text
stringlengths 1
1.02k
| class_index
int64 0
1.38k
| source
stringclasses 431
values |
---|---|---|
raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}") | 1,312 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py |
if solver_type not in ["midpoint", "heun"]:
if solver_type in ["logrho", "bh1", "bh2"]:
self.register_to_config(solver_type="midpoint")
else:
raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
if algorithm_type not in ["dpmsolver++", "sde-dpmsolver++"] and final_sigmas_type == "zero":
raise ValueError(
f"`final_sigmas_type` {final_sigmas_type} is not supported for `algorithm_type` {algorithm_type}. Please choose `sigma_min` instead."
)
ramp = torch.linspace(0, 1, num_train_timesteps)
if sigma_schedule == "karras":
sigmas = self._compute_karras_sigmas(ramp)
elif sigma_schedule == "exponential":
sigmas = self._compute_exponential_sigmas(ramp)
self.timesteps = self.precondition_noise(sigmas)
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) | 1,312 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py |
# setable values
self.num_inference_steps = None
self.model_outputs = [None] * solver_order
self.lower_order_nums = 0
self._step_index = None
self._begin_index = None
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
@property
def init_noise_sigma(self):
# standard deviation of the initial noise distribution
return (self.config.sigma_max**2 + 1) ** 0.5
@property
def step_index(self):
"""
The index counter for current timestep. It will increase 1 after each scheduler step.
"""
return self._step_index
@property
def begin_index(self):
"""
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
"""
return self._begin_index | 1,312 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py |
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
def set_begin_index(self, begin_index: int = 0):
"""
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
Args:
begin_index (`int`):
The begin index for the scheduler.
"""
self._begin_index = begin_index
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_inputs
def precondition_inputs(self, sample, sigma):
c_in = 1 / ((sigma**2 + self.config.sigma_data**2) ** 0.5)
scaled_sample = sample * c_in
return scaled_sample
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_noise
def precondition_noise(self, sigma):
if not isinstance(sigma, torch.Tensor):
sigma = torch.tensor([sigma])
c_noise = 0.25 * torch.log(sigma)
return c_noise | 1,312 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py |
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_outputs
def precondition_outputs(self, sample, model_output, sigma):
sigma_data = self.config.sigma_data
c_skip = sigma_data**2 / (sigma**2 + sigma_data**2)
if self.config.prediction_type == "epsilon":
c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
elif self.config.prediction_type == "v_prediction":
c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
else:
raise ValueError(f"Prediction type {self.config.prediction_type} is not supported.")
denoised = c_skip * sample + c_out * model_output
return denoised | 1,312 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py |
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.scale_model_input
def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
Args:
sample (`torch.Tensor`):
The input sample.
timestep (`int`, *optional*):
The current timestep in the diffusion chain.
Returns:
`torch.Tensor`:
A scaled input sample.
"""
if self.step_index is None:
self._init_step_index(timestep)
sigma = self.sigmas[self.step_index]
sample = self.precondition_inputs(sample, sigma)
self.is_scale_input_called = True
return sample | 1,312 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py |
def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
"""
self.num_inference_steps = num_inference_steps
ramp = torch.linspace(0, 1, self.num_inference_steps)
if self.config.sigma_schedule == "karras":
sigmas = self._compute_karras_sigmas(ramp)
elif self.config.sigma_schedule == "exponential":
sigmas = self._compute_exponential_sigmas(ramp)
sigmas = sigmas.to(dtype=torch.float32, device=device)
self.timesteps = self.precondition_noise(sigmas) | 1,312 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py |
if self.config.final_sigmas_type == "sigma_min":
sigma_last = self.config.sigma_min
elif self.config.final_sigmas_type == "zero":
sigma_last = 0
else:
raise ValueError(
f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
)
self.sigmas = torch.cat([sigmas, torch.tensor([sigma_last], dtype=torch.float32, device=device)])
self.model_outputs = [
None,
] * self.config.solver_order
self.lower_order_nums = 0
# add an index counter for schedulers that allow duplicated timesteps
self._step_index = None
self._begin_index = None
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication | 1,312 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py |
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_karras_sigmas
def _compute_karras_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor:
"""Constructs the noise schedule of Karras et al. (2022)."""
sigma_min = sigma_min or self.config.sigma_min
sigma_max = sigma_max or self.config.sigma_max
rho = self.config.rho
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_exponential_sigmas
def _compute_exponential_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor:
"""Implementation closely follows k-diffusion. | 1,312 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py |
https://github.com/crowsonkb/k-diffusion/blob/6ab5146d4a5ef63901326489f31f1d8e7dd36b48/k_diffusion/sampling.py#L26
"""
sigma_min = sigma_min or self.config.sigma_min
sigma_max = sigma_max or self.config.sigma_max
sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), len(ramp)).exp().flip(0)
return sigmas | 1,312 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py |
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
"""
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
photorealism as well as better image-text alignment, especially when using very large guidance weights."
https://arxiv.org/abs/2205.11487
"""
dtype = sample.dtype
batch_size, channels, *remaining_dims = sample.shape | 1,312 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py |
if dtype not in (torch.float32, torch.float64):
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
# Flatten sample for doing quantile calculation along each image
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
s = torch.clamp(
s, min=1, max=self.config.sample_max_value
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
sample = sample.reshape(batch_size, channels, *remaining_dims)
sample = sample.to(dtype)
return sample | 1,312 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py |
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
def _sigma_to_t(self, sigma, log_sigmas):
# get log sigma
log_sigma = np.log(np.maximum(sigma, 1e-10))
# get distribution
dists = log_sigma - log_sigmas[:, np.newaxis]
# get sigmas range
low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
high_idx = low_idx + 1
low = log_sigmas[low_idx]
high = log_sigmas[high_idx]
# interpolate sigmas
w = (low - log_sigma) / (low - high)
w = np.clip(w, 0, 1)
# transform interpolation to time range
t = (1 - w) * low_idx + w * high_idx
t = t.reshape(sigma.shape)
return t
def _sigma_to_alpha_sigma_t(self, sigma):
alpha_t = torch.tensor(1) # Inputs are pre-scaled before going into unet, so alpha_t = 1
sigma_t = sigma
return alpha_t, sigma_t | 1,312 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py |
def convert_model_output(
self,
model_output: torch.Tensor,
sample: torch.Tensor = None,
) -> torch.Tensor:
"""
Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
integral of the data prediction model.
<Tip>
The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise
prediction and data prediction models.
</Tip>
Args:
model_output (`torch.Tensor`):
The direct output from the learned diffusion model.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process. | 1,312 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py |
Returns:
`torch.Tensor`:
The converted model output.
"""
sigma = self.sigmas[self.step_index]
x0_pred = self.precondition_outputs(sample, model_output, sigma)
if self.config.thresholding:
x0_pred = self._threshold_sample(x0_pred)
return x0_pred
def dpm_solver_first_order_update(
self,
model_output: torch.Tensor,
sample: torch.Tensor = None,
noise: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
One step for the first-order DPMSolver (equivalent to DDIM).
Args:
model_output (`torch.Tensor`):
The direct output from the learned diffusion model.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process. | 1,312 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py |
Returns:
`torch.Tensor`:
The sample tensor at the previous timestep.
"""
sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
lambda_s = torch.log(alpha_s) - torch.log(sigma_s)
h = lambda_t - lambda_s
if self.config.algorithm_type == "dpmsolver++":
x_t = (sigma_t / sigma_s) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * model_output
elif self.config.algorithm_type == "sde-dpmsolver++":
assert noise is not None
x_t = (
(sigma_t / sigma_s * torch.exp(-h)) * sample
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
)
return x_t | 1,312 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py |
def multistep_dpm_solver_second_order_update(
self,
model_output_list: List[torch.Tensor],
sample: torch.Tensor = None,
noise: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
One step for the second-order multistep DPMSolver.
Args:
model_output_list (`List[torch.Tensor]`):
The direct outputs from learned diffusion model at current and latter timesteps.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
Returns:
`torch.Tensor`:
The sample tensor at the previous timestep.
"""
sigma_t, sigma_s0, sigma_s1 = (
self.sigmas[self.step_index + 1],
self.sigmas[self.step_index],
self.sigmas[self.step_index - 1],
) | 1,312 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py |
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
m0, m1 = model_output_list[-1], model_output_list[-2] | 1,312 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py |
h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
r0 = h_0 / h
D0, D1 = m0, (1.0 / r0) * (m0 - m1)
if self.config.algorithm_type == "dpmsolver++":
# See https://arxiv.org/abs/2211.01095 for detailed derivations
if self.config.solver_type == "midpoint":
x_t = (
(sigma_t / sigma_s0) * sample
- (alpha_t * (torch.exp(-h) - 1.0)) * D0
- 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1
)
elif self.config.solver_type == "heun":
x_t = (
(sigma_t / sigma_s0) * sample
- (alpha_t * (torch.exp(-h) - 1.0)) * D0
+ (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
)
elif self.config.algorithm_type == "sde-dpmsolver++":
assert noise is not None
if self.config.solver_type == "midpoint":
x_t = ( | 1,312 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py |
(sigma_t / sigma_s0 * torch.exp(-h)) * sample
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
+ 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
)
elif self.config.solver_type == "heun":
x_t = (
(sigma_t / sigma_s0 * torch.exp(-h)) * sample
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
+ (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
) | 1,312 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py |
return x_t
def multistep_dpm_solver_third_order_update(
self,
model_output_list: List[torch.Tensor],
sample: torch.Tensor = None,
) -> torch.Tensor:
"""
One step for the third-order multistep DPMSolver.
Args:
model_output_list (`List[torch.Tensor]`):
The direct outputs from learned diffusion model at current and latter timesteps.
sample (`torch.Tensor`):
A current instance of a sample created by diffusion process.
Returns:
`torch.Tensor`:
The sample tensor at the previous timestep.
"""
sigma_t, sigma_s0, sigma_s1, sigma_s2 = (
self.sigmas[self.step_index + 1],
self.sigmas[self.step_index],
self.sigmas[self.step_index - 1],
self.sigmas[self.step_index - 2],
) | 1,312 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py |
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2)
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
lambda_s2 = torch.log(alpha_s2) - torch.log(sigma_s2)
m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3] | 1,312 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py |
h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2
r0, r1 = h_0 / h, h_1 / h
D0 = m0
D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2)
D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1)
D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1)
if self.config.algorithm_type == "dpmsolver++":
# See https://arxiv.org/abs/2206.00927 for detailed derivations
x_t = (
(sigma_t / sigma_s0) * sample
- (alpha_t * (torch.exp(-h) - 1.0)) * D0
+ (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
- (alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2
)
return x_t
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
def index_for_timestep(self, timestep, schedule_timesteps=None):
if schedule_timesteps is None:
schedule_timesteps = self.timesteps | 1,312 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py |
index_candidates = (schedule_timesteps == timestep).nonzero()
if len(index_candidates) == 0:
step_index = len(self.timesteps) - 1
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
elif len(index_candidates) > 1:
step_index = index_candidates[1].item()
else:
step_index = index_candidates[0].item()
return step_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
def _init_step_index(self, timestep):
"""
Initialize the step_index counter for the scheduler.
""" | 1,312 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py |
if self.begin_index is None:
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
self._step_index = self.index_for_timestep(timestep)
else:
self._step_index = self._begin_index
def step(
self,
model_output: torch.Tensor,
timestep: Union[int, torch.Tensor],
sample: torch.Tensor,
generator=None,
return_dict: bool = True,
) -> Union[SchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
the multistep DPMSolver. | 1,312 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py |
Args:
model_output (`torch.Tensor`):
The direct output from learned diffusion model.
timestep (`int`):
The current discrete timestep in the diffusion chain.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
generator (`torch.Generator`, *optional*):
A random number generator.
return_dict (`bool`):
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
Returns:
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
tuple is returned where the first element is the sample tensor. | 1,312 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py |
"""
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
if self.step_index is None:
self._init_step_index(timestep)
# Improve numerical stability for small number of steps
lower_order_final = (self.step_index == len(self.timesteps) - 1) and (
self.config.euler_at_final
or (self.config.lower_order_final and len(self.timesteps) < 15)
or self.config.final_sigmas_type == "zero"
)
lower_order_second = (
(self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15
) | 1,312 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py |
model_output = self.convert_model_output(model_output, sample=sample)
for i in range(self.config.solver_order - 1):
self.model_outputs[i] = self.model_outputs[i + 1]
self.model_outputs[-1] = model_output
if self.config.algorithm_type == "sde-dpmsolver++":
noise = randn_tensor(
model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
)
else:
noise = None | 1,312 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py |
if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
prev_sample = self.dpm_solver_first_order_update(model_output, sample=sample, noise=noise)
elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise)
else:
prev_sample = self.multistep_dpm_solver_third_order_update(self.model_outputs, sample=sample)
if self.lower_order_nums < self.config.solver_order:
self.lower_order_nums += 1
# upon completion increase step index by one
self._step_index += 1
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=prev_sample) | 1,312 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py |
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
def add_noise(
self,
original_samples: torch.Tensor,
noise: torch.Tensor,
timesteps: torch.Tensor,
) -> torch.Tensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
# mps does not support float64
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
else:
schedule_timesteps = self.timesteps.to(original_samples.device)
timesteps = timesteps.to(original_samples.device) | 1,312 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py |
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
if self.begin_index is None:
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
elif self.step_index is not None:
# add_noise is called after first denoising step (for inpainting)
step_indices = [self.step_index] * timesteps.shape[0]
else:
# add noise is called before first denoising step to create initial latent(img2img)
step_indices = [self.begin_index] * timesteps.shape[0]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < len(original_samples.shape):
sigma = sigma.unsqueeze(-1)
noisy_samples = original_samples + noise * sigma
return noisy_samples
def __len__(self):
return self.config.num_train_timesteps | 1,312 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py |
class LMSDiscreteSchedulerState:
common: CommonSchedulerState
# setable values
init_noise_sigma: jnp.ndarray
timesteps: jnp.ndarray
sigmas: jnp.ndarray
num_inference_steps: Optional[int] = None
# running values
derivatives: Optional[jnp.ndarray] = None
@classmethod
def create(
cls, common: CommonSchedulerState, init_noise_sigma: jnp.ndarray, timesteps: jnp.ndarray, sigmas: jnp.ndarray
):
return cls(common=common, init_noise_sigma=init_noise_sigma, timesteps=timesteps, sigmas=sigmas) | 1,313 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete_flax.py |
class FlaxLMSSchedulerOutput(FlaxSchedulerOutput):
state: LMSDiscreteSchedulerState | 1,314 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete_flax.py |
class FlaxLMSDiscreteScheduler(FlaxSchedulerMixin, ConfigMixin):
"""
Linear Multistep Scheduler for discrete beta schedules. Based on the original k-diffusion implementation by
Katherine Crowson:
https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L181
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
[`~SchedulerMixin.from_pretrained`] functions. | 1,315 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete_flax.py |
Args:
num_train_timesteps (`int`): number of diffusion steps used to train the model.
beta_start (`float`): the starting `beta` value of inference.
beta_end (`float`): the final `beta` value.
beta_schedule (`str`):
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear` or `scaled_linear`.
trained_betas (`jnp.ndarray`, optional):
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
prediction_type (`str`, default `epsilon`, optional):
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
https://imagen.research.google/video/paper.pdf)
dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`): | 1,315 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete_flax.py |
the `dtype` used for params and computation.
""" | 1,315 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete_flax.py |
_compatibles = [e.name for e in FlaxKarrasDiffusionSchedulers]
dtype: jnp.dtype
@property
def has_state(self):
return True
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
trained_betas: Optional[jnp.ndarray] = None,
prediction_type: str = "epsilon",
dtype: jnp.dtype = jnp.float32,
):
self.dtype = dtype
def create_state(self, common: Optional[CommonSchedulerState] = None) -> LMSDiscreteSchedulerState:
if common is None:
common = CommonSchedulerState.create(self)
timesteps = jnp.arange(0, self.config.num_train_timesteps).round()[::-1]
sigmas = ((1 - common.alphas_cumprod) / common.alphas_cumprod) ** 0.5
# standard deviation of the initial noise distribution
init_noise_sigma = sigmas.max() | 1,315 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete_flax.py |
return LMSDiscreteSchedulerState.create(
common=common,
init_noise_sigma=init_noise_sigma,
timesteps=timesteps,
sigmas=sigmas,
)
def scale_model_input(self, state: LMSDiscreteSchedulerState, sample: jnp.ndarray, timestep: int) -> jnp.ndarray:
"""
Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the K-LMS algorithm.
Args:
state (`LMSDiscreteSchedulerState`):
the `FlaxLMSDiscreteScheduler` state data class instance.
sample (`jnp.ndarray`):
current instance of sample being created by diffusion process.
timestep (`int`):
current discrete timestep in the diffusion chain.
Returns:
`jnp.ndarray`: scaled input sample
"""
(step_index,) = jnp.where(state.timesteps == timestep, size=1)
step_index = step_index[0] | 1,315 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete_flax.py |
sigma = state.sigmas[step_index]
sample = sample / ((sigma**2 + 1) ** 0.5)
return sample
def get_lms_coefficient(self, state: LMSDiscreteSchedulerState, order, t, current_order):
"""
Compute a linear multistep coefficient.
Args:
order (TODO):
t (TODO):
current_order (TODO):
"""
def lms_derivative(tau):
prod = 1.0
for k in range(order):
if current_order == k:
continue
prod *= (tau - state.sigmas[t - k]) / (state.sigmas[t - current_order] - state.sigmas[t - k])
return prod
integrated_coeff = integrate.quad(lms_derivative, state.sigmas[t], state.sigmas[t + 1], epsrel=1e-4)[0]
return integrated_coeff | 1,315 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete_flax.py |
def set_timesteps(
self, state: LMSDiscreteSchedulerState, num_inference_steps: int, shape: Tuple = ()
) -> LMSDiscreteSchedulerState:
"""
Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.
Args:
state (`LMSDiscreteSchedulerState`):
the `FlaxLMSDiscreteScheduler` state data class instance.
num_inference_steps (`int`):
the number of diffusion steps used when generating samples with a pre-trained model.
"""
timesteps = jnp.linspace(self.config.num_train_timesteps - 1, 0, num_inference_steps, dtype=self.dtype)
low_idx = jnp.floor(timesteps).astype(jnp.int32)
high_idx = jnp.ceil(timesteps).astype(jnp.int32)
frac = jnp.mod(timesteps, 1.0) | 1,315 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete_flax.py |
sigmas = ((1 - state.common.alphas_cumprod) / state.common.alphas_cumprod) ** 0.5
sigmas = (1 - frac) * sigmas[low_idx] + frac * sigmas[high_idx]
sigmas = jnp.concatenate([sigmas, jnp.array([0.0], dtype=self.dtype)])
timesteps = timesteps.astype(jnp.int32)
# initial running values
derivatives = jnp.zeros((0,) + shape, dtype=self.dtype)
return state.replace(
timesteps=timesteps,
sigmas=sigmas,
num_inference_steps=num_inference_steps,
derivatives=derivatives,
) | 1,315 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete_flax.py |
def step(
self,
state: LMSDiscreteSchedulerState,
model_output: jnp.ndarray,
timestep: int,
sample: jnp.ndarray,
order: int = 4,
return_dict: bool = True,
) -> Union[FlaxLMSSchedulerOutput, Tuple]:
"""
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
process from the learned model outputs (most often the predicted noise). | 1,315 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete_flax.py |
Args:
state (`LMSDiscreteSchedulerState`): the `FlaxLMSDiscreteScheduler` state data class instance.
model_output (`jnp.ndarray`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`jnp.ndarray`):
current instance of sample being created by diffusion process.
order: coefficient for multi-step inference.
return_dict (`bool`): option for returning tuple rather than FlaxLMSSchedulerOutput class
Returns:
[`FlaxLMSSchedulerOutput`] or `tuple`: [`FlaxLMSSchedulerOutput`] if `return_dict` is True, otherwise a
`tuple`. When returning a tuple, the first element is the sample tensor.
"""
if state.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
) | 1,315 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete_flax.py |
sigma = state.sigmas[timestep]
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
pred_original_sample = sample - sigma * model_output
elif self.config.prediction_type == "v_prediction":
# * c_out + input * c_skip
pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
)
# 2. Convert to an ODE derivative
derivative = (sample - pred_original_sample) / sigma
state = state.replace(derivatives=jnp.append(state.derivatives, derivative))
if len(state.derivatives) > order:
state = state.replace(derivatives=jnp.delete(state.derivatives, 0)) | 1,315 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete_flax.py |
# 3. Compute linear multistep coefficients
order = min(timestep + 1, order)
lms_coeffs = [self.get_lms_coefficient(state, order, timestep, curr_order) for curr_order in range(order)]
# 4. Compute previous sample based on the derivatives path
prev_sample = sample + sum(
coeff * derivative for coeff, derivative in zip(lms_coeffs, reversed(state.derivatives))
)
if not return_dict:
return (prev_sample, state)
return FlaxLMSSchedulerOutput(prev_sample=prev_sample, state=state)
def add_noise(
self,
state: LMSDiscreteSchedulerState,
original_samples: jnp.ndarray,
noise: jnp.ndarray,
timesteps: jnp.ndarray,
) -> jnp.ndarray:
sigma = state.sigmas[timesteps].flatten()
sigma = broadcast_to_shape_from_left(sigma, noise.shape)
noisy_samples = original_samples + noise * sigma
return noisy_samples | 1,315 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete_flax.py |
def __len__(self):
return self.config.num_train_timesteps | 1,315 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lms_discrete_flax.py |
class DPMSolverMultistepInverseScheduler(SchedulerMixin, ConfigMixin):
"""
`DPMSolverMultistepInverseScheduler` is the reverse scheduler of [`DPMSolverMultistepScheduler`].
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving. | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
Args:
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
beta_start (`float`, defaults to 0.0001):
The starting `beta` value of inference.
beta_end (`float`, defaults to 0.02):
The final `beta` value.
beta_schedule (`str`, defaults to `"linear"`):
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
trained_betas (`np.ndarray`, *optional*):
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
solver_order (`int`, defaults to 2):
The DPMSolver order which can be `1` or `2` or `3`. It is recommended to use `solver_order=2` for guided
sampling, and `solver_order=3` for unconditional sampling.
prediction_type (`str`, defaults to `epsilon`, *optional*): | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
dynamic_thresholding_ratio (`float`, defaults to 0.995):
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
sample_max_value (`float`, defaults to 1.0):
The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
`algorithm_type="dpmsolver++"`.
algorithm_type (`str`, defaults to `dpmsolver++`): | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
Algorithm type for the solver; can be `dpmsolver`, `dpmsolver++`, `sde-dpmsolver` or `sde-dpmsolver++`. The
`dpmsolver` type implements the algorithms in the [DPMSolver](https://huggingface.co/papers/2206.00927)
paper, and the `dpmsolver++` type implements the algorithms in the
[DPMSolver++](https://huggingface.co/papers/2211.01095) paper. It is recommended to use `dpmsolver++` or
`sde-dpmsolver++` with `solver_order=2` for guided sampling like in Stable Diffusion.
solver_type (`str`, defaults to `midpoint`):
Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
lower_order_final (`bool`, defaults to `True`):
Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
euler_at_final (`bool`, defaults to `False`):
Whether to use Euler's method in the final step. It is a trade-off between numerical stability and detail
richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference
steps, but sometimes may result in blurring.
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
the sigmas are determined according to a sequence of noise levels {σi}.
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
use_beta_sigmas (`bool`, *optional*, defaults to `False`): | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
lambda_min_clipped (`float`, defaults to `-inf`):
Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
cosine (`squaredcos_cap_v2`) noise schedule.
variance_type (`str`, *optional*):
Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output
contains the predicted Gaussian variance.
timestep_spacing (`str`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
steps_offset (`int`, defaults to 0): | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
An offset added to the inference steps, as required by some model families.
""" | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
order = 1 | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
solver_order: int = 2,
prediction_type: str = "epsilon",
thresholding: bool = False,
dynamic_thresholding_ratio: float = 0.995,
sample_max_value: float = 1.0,
algorithm_type: str = "dpmsolver++",
solver_type: str = "midpoint",
lower_order_final: bool = True,
euler_at_final: bool = False,
use_karras_sigmas: Optional[bool] = False,
use_exponential_sigmas: Optional[bool] = False,
use_beta_sigmas: Optional[bool] = False,
use_flow_sigmas: Optional[bool] = False,
flow_shift: Optional[float] = 1.0,
lambda_min_clipped: float = -float("inf"),
variance_type: Optional[str] = None, | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
timestep_spacing: str = "linspace",
steps_offset: int = 0,
):
if self.config.use_beta_sigmas and not is_scipy_available():
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
raise ValueError(
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
)
if algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
deprecation_message = f"algorithm_type {algorithm_type} is deprecated and will be removed in a future version. Choose from `dpmsolver++` or `sde-dpmsolver++` instead"
deprecate("algorithm_types dpmsolver and sde-dpmsolver", "1.0.0", deprecation_message) | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
if trained_betas is not None:
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
elif beta_schedule == "linear":
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
else:
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}") | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
# Currently we only support VP-type noise schedule
self.alpha_t = torch.sqrt(self.alphas_cumprod)
self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5
# standard deviation of the initial noise distribution
self.init_noise_sigma = 1.0
# settings for DPM-Solver
if algorithm_type not in ["dpmsolver", "dpmsolver++", "sde-dpmsolver", "sde-dpmsolver++"]:
if algorithm_type == "deis":
self.register_to_config(algorithm_type="dpmsolver++")
else:
raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}") | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
if solver_type not in ["midpoint", "heun"]:
if solver_type in ["logrho", "bh1", "bh2"]:
self.register_to_config(solver_type="midpoint")
else:
raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
# setable values
self.num_inference_steps = None
timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32).copy()
self.timesteps = torch.from_numpy(timesteps)
self.model_outputs = [None] * solver_order
self.lower_order_nums = 0
self._step_index = None
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
self.use_karras_sigmas = use_karras_sigmas
self.use_exponential_sigmas = use_exponential_sigmas
self.use_beta_sigmas = use_beta_sigmas | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
@property
def step_index(self):
"""
The index counter for current timestep. It will increase 1 after each scheduler step.
"""
return self._step_index
def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference). | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
"""
# Clipping the minimum of all lambda(t) for numerical stability.
# This is critical for cosine (squaredcos_cap_v2) noise schedule.
clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped).item()
self.noisiest_timestep = self.config.num_train_timesteps - 1 - clipped_idx | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
timesteps = (
np.linspace(0, self.noisiest_timestep, num_inference_steps + 1).round()[:-1].copy().astype(np.int64)
)
elif self.config.timestep_spacing == "leading":
step_ratio = (self.noisiest_timestep + 1) // (num_inference_steps + 1)
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[:-1].copy().astype(np.int64)
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
step_ratio = self.config.num_train_timesteps / num_inference_steps
# creates integer timesteps by multiplying by ratio | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
# casting to int to avoid issues when num_inference_step is power of 3
timesteps = np.arange(self.noisiest_timestep + 1, 0, -step_ratio).round()[::-1].copy().astype(np.int64)
timesteps -= 1
else:
raise ValueError(
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', "
"'leading' or 'trailing'."
) | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
log_sigmas = np.log(sigmas) | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
if self.config.use_karras_sigmas:
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
timesteps = timesteps.copy().astype(np.int64)
sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
elif self.config.use_exponential_sigmas:
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
elif self.config.use_beta_sigmas:
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]) | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
elif self.config.use_flow_sigmas:
alphas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1)
sigmas = 1.0 - alphas
sigmas = np.flip(self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas))[:-1].copy()
timesteps = (sigmas * self.config.num_train_timesteps).copy()
sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
else:
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
sigma_max = (
(1 - self.alphas_cumprod[self.noisiest_timestep]) / self.alphas_cumprod[self.noisiest_timestep]
) ** 0.5
sigmas = np.concatenate([sigmas, [sigma_max]]).astype(np.float32) | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
self.sigmas = torch.from_numpy(sigmas)
# when num_inference_steps == num_train_timesteps, we can end up with
# duplicates in timesteps.
_, unique_indices = np.unique(timesteps, return_index=True)
timesteps = timesteps[np.sort(unique_indices)]
self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
self.num_inference_steps = len(timesteps)
self.model_outputs = [
None,
] * self.config.solver_order
self.lower_order_nums = 0
# add an index counter for schedulers that allow duplicated timesteps
self._step_index = None
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
"""
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
photorealism as well as better image-text alignment, especially when using very large guidance weights."
https://arxiv.org/abs/2205.11487
"""
dtype = sample.dtype
batch_size, channels, *remaining_dims = sample.shape | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
if dtype not in (torch.float32, torch.float64):
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
# Flatten sample for doing quantile calculation along each image
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
s = torch.clamp(
s, min=1, max=self.config.sample_max_value
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
sample = sample.reshape(batch_size, channels, *remaining_dims)
sample = sample.to(dtype)
return sample | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
def _sigma_to_t(self, sigma, log_sigmas):
# get log sigma
log_sigma = np.log(np.maximum(sigma, 1e-10))
# get distribution
dists = log_sigma - log_sigmas[:, np.newaxis]
# get sigmas range
low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
high_idx = low_idx + 1
low = log_sigmas[low_idx]
high = log_sigmas[high_idx]
# interpolate sigmas
w = (low - log_sigma) / (low - high)
w = np.clip(w, 0, 1)
# transform interpolation to time range
t = (1 - w) * low_idx + w * high_idx
t = t.reshape(sigma.shape)
return t | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
def _sigma_to_alpha_sigma_t(self, sigma):
if self.config.use_flow_sigmas:
alpha_t = 1 - sigma
sigma_t = sigma
else:
alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
sigma_t = sigma * alpha_t
return alpha_t, sigma_t
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
"""Constructs the noise schedule of Karras et al. (2022)."""
# Hack to make sure that other schedulers which copy this function don't break
# TODO: Add this logic to the other schedulers
if hasattr(self.config, "sigma_min"):
sigma_min = self.config.sigma_min
else:
sigma_min = None | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
if hasattr(self.config, "sigma_max"):
sigma_max = self.config.sigma_max
else:
sigma_max = None
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
rho = 7.0 # 7.0 is the value used in the paper
ramp = np.linspace(0, 1, num_inference_steps)
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
"""Constructs an exponential noise schedule.""" | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
# Hack to make sure that other schedulers which copy this function don't break
# TODO: Add this logic to the other schedulers
if hasattr(self.config, "sigma_min"):
sigma_min = self.config.sigma_min
else:
sigma_min = None
if hasattr(self.config, "sigma_max"):
sigma_max = self.config.sigma_max
else:
sigma_max = None
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
return sigmas | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
def _convert_to_beta(
self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
) -> torch.Tensor:
"""From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""
# Hack to make sure that other schedulers which copy this function don't break
# TODO: Add this logic to the other schedulers
if hasattr(self.config, "sigma_min"):
sigma_min = self.config.sigma_min
else:
sigma_min = None
if hasattr(self.config, "sigma_max"):
sigma_max = self.config.sigma_max
else:
sigma_max = None
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item() | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
sigmas = np.array(
[
sigma_min + (ppf * (sigma_max - sigma_min))
for ppf in [
scipy.stats.beta.ppf(timestep, alpha, beta)
for timestep in 1 - np.linspace(0, 1, num_inference_steps)
]
]
)
return sigmas
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.convert_model_output
def convert_model_output(
self,
model_output: torch.Tensor,
*args,
sample: torch.Tensor = None,
**kwargs,
) -> torch.Tensor:
"""
Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
integral of the data prediction model.
<Tip> | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise
prediction and data prediction models.
</Tip>
Args:
model_output (`torch.Tensor`):
The direct output from the learned diffusion model.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process. | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
Returns:
`torch.Tensor`:
The converted model output.
"""
timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
if sample is None:
if len(args) > 1:
sample = args[1]
else:
raise ValueError("missing `sample` as a required keyward argument")
if timestep is not None:
deprecate(
"timesteps",
"1.0.0",
"Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
) | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
# DPM-Solver++ needs to solve an integral of the data prediction model.
if self.config.algorithm_type in ["dpmsolver++", "sde-dpmsolver++"]:
if self.config.prediction_type == "epsilon":
# DPM-Solver and DPM-Solver++ only need the "mean" output.
if self.config.variance_type in ["learned", "learned_range"]:
model_output = model_output[:, :3]
sigma = self.sigmas[self.step_index]
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
x0_pred = (sample - sigma_t * model_output) / alpha_t
elif self.config.prediction_type == "sample":
x0_pred = model_output
elif self.config.prediction_type == "v_prediction":
sigma = self.sigmas[self.step_index]
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
x0_pred = alpha_t * sample - sigma_t * model_output | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
elif self.config.prediction_type == "flow_prediction":
sigma_t = self.sigmas[self.step_index]
x0_pred = sample - sigma_t * model_output
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
"`v_prediction`, or `flow_prediction` for the DPMSolverMultistepScheduler."
) | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
if self.config.thresholding:
x0_pred = self._threshold_sample(x0_pred)
return x0_pred | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
# DPM-Solver needs to solve an integral of the noise prediction model.
elif self.config.algorithm_type in ["dpmsolver", "sde-dpmsolver"]:
if self.config.prediction_type == "epsilon":
# DPM-Solver and DPM-Solver++ only need the "mean" output.
if self.config.variance_type in ["learned", "learned_range"]:
epsilon = model_output[:, :3]
else:
epsilon = model_output
elif self.config.prediction_type == "sample":
sigma = self.sigmas[self.step_index]
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
epsilon = (sample - alpha_t * model_output) / sigma_t
elif self.config.prediction_type == "v_prediction":
sigma = self.sigmas[self.step_index]
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
epsilon = alpha_t * model_output + sigma_t * sample
else: | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
" `v_prediction` for the DPMSolverMultistepScheduler."
) | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
if self.config.thresholding:
sigma = self.sigmas[self.step_index]
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
x0_pred = (sample - sigma_t * epsilon) / alpha_t
x0_pred = self._threshold_sample(x0_pred)
epsilon = (sample - alpha_t * x0_pred) / sigma_t
return epsilon
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.dpm_solver_first_order_update
def dpm_solver_first_order_update(
self,
model_output: torch.Tensor,
*args,
sample: torch.Tensor = None,
noise: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
"""
One step for the first-order DPMSolver (equivalent to DDIM). | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
Args:
model_output (`torch.Tensor`):
The direct output from the learned diffusion model.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
Returns:
`torch.Tensor`:
The sample tensor at the previous timestep.
"""
timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
if sample is None:
if len(args) > 2:
sample = args[2]
else:
raise ValueError(" missing `sample` as a required keyward argument")
if timestep is not None:
deprecate(
"timesteps",
"1.0.0",
"Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
) | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
if prev_timestep is not None:
deprecate(
"prev_timestep",
"1.0.0",
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
)
sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
lambda_s = torch.log(alpha_s) - torch.log(sigma_s) | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
h = lambda_t - lambda_s
if self.config.algorithm_type == "dpmsolver++":
x_t = (sigma_t / sigma_s) * sample - (alpha_t * (torch.exp(-h) - 1.0)) * model_output
elif self.config.algorithm_type == "dpmsolver":
x_t = (alpha_t / alpha_s) * sample - (sigma_t * (torch.exp(h) - 1.0)) * model_output
elif self.config.algorithm_type == "sde-dpmsolver++":
assert noise is not None
x_t = (
(sigma_t / sigma_s * torch.exp(-h)) * sample
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
)
elif self.config.algorithm_type == "sde-dpmsolver":
assert noise is not None
x_t = (
(alpha_t / alpha_s) * sample
- 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * model_output
+ sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise
)
return x_t | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.multistep_dpm_solver_second_order_update
def multistep_dpm_solver_second_order_update(
self,
model_output_list: List[torch.Tensor],
*args,
sample: torch.Tensor = None,
noise: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
"""
One step for the second-order multistep DPMSolver.
Args:
model_output_list (`List[torch.Tensor]`):
The direct outputs from learned diffusion model at current and latter timesteps.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process. | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
Returns:
`torch.Tensor`:
The sample tensor at the previous timestep.
"""
timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
if sample is None:
if len(args) > 2:
sample = args[2]
else:
raise ValueError(" missing `sample` as a required keyward argument")
if timestep_list is not None:
deprecate(
"timestep_list",
"1.0.0",
"Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
) | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
if prev_timestep is not None:
deprecate(
"prev_timestep",
"1.0.0",
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
)
sigma_t, sigma_s0, sigma_s1 = (
self.sigmas[self.step_index + 1],
self.sigmas[self.step_index],
self.sigmas[self.step_index - 1],
)
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
m0, m1 = model_output_list[-1], model_output_list[-2] | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
r0 = h_0 / h
D0, D1 = m0, (1.0 / r0) * (m0 - m1)
if self.config.algorithm_type == "dpmsolver++":
# See https://arxiv.org/abs/2211.01095 for detailed derivations
if self.config.solver_type == "midpoint":
x_t = (
(sigma_t / sigma_s0) * sample
- (alpha_t * (torch.exp(-h) - 1.0)) * D0
- 0.5 * (alpha_t * (torch.exp(-h) - 1.0)) * D1
)
elif self.config.solver_type == "heun":
x_t = (
(sigma_t / sigma_s0) * sample
- (alpha_t * (torch.exp(-h) - 1.0)) * D0
+ (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
)
elif self.config.algorithm_type == "dpmsolver":
# See https://arxiv.org/abs/2206.00927 for detailed derivations
if self.config.solver_type == "midpoint":
x_t = ( | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
(alpha_t / alpha_s0) * sample
- (sigma_t * (torch.exp(h) - 1.0)) * D0
- 0.5 * (sigma_t * (torch.exp(h) - 1.0)) * D1
)
elif self.config.solver_type == "heun":
x_t = (
(alpha_t / alpha_s0) * sample
- (sigma_t * (torch.exp(h) - 1.0)) * D0
- (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
)
elif self.config.algorithm_type == "sde-dpmsolver++":
assert noise is not None
if self.config.solver_type == "midpoint":
x_t = (
(sigma_t / sigma_s0 * torch.exp(-h)) * sample
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
+ 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
)
elif self.config.solver_type == "heun":
x_t = ( | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
(sigma_t / sigma_s0 * torch.exp(-h)) * sample
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
+ (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
)
elif self.config.algorithm_type == "sde-dpmsolver":
assert noise is not None
if self.config.solver_type == "midpoint":
x_t = (
(alpha_t / alpha_s0) * sample
- 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0
- (sigma_t * (torch.exp(h) - 1.0)) * D1
+ sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise
)
elif self.config.solver_type == "heun":
x_t = (
(alpha_t / alpha_s0) * sample
- 2.0 * (sigma_t * (torch.exp(h) - 1.0)) * D0 | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
- 2.0 * (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
+ sigma_t * torch.sqrt(torch.exp(2 * h) - 1.0) * noise
)
return x_t | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.multistep_dpm_solver_third_order_update
def multistep_dpm_solver_third_order_update(
self,
model_output_list: List[torch.Tensor],
*args,
sample: torch.Tensor = None,
noise: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
"""
One step for the third-order multistep DPMSolver.
Args:
model_output_list (`List[torch.Tensor]`):
The direct outputs from learned diffusion model at current and latter timesteps.
sample (`torch.Tensor`):
A current instance of a sample created by diffusion process.
Returns:
`torch.Tensor`:
The sample tensor at the previous timestep.
""" | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
timestep_list = args[0] if len(args) > 0 else kwargs.pop("timestep_list", None)
prev_timestep = args[1] if len(args) > 1 else kwargs.pop("prev_timestep", None)
if sample is None:
if len(args) > 2:
sample = args[2]
else:
raise ValueError(" missing`sample` as a required keyward argument")
if timestep_list is not None:
deprecate(
"timestep_list",
"1.0.0",
"Passing `timestep_list` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
)
if prev_timestep is not None:
deprecate(
"prev_timestep",
"1.0.0",
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
) | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
sigma_t, sigma_s0, sigma_s1, sigma_s2 = (
self.sigmas[self.step_index + 1],
self.sigmas[self.step_index],
self.sigmas[self.step_index - 1],
self.sigmas[self.step_index - 2],
)
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
alpha_s2, sigma_s2 = self._sigma_to_alpha_sigma_t(sigma_s2)
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
lambda_s2 = torch.log(alpha_s2) - torch.log(sigma_s2)
m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3] | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2
r0, r1 = h_0 / h, h_1 / h
D0 = m0
D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2)
D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1)
D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1)
if self.config.algorithm_type == "dpmsolver++":
# See https://arxiv.org/abs/2206.00927 for detailed derivations
x_t = (
(sigma_t / sigma_s0) * sample
- (alpha_t * (torch.exp(-h) - 1.0)) * D0
+ (alpha_t * ((torch.exp(-h) - 1.0) / h + 1.0)) * D1
- (alpha_t * ((torch.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2
)
elif self.config.algorithm_type == "dpmsolver":
# See https://arxiv.org/abs/2206.00927 for detailed derivations
x_t = (
(alpha_t / alpha_s0) * sample
- (sigma_t * (torch.exp(h) - 1.0)) * D0 | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
- (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
- (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2
)
elif self.config.algorithm_type == "sde-dpmsolver++":
assert noise is not None
x_t = (
(sigma_t / sigma_s0 * torch.exp(-h)) * sample
+ (alpha_t * (1.0 - torch.exp(-2.0 * h))) * D0
+ (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
+ (alpha_t * ((1.0 - torch.exp(-2.0 * h) - 2.0 * h) / (2.0 * h) ** 2 - 0.5)) * D2
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
)
return x_t | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
def _init_step_index(self, timestep):
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
index_candidates = (self.timesteps == timestep).nonzero()
if len(index_candidates) == 0:
step_index = len(self.timesteps) - 1
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
elif len(index_candidates) > 1:
step_index = index_candidates[1].item()
else:
step_index = index_candidates[0].item()
self._step_index = step_index | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
def step(
self,
model_output: torch.Tensor,
timestep: Union[int, torch.Tensor],
sample: torch.Tensor,
generator=None,
variance_noise: Optional[torch.Tensor] = None,
return_dict: bool = True,
) -> Union[SchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
the multistep DPMSolver. | 1,316 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.