config.timestep_spacing == "leading":
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32)
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
step_ratio = self.config.num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio | 1,320 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete.py |
# casting to int to avoid issues when num_inference_step is power of 3
timesteps = (np.arange(self.config.num_train_timesteps, 0, -step_ratio)).round().copy().astype(np.float32)
timesteps -= 1
else:
raise ValueError(
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
) | 1,320 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete.py |
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
log_sigmas = np.log(sigmas)
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
if self.config.use_karras_sigmas:
sigmas = self._convert_to_karras(in_sigmas=sigmas)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
elif self.config.use_exponential_sigmas:
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
elif self.config.use_beta_sigmas:
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32) | 1,320 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete.py |
self.sigmas = torch.from_numpy(sigmas).to(device=device)
self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.float32)
self._step_index = None
self._begin_index = None
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
self.derivatives = []
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
def index_for_timestep(self, timestep, schedule_timesteps=None):
if schedule_timesteps is None:
schedule_timesteps = self.timesteps
indices = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
pos = 1 if len(indices) > 1 else 0 | 1,320 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete.py |
return indices[pos].item()
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
def _init_step_index(self, timestep):
if self.begin_index is None:
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
self._step_index = self.index_for_timestep(timestep)
else:
self._step_index = self._begin_index
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
def _sigma_to_t(self, sigma, log_sigmas):
# get log sigma
log_sigma = np.log(np.maximum(sigma, 1e-10))
# get distribution
dists = log_sigma - log_sigmas[:, np.newaxis]
# get sigmas range
low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
high_idx = low_idx + 1
low = log_sigmas[low_idx]
high = log_sigmas[high_idx] | 1,320 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete.py |
# interpolate sigmas
w = (low - log_sigma) / (low - high)
w = np.clip(w, 0, 1)
# transform interpolation to time range
t = (1 - w) * low_idx + w * high_idx
t = t.reshape(sigma.shape)
return t
# copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
def _convert_to_karras(self, in_sigmas: torch.Tensor) -> torch.Tensor:
"""Constructs the noise schedule of Karras et al. (2022)."""
sigma_min: float = in_sigmas[-1].item()
sigma_max: float = in_sigmas[0].item()
rho = 7.0 # 7.0 is the value used in the paper
ramp = np.linspace(0, 1, self.num_inference_steps)
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas | 1,320 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete.py |
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
"""Constructs an exponential noise schedule."""
# Hack to make sure that other schedulers which copy this function don't break
# TODO: Add this logic to the other schedulers
if hasattr(self.config, "sigma_min"):
sigma_min = self.config.sigma_min
else:
sigma_min = None
if hasattr(self.config, "sigma_max"):
sigma_max = self.config.sigma_max
else:
sigma_max = None
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
return sigmas | 1,320 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete.py |
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
def _convert_to_beta(
self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
) -> torch.Tensor:
"""From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""
# Hack to make sure that other schedulers which copy this function don't break
# TODO: Add this logic to the other schedulers
if hasattr(self.config, "sigma_min"):
sigma_min = self.config.sigma_min
else:
sigma_min = None
if hasattr(self.config, "sigma_max"):
sigma_max = self.config.sigma_max
else:
sigma_max = None
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item() | 1,320 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete.py |
sigmas = np.array(
[
sigma_min + (ppf * (sigma_max - sigma_min))
for ppf in [
scipy.stats.beta.ppf(timestep, alpha, beta)
for timestep in 1 - np.linspace(0, 1, num_inference_steps)
]
]
)
return sigmas
def step(
self,
model_output: torch.Tensor,
timestep: Union[float, torch.Tensor],
sample: torch.Tensor,
order: int = 4,
return_dict: bool = True,
) -> Union[LMSDiscreteSchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise). | 1,320 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete.py |
Args:
model_output (`torch.Tensor`):
The direct output from learned diffusion model.
timestep (`float` or `torch.Tensor`):
The current discrete timestep in the diffusion chain.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
order (`int`, defaults to 4):
The order of the linear multistep method.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or tuple.
Returns:
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
tuple is returned where the first element is the sample tensor. | 1,320 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete.py |
"""
if not self.is_scale_input_called:
warnings.warn(
"The `scale_model_input` function should be called before `step` to ensure correct denoising. "
"See `StableDiffusionPipeline` for a usage example."
)
if self.step_index is None:
self._init_step_index(timestep)
sigma = self.sigmas[self.step_index] | 1,320 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete.py |
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
pred_original_sample = sample - sigma * model_output
elif self.config.prediction_type == "v_prediction":
# * c_out + input * c_skip
pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
elif self.config.prediction_type == "sample":
pred_original_sample = model_output
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
)
# 2. Convert to an ODE derivative
derivative = (sample - pred_original_sample) / sigma
self.derivatives.append(derivative)
if len(self.derivatives) > order:
self.derivatives.pop(0) | 1,320 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete.py |
# 3. Compute linear multistep coefficients
order = min(self.step_index + 1, order)
lms_coeffs = [self.get_lms_coefficient(order, self.step_index, curr_order) for curr_order in range(order)]
# 4. Compute previous sample based on the derivatives path
prev_sample = sample + sum(
coeff * derivative for coeff, derivative in zip(lms_coeffs, reversed(self.derivatives))
)
# upon completion increase step index by one
self._step_index += 1
if not return_dict:
return (
prev_sample,
pred_original_sample,
)
return LMSDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) | 1,320 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete.py |
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
def add_noise(
self,
original_samples: torch.Tensor,
noise: torch.Tensor,
timesteps: torch.Tensor,
) -> torch.Tensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
# mps does not support float64
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
else:
schedule_timesteps = self.timesteps.to(original_samples.device)
timesteps = timesteps.to(original_samples.device) | 1,320 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete.py |
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
if self.begin_index is None:
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
elif self.step_index is not None:
# add_noise is called after first denoising step (for inpainting)
step_indices = [self.step_index] * timesteps.shape[0]
else:
# add noise is called before first denoising step to create initial latent(img2img)
step_indices = [self.begin_index] * timesteps.shape[0]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < len(original_samples.shape):
sigma = sigma.unsqueeze(-1)
noisy_samples = original_samples + noise * sigma
return noisy_samples
def __len__(self):
return self.config.num_train_timesteps | 1,320 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete.py |
class EulerDiscreteSchedulerState:
common: CommonSchedulerState
# setable values
init_noise_sigma: jnp.ndarray
timesteps: jnp.ndarray
sigmas: jnp.ndarray
num_inference_steps: Optional[int] = None
@classmethod
def create(
cls, common: CommonSchedulerState, init_noise_sigma: jnp.ndarray, timesteps: jnp.ndarray, sigmas: jnp.ndarray
):
return cls(common=common, init_noise_sigma=init_noise_sigma, timesteps=timesteps, sigmas=sigmas) | 1,321 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete_flax.py |
class FlaxEulerDiscreteSchedulerOutput(FlaxSchedulerOutput):
state: EulerDiscreteSchedulerState | 1,322 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete_flax.py |
class FlaxEulerDiscreteScheduler(FlaxSchedulerMixin, ConfigMixin):
"""
Euler scheduler (Algorithm 2) from Karras et al. (2022) https://arxiv.org/abs/2206.00364. . Based on the original
k-diffusion implementation by Katherine Crowson:
https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L51
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
[`~SchedulerMixin.from_pretrained`] functions. | 1,323 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete_flax.py |
Args:
num_train_timesteps (`int`): number of diffusion steps used to train the model.
beta_start (`float`): the starting `beta` value of inference.
beta_end (`float`): the final `beta` value.
beta_schedule (`str`):
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear` or `scaled_linear`.
trained_betas (`jnp.ndarray`, optional):
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
prediction_type (`str`, default `epsilon`, optional):
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
https://imagen.research.google/video/paper.pdf)
dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`): | 1,323 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete_flax.py |
the `dtype` used for params and computation.
""" | 1,323 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete_flax.py |
_compatibles = [e.name for e in FlaxKarrasDiffusionSchedulers]
dtype: jnp.dtype
@property
def has_state(self):
return True
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
trained_betas: Optional[jnp.ndarray] = None,
prediction_type: str = "epsilon",
timestep_spacing: str = "linspace",
dtype: jnp.dtype = jnp.float32,
):
self.dtype = dtype
def create_state(self, common: Optional[CommonSchedulerState] = None) -> EulerDiscreteSchedulerState:
if common is None:
common = CommonSchedulerState.create(self) | 1,323 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete_flax.py |
timesteps = jnp.arange(0, self.config.num_train_timesteps).round()[::-1]
sigmas = ((1 - common.alphas_cumprod) / common.alphas_cumprod) ** 0.5
sigmas = jnp.interp(timesteps, jnp.arange(0, len(sigmas)), sigmas)
sigmas = jnp.concatenate([sigmas, jnp.array([0.0], dtype=self.dtype)])
# standard deviation of the initial noise distribution
if self.config.timestep_spacing in ["linspace", "trailing"]:
init_noise_sigma = sigmas.max()
else:
init_noise_sigma = (sigmas.max() ** 2 + 1) ** 0.5
return EulerDiscreteSchedulerState.create(
common=common,
init_noise_sigma=init_noise_sigma,
timesteps=timesteps,
sigmas=sigmas,
)
def scale_model_input(self, state: EulerDiscreteSchedulerState, sample: jnp.ndarray, timestep: int) -> jnp.ndarray:
"""
Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm. | 1,323 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete_flax.py |
Args:
state (`EulerDiscreteSchedulerState`):
the `FlaxEulerDiscreteScheduler` state data class instance.
sample (`jnp.ndarray`):
current instance of sample being created by diffusion process.
timestep (`int`):
current discrete timestep in the diffusion chain.
Returns:
`jnp.ndarray`: scaled input sample
"""
(step_index,) = jnp.where(state.timesteps == timestep, size=1)
step_index = step_index[0]
sigma = state.sigmas[step_index]
sample = sample / ((sigma**2 + 1) ** 0.5)
return sample
def set_timesteps(
self, state: EulerDiscreteSchedulerState, num_inference_steps: int, shape: Tuple = ()
) -> EulerDiscreteSchedulerState:
"""
Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. | 1,323 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete_flax.py |
Args:
state (`EulerDiscreteSchedulerState`):
the `FlaxEulerDiscreteScheduler` state data class instance.
num_inference_steps (`int`):
the number of diffusion steps used when generating samples with a pre-trained model.
"""
if self.config.timestep_spacing == "linspace":
timesteps = jnp.linspace(self.config.num_train_timesteps - 1, 0, num_inference_steps, dtype=self.dtype)
elif self.config.timestep_spacing == "leading":
step_ratio = self.config.num_train_timesteps // num_inference_steps
timesteps = (jnp.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(float)
timesteps += 1
else:
raise ValueError(
f"timestep_spacing must be one of ['linspace', 'leading'], got {self.config.timestep_spacing}"
) | 1,323 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete_flax.py |
sigmas = ((1 - state.common.alphas_cumprod) / state.common.alphas_cumprod) ** 0.5
sigmas = jnp.interp(timesteps, jnp.arange(0, len(sigmas)), sigmas)
sigmas = jnp.concatenate([sigmas, jnp.array([0.0], dtype=self.dtype)])
# standard deviation of the initial noise distribution
if self.config.timestep_spacing in ["linspace", "trailing"]:
init_noise_sigma = sigmas.max()
else:
init_noise_sigma = (sigmas.max() ** 2 + 1) ** 0.5
return state.replace(
timesteps=timesteps,
sigmas=sigmas,
num_inference_steps=num_inference_steps,
init_noise_sigma=init_noise_sigma,
) | 1,323 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete_flax.py |
def step(
self,
state: EulerDiscreteSchedulerState,
model_output: jnp.ndarray,
timestep: int,
sample: jnp.ndarray,
return_dict: bool = True,
) -> Union[FlaxEulerDiscreteSchedulerOutput, Tuple]:
"""
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
process from the learned model outputs (most often the predicted noise). | 1,323 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete_flax.py |
Args:
state (`EulerDiscreteSchedulerState`):
the `FlaxEulerDiscreteScheduler` state data class instance.
model_output (`jnp.ndarray`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`jnp.ndarray`):
current instance of sample being created by diffusion process.
order: coefficient for multi-step inference.
return_dict (`bool`): option for returning tuple rather than FlaxEulerDiscreteScheduler class
Returns:
[`FlaxEulerDiscreteScheduler`] or `tuple`: [`FlaxEulerDiscreteScheduler`] if `return_dict` is True,
otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. | 1,323 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete_flax.py |
"""
if state.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
(step_index,) = jnp.where(state.timesteps == timestep, size=1)
step_index = step_index[0]
sigma = state.sigmas[step_index]
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
pred_original_sample = sample - sigma * model_output
elif self.config.prediction_type == "v_prediction":
# * c_out + input * c_skip
pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
) | 1,323 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete_flax.py |
# 2. Convert to an ODE derivative
derivative = (sample - pred_original_sample) / sigma
# dt = sigma_down - sigma
dt = state.sigmas[step_index + 1] - sigma
prev_sample = sample + derivative * dt
if not return_dict:
return (prev_sample, state)
return FlaxEulerDiscreteSchedulerOutput(prev_sample=prev_sample, state=state)
def add_noise(
self,
state: EulerDiscreteSchedulerState,
original_samples: jnp.ndarray,
noise: jnp.ndarray,
timesteps: jnp.ndarray,
) -> jnp.ndarray:
sigma = state.sigmas[timesteps].flatten()
sigma = broadcast_to_shape_from_left(sigma, noise.shape)
noisy_samples = original_samples + noise * sigma
return noisy_samples
def __len__(self):
return self.config.num_train_timesteps | 1,323 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete_flax.py |
class CMStochasticIterativeSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's `step` function.
Args:
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
"""
prev_sample: torch.Tensor | 1,324 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_consistency_models.py |
class CMStochasticIterativeScheduler(SchedulerMixin, ConfigMixin):
"""
Multistep and onestep sampling for consistency models.
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving. | 1,325 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_consistency_models.py |
Args:
num_train_timesteps (`int`, defaults to 40):
The number of diffusion steps to train the model.
sigma_min (`float`, defaults to 0.002):
Minimum noise magnitude in the sigma schedule. Defaults to 0.002 from the original implementation.
sigma_max (`float`, defaults to 80.0):
Maximum noise magnitude in the sigma schedule. Defaults to 80.0 from the original implementation.
sigma_data (`float`, defaults to 0.5):
The standard deviation of the data distribution from the EDM
[paper](https://huggingface.co/papers/2206.00364). Defaults to 0.5 from the original implementation.
s_noise (`float`, defaults to 1.0):
The amount of additional noise to counteract loss of detail during sampling. A reasonable range is [1.000,
1.011]. Defaults to 1.0 from the original implementation.
rho (`float`, defaults to 7.0): | 1,325 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_consistency_models.py |
The parameter for calculating the Karras sigma schedule from the EDM
[paper](https://huggingface.co/papers/2206.00364). Defaults to 7.0 from the original implementation.
clip_denoised (`bool`, defaults to `True`):
Whether to clip the denoised outputs to `(-1, 1)`.
timesteps (`List` or `np.ndarray` or `torch.Tensor`, *optional*):
An explicit timestep schedule that can be optionally specified. The timesteps are expected to be in
increasing order.
""" | 1,325 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_consistency_models.py |
order = 1
@register_to_config
def __init__(
self,
num_train_timesteps: int = 40,
sigma_min: float = 0.002,
sigma_max: float = 80.0,
sigma_data: float = 0.5,
s_noise: float = 1.0,
rho: float = 7.0,
clip_denoised: bool = True,
):
# standard deviation of the initial noise distribution
self.init_noise_sigma = sigma_max
ramp = np.linspace(0, 1, num_train_timesteps)
sigmas = self._convert_to_karras(ramp)
timesteps = self.sigma_to_t(sigmas)
# setable values
self.num_inference_steps = None
self.sigmas = torch.from_numpy(sigmas)
self.timesteps = torch.from_numpy(timesteps)
self.custom_timesteps = False
self.is_scale_input_called = False
self._step_index = None
self._begin_index = None
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication | 1,325 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_consistency_models.py |
@property
def step_index(self):
"""
The index counter for current timestep. It will increase 1 after each scheduler step.
"""
return self._step_index
@property
def begin_index(self):
"""
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
"""
return self._begin_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
def set_begin_index(self, begin_index: int = 0):
"""
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
Args:
begin_index (`int`):
The begin index for the scheduler.
"""
self._begin_index = begin_index | 1,325 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_consistency_models.py |
def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor:
"""
Scales the consistency model input by `(sigma**2 + sigma_data**2) ** 0.5`.
Args:
sample (`torch.Tensor`):
The input sample.
timestep (`float` or `torch.Tensor`):
The current timestep in the diffusion chain.
Returns:
`torch.Tensor`:
A scaled input sample.
"""
# Get sigma corresponding to timestep
if self.step_index is None:
self._init_step_index(timestep)
sigma = self.sigmas[self.step_index]
sample = sample / ((sigma**2 + self.config.sigma_data**2) ** 0.5)
self.is_scale_input_called = True
return sample
def sigma_to_t(self, sigmas: Union[float, np.ndarray]):
"""
Gets scaled timesteps from the Karras sigmas for input to the consistency model. | 1,325 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_consistency_models.py |
Args:
sigmas (`float` or `np.ndarray`):
A single Karras sigma or an array of Karras sigmas.
Returns:
`float` or `np.ndarray`:
A scaled input timestep or scaled input timestep array.
"""
if not isinstance(sigmas, np.ndarray):
sigmas = np.array(sigmas, dtype=np.float64)
timesteps = 1000 * 0.25 * np.log(sigmas + 1e-44)
return timesteps
def set_timesteps(
self,
num_inference_steps: Optional[int] = None,
device: Union[str, torch.device] = None,
timesteps: Optional[List[int]] = None,
):
"""
Sets the timesteps used for the diffusion chain (to be run before inference). | 1,325 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_consistency_models.py |
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
timestep spacing strategy of equal spacing between timesteps is used. If `timesteps` is passed,
`num_inference_steps` must be `None`.
"""
if num_inference_steps is None and timesteps is None:
raise ValueError("Exactly one of `num_inference_steps` or `timesteps` must be supplied.")
if num_inference_steps is not None and timesteps is not None:
raise ValueError("Can only pass one of `num_inference_steps` or `timesteps`.") | 1,325 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_consistency_models.py |
# Follow DDPMScheduler custom timesteps logic
if timesteps is not None:
for i in range(1, len(timesteps)):
if timesteps[i] >= timesteps[i - 1]:
raise ValueError("`timesteps` must be in descending order.")
if timesteps[0] >= self.config.num_train_timesteps:
raise ValueError(
f"`timesteps` must start before `self.config.train_timesteps`:"
f" {self.config.num_train_timesteps}."
) | 1,325 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_consistency_models.py |
timesteps = np.array(timesteps, dtype=np.int64)
self.custom_timesteps = True
else:
if num_inference_steps > self.config.num_train_timesteps:
raise ValueError(
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
f" maximal {self.config.num_train_timesteps} timesteps."
)
self.num_inference_steps = num_inference_steps
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
self.custom_timesteps = False | 1,325 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_consistency_models.py |
# Map timesteps to Karras sigmas directly for multistep sampling
# See https://github.com/openai/consistency_models/blob/main/cm/karras_diffusion.py#L675
num_train_timesteps = self.config.num_train_timesteps
ramp = timesteps[::-1].copy()
ramp = ramp / (num_train_timesteps - 1)
sigmas = self._convert_to_karras(ramp)
timesteps = self.sigma_to_t(sigmas)
sigmas = np.concatenate([sigmas, [self.config.sigma_min]]).astype(np.float32)
self.sigmas = torch.from_numpy(sigmas).to(device=device)
if str(device).startswith("mps"):
# mps does not support float64
self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32)
else:
self.timesteps = torch.from_numpy(timesteps).to(device=device)
self._step_index = None
self._begin_index = None
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication | 1,325 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_consistency_models.py |
# Modified _convert_to_karras implementation that takes in ramp as argument
def _convert_to_karras(self, ramp):
"""Constructs the noise schedule of Karras et al. (2022)."""
sigma_min: float = self.config.sigma_min
sigma_max: float = self.config.sigma_max
rho = self.config.rho
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas
def get_scalings(self, sigma):
sigma_data = self.config.sigma_data
c_skip = sigma_data**2 / (sigma**2 + sigma_data**2)
c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
return c_skip, c_out
def get_scalings_for_boundary_condition(self, sigma):
"""
Gets the scalings used in the consistency model parameterization (from Appendix C of the
[paper](https://huggingface.co/papers/2303.01469)) to enforce boundary condition.
<Tip> | 1,325 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_consistency_models.py |
`epsilon` in the equations for `c_skip` and `c_out` is set to `sigma_min`.
</Tip>
Args:
sigma (`torch.Tensor`):
The current sigma in the Karras sigma schedule.
Returns:
`tuple`:
A two-element tuple where `c_skip` (which weights the current sample) is the first element and `c_out`
(which weights the consistency model output) is the second element.
"""
sigma_min = self.config.sigma_min
sigma_data = self.config.sigma_data
c_skip = sigma_data**2 / ((sigma - sigma_min) ** 2 + sigma_data**2)
c_out = (sigma - sigma_min) * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
return c_skip, c_out
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
def index_for_timestep(self, timestep, schedule_timesteps=None):
if schedule_timesteps is None:
schedule_timesteps = self.timesteps | 1,325 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_consistency_models.py |
indices = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
pos = 1 if len(indices) > 1 else 0
return indices[pos].item()
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
def _init_step_index(self, timestep):
if self.begin_index is None:
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
self._step_index = self.index_for_timestep(timestep)
else:
self._step_index = self._begin_index | 1,325 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_consistency_models.py |
def step(
self,
model_output: torch.Tensor,
timestep: Union[float, torch.Tensor],
sample: torch.Tensor,
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
) -> Union[CMStochasticIterativeSchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise). | 1,325 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_consistency_models.py |
Args:
model_output (`torch.Tensor`):
The direct output from the learned diffusion model.
timestep (`float`):
The current timestep in the diffusion chain.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
generator (`torch.Generator`, *optional*):
A random number generator.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a
[`~schedulers.scheduling_consistency_models.CMStochasticIterativeSchedulerOutput`] or `tuple`. | 1,325 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_consistency_models.py |
Returns:
[`~schedulers.scheduling_consistency_models.CMStochasticIterativeSchedulerOutput`] or `tuple`:
If return_dict is `True`,
[`~schedulers.scheduling_consistency_models.CMStochasticIterativeSchedulerOutput`] is returned,
otherwise a tuple is returned where the first element is the sample tensor.
"""
if isinstance(timestep, (int, torch.IntTensor, torch.LongTensor)):
raise ValueError(
(
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
f" `{self.__class__}.step()` is not supported. Make sure to pass"
" one of the `scheduler.timesteps` as a timestep."
),
) | 1,325 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_consistency_models.py |
if not self.is_scale_input_called:
logger.warning(
"The `scale_model_input` function should be called before `step` to ensure correct denoising. "
"See `StableDiffusionPipeline` for a usage example."
)
sigma_min = self.config.sigma_min
sigma_max = self.config.sigma_max
if self.step_index is None:
self._init_step_index(timestep)
# sigma_next corresponds to next_t in original implementation
sigma = self.sigmas[self.step_index]
if self.step_index + 1 < self.config.num_train_timesteps:
sigma_next = self.sigmas[self.step_index + 1]
else:
# Set sigma_next to sigma_min
sigma_next = self.sigmas[-1]
# Get scalings for boundary conditions
c_skip, c_out = self.get_scalings_for_boundary_condition(sigma) | 1,325 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_consistency_models.py |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.